Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
e1000_nvm.c
Go to the documentation of this file.
1 /*******************************************************************************
2 
3  Intel(R) Gigabit Ethernet Linux driver
4  Copyright(c) 2007-2012 Intel Corporation.
5 
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9 
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  more details.
14 
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21 
22  Contact Information:
23  e1000-devel Mailing List <[email protected]>
24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 
26 *******************************************************************************/
27 
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
30 
31 #include "e1000_mac.h"
32 #include "e1000_nvm.h"
33 
41 static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
42 {
43  *eecd = *eecd | E1000_EECD_SK;
44  wr32(E1000_EECD, *eecd);
45  wrfl();
46  udelay(hw->nvm.delay_usec);
47 }
48 
56 static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
57 {
58  *eecd = *eecd & ~E1000_EECD_SK;
59  wr32(E1000_EECD, *eecd);
60  wrfl();
61  udelay(hw->nvm.delay_usec);
62 }
63 
74 static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
75 {
76  struct e1000_nvm_info *nvm = &hw->nvm;
77  u32 eecd = rd32(E1000_EECD);
78  u32 mask;
79 
80  mask = 0x01 << (count - 1);
81  if (nvm->type == e1000_nvm_eeprom_spi)
82  eecd |= E1000_EECD_DO;
83 
84  do {
85  eecd &= ~E1000_EECD_DI;
86 
87  if (data & mask)
88  eecd |= E1000_EECD_DI;
89 
90  wr32(E1000_EECD, eecd);
91  wrfl();
92 
93  udelay(nvm->delay_usec);
94 
95  igb_raise_eec_clk(hw, &eecd);
96  igb_lower_eec_clk(hw, &eecd);
97 
98  mask >>= 1;
99  } while (mask);
100 
101  eecd &= ~E1000_EECD_DI;
102  wr32(E1000_EECD, eecd);
103 }
104 
116 static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
117 {
118  u32 eecd;
119  u32 i;
120  u16 data;
121 
122  eecd = rd32(E1000_EECD);
123 
124  eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
125  data = 0;
126 
127  for (i = 0; i < count; i++) {
128  data <<= 1;
129  igb_raise_eec_clk(hw, &eecd);
130 
131  eecd = rd32(E1000_EECD);
132 
133  eecd &= ~E1000_EECD_DI;
134  if (eecd & E1000_EECD_DO)
135  data |= 1;
136 
137  igb_lower_eec_clk(hw, &eecd);
138  }
139 
140  return data;
141 }
142 
151 static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
152 {
153  u32 attempts = 100000;
154  u32 i, reg = 0;
155  s32 ret_val = -E1000_ERR_NVM;
156 
157  for (i = 0; i < attempts; i++) {
158  if (ee_reg == E1000_NVM_POLL_READ)
159  reg = rd32(E1000_EERD);
160  else
161  reg = rd32(E1000_EEWR);
162 
163  if (reg & E1000_NVM_RW_REG_DONE) {
164  ret_val = 0;
165  break;
166  }
167 
168  udelay(5);
169  }
170 
171  return ret_val;
172 }
173 
183 {
184  u32 eecd = rd32(E1000_EECD);
186  s32 ret_val = 0;
187 
188 
189  wr32(E1000_EECD, eecd | E1000_EECD_REQ);
190  eecd = rd32(E1000_EECD);
191 
192  while (timeout) {
193  if (eecd & E1000_EECD_GNT)
194  break;
195  udelay(5);
196  eecd = rd32(E1000_EECD);
197  timeout--;
198  }
199 
200  if (!timeout) {
201  eecd &= ~E1000_EECD_REQ;
202  wr32(E1000_EECD, eecd);
203  hw_dbg("Could not acquire NVM grant\n");
204  ret_val = -E1000_ERR_NVM;
205  }
206 
207  return ret_val;
208 }
209 
216 static void igb_standby_nvm(struct e1000_hw *hw)
217 {
218  struct e1000_nvm_info *nvm = &hw->nvm;
219  u32 eecd = rd32(E1000_EECD);
220 
221  if (nvm->type == e1000_nvm_eeprom_spi) {
222  /* Toggle CS to flush commands */
223  eecd |= E1000_EECD_CS;
224  wr32(E1000_EECD, eecd);
225  wrfl();
226  udelay(nvm->delay_usec);
227  eecd &= ~E1000_EECD_CS;
228  wr32(E1000_EECD, eecd);
229  wrfl();
230  udelay(nvm->delay_usec);
231  }
232 }
233 
240 static void e1000_stop_nvm(struct e1000_hw *hw)
241 {
242  u32 eecd;
243 
244  eecd = rd32(E1000_EECD);
245  if (hw->nvm.type == e1000_nvm_eeprom_spi) {
246  /* Pull CS high */
247  eecd |= E1000_EECD_CS;
248  igb_lower_eec_clk(hw, &eecd);
249  }
250 }
251 
258 void igb_release_nvm(struct e1000_hw *hw)
259 {
260  u32 eecd;
261 
262  e1000_stop_nvm(hw);
263 
264  eecd = rd32(E1000_EECD);
265  eecd &= ~E1000_EECD_REQ;
266  wr32(E1000_EECD, eecd);
267 }
268 
275 static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
276 {
277  struct e1000_nvm_info *nvm = &hw->nvm;
278  u32 eecd = rd32(E1000_EECD);
279  s32 ret_val = 0;
280  u16 timeout = 0;
281  u8 spi_stat_reg;
282 
283 
284  if (nvm->type == e1000_nvm_eeprom_spi) {
285  /* Clear SK and CS */
286  eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
287  wr32(E1000_EECD, eecd);
288  wrfl();
289  udelay(1);
290  timeout = NVM_MAX_RETRY_SPI;
291 
292  /*
293  * Read "Status Register" repeatedly until the LSB is cleared.
294  * The EEPROM will signal that the command has been completed
295  * by clearing bit 0 of the internal status register. If it's
296  * not cleared within 'timeout', then error out.
297  */
298  while (timeout) {
299  igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
300  hw->nvm.opcode_bits);
301  spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
302  if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
303  break;
304 
305  udelay(5);
306  igb_standby_nvm(hw);
307  timeout--;
308  }
309 
310  if (!timeout) {
311  hw_dbg("SPI NVM Status error\n");
312  ret_val = -E1000_ERR_NVM;
313  goto out;
314  }
315  }
316 
317 out:
318  return ret_val;
319 }
320 
330 s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
331 {
332  struct e1000_nvm_info *nvm = &hw->nvm;
333  u32 i = 0;
334  s32 ret_val;
335  u16 word_in;
336  u8 read_opcode = NVM_READ_OPCODE_SPI;
337 
338  /*
339  * A check for invalid values: offset too large, too many words,
340  * and not enough words.
341  */
342  if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
343  (words == 0)) {
344  hw_dbg("nvm parameter(s) out of bounds\n");
345  ret_val = -E1000_ERR_NVM;
346  goto out;
347  }
348 
349  ret_val = nvm->ops.acquire(hw);
350  if (ret_val)
351  goto out;
352 
353  ret_val = igb_ready_nvm_eeprom(hw);
354  if (ret_val)
355  goto release;
356 
357  igb_standby_nvm(hw);
358 
359  if ((nvm->address_bits == 8) && (offset >= 128))
360  read_opcode |= NVM_A8_OPCODE_SPI;
361 
362  /* Send the READ command (opcode + addr) */
363  igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
364  igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
365 
366  /*
367  * Read the data. SPI NVMs increment the address with each byte
368  * read and will roll over if reading beyond the end. This allows
369  * us to read the whole NVM from any offset
370  */
371  for (i = 0; i < words; i++) {
372  word_in = igb_shift_in_eec_bits(hw, 16);
373  data[i] = (word_in >> 8) | (word_in << 8);
374  }
375 
376 release:
377  nvm->ops.release(hw);
378 
379 out:
380  return ret_val;
381 }
382 
392 s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
393 {
394  struct e1000_nvm_info *nvm = &hw->nvm;
395  u32 i, eerd = 0;
396  s32 ret_val = 0;
397 
398  /*
399  * A check for invalid values: offset too large, too many words,
400  * and not enough words.
401  */
402  if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
403  (words == 0)) {
404  hw_dbg("nvm parameter(s) out of bounds\n");
405  ret_val = -E1000_ERR_NVM;
406  goto out;
407  }
408 
409  for (i = 0; i < words; i++) {
410  eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
412 
413  wr32(E1000_EERD, eerd);
414  ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
415  if (ret_val)
416  break;
417 
418  data[i] = (rd32(E1000_EERD) >>
420  }
421 
422 out:
423  return ret_val;
424 }
425 
438 s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
439 {
440  struct e1000_nvm_info *nvm = &hw->nvm;
441  s32 ret_val;
442  u16 widx = 0;
443 
444  /*
445  * A check for invalid values: offset too large, too many words,
446  * and not enough words.
447  */
448  if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
449  (words == 0)) {
450  hw_dbg("nvm parameter(s) out of bounds\n");
451  ret_val = -E1000_ERR_NVM;
452  goto out;
453  }
454 
455  ret_val = hw->nvm.ops.acquire(hw);
456  if (ret_val)
457  goto out;
458 
459  msleep(10);
460 
461  while (widx < words) {
462  u8 write_opcode = NVM_WRITE_OPCODE_SPI;
463 
464  ret_val = igb_ready_nvm_eeprom(hw);
465  if (ret_val)
466  goto release;
467 
468  igb_standby_nvm(hw);
469 
470  /* Send the WRITE ENABLE command (8 bit opcode) */
471  igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
472  nvm->opcode_bits);
473 
474  igb_standby_nvm(hw);
475 
476  /*
477  * Some SPI eeproms use the 8th address bit embedded in the
478  * opcode
479  */
480  if ((nvm->address_bits == 8) && (offset >= 128))
481  write_opcode |= NVM_A8_OPCODE_SPI;
482 
483  /* Send the Write command (8-bit opcode + addr) */
484  igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
485  igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
486  nvm->address_bits);
487 
488  /* Loop to allow for up to whole page write of eeprom */
489  while (widx < words) {
490  u16 word_out = data[widx];
491  word_out = (word_out >> 8) | (word_out << 8);
492  igb_shift_out_eec_bits(hw, word_out, 16);
493  widx++;
494 
495  if ((((offset + widx) * 2) % nvm->page_size) == 0) {
496  igb_standby_nvm(hw);
497  break;
498  }
499  }
500  }
501 
502  msleep(10);
503 release:
504  hw->nvm.ops.release(hw);
505 
506 out:
507  return ret_val;
508 }
509 
519 s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
520 {
521  s32 ret_val;
522  u16 nvm_data;
523  u16 pointer;
524  u16 offset;
525  u16 length;
526 
527  if (part_num == NULL) {
528  hw_dbg("PBA string buffer was null\n");
529  ret_val = E1000_ERR_INVALID_ARGUMENT;
530  goto out;
531  }
532 
533  ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
534  if (ret_val) {
535  hw_dbg("NVM Read Error\n");
536  goto out;
537  }
538 
539  ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
540  if (ret_val) {
541  hw_dbg("NVM Read Error\n");
542  goto out;
543  }
544 
545  /*
546  * if nvm_data is not ptr guard the PBA must be in legacy format which
547  * means pointer is actually our second data word for the PBA number
548  * and we can decode it into an ascii string
549  */
550  if (nvm_data != NVM_PBA_PTR_GUARD) {
551  hw_dbg("NVM PBA number is not stored as string\n");
552 
553  /* we will need 11 characters to store the PBA */
554  if (part_num_size < 11) {
555  hw_dbg("PBA string buffer too small\n");
556  return E1000_ERR_NO_SPACE;
557  }
558 
559  /* extract hex string from data and pointer */
560  part_num[0] = (nvm_data >> 12) & 0xF;
561  part_num[1] = (nvm_data >> 8) & 0xF;
562  part_num[2] = (nvm_data >> 4) & 0xF;
563  part_num[3] = nvm_data & 0xF;
564  part_num[4] = (pointer >> 12) & 0xF;
565  part_num[5] = (pointer >> 8) & 0xF;
566  part_num[6] = '-';
567  part_num[7] = 0;
568  part_num[8] = (pointer >> 4) & 0xF;
569  part_num[9] = pointer & 0xF;
570 
571  /* put a null character on the end of our string */
572  part_num[10] = '\0';
573 
574  /* switch all the data but the '-' to hex char */
575  for (offset = 0; offset < 10; offset++) {
576  if (part_num[offset] < 0xA)
577  part_num[offset] += '0';
578  else if (part_num[offset] < 0x10)
579  part_num[offset] += 'A' - 0xA;
580  }
581 
582  goto out;
583  }
584 
585  ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
586  if (ret_val) {
587  hw_dbg("NVM Read Error\n");
588  goto out;
589  }
590 
591  if (length == 0xFFFF || length == 0) {
592  hw_dbg("NVM PBA number section invalid length\n");
593  ret_val = E1000_ERR_NVM_PBA_SECTION;
594  goto out;
595  }
596  /* check if part_num buffer is big enough */
597  if (part_num_size < (((u32)length * 2) - 1)) {
598  hw_dbg("PBA string buffer too small\n");
599  ret_val = E1000_ERR_NO_SPACE;
600  goto out;
601  }
602 
603  /* trim pba length from start of string */
604  pointer++;
605  length--;
606 
607  for (offset = 0; offset < length; offset++) {
608  ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
609  if (ret_val) {
610  hw_dbg("NVM Read Error\n");
611  goto out;
612  }
613  part_num[offset * 2] = (u8)(nvm_data >> 8);
614  part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
615  }
616  part_num[offset * 2] = '\0';
617 
618 out:
619  return ret_val;
620 }
621 
631 {
632  u32 rar_high;
633  u32 rar_low;
634  u16 i;
635 
636  rar_high = rd32(E1000_RAH(0));
637  rar_low = rd32(E1000_RAL(0));
638 
639  for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
640  hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
641 
642  for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
643  hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
644 
645  for (i = 0; i < ETH_ALEN; i++)
646  hw->mac.addr[i] = hw->mac.perm_addr[i];
647 
648  return 0;
649 }
650 
659 {
660  s32 ret_val = 0;
661  u16 checksum = 0;
662  u16 i, nvm_data;
663 
664  for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
665  ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
666  if (ret_val) {
667  hw_dbg("NVM Read Error\n");
668  goto out;
669  }
670  checksum += nvm_data;
671  }
672 
673  if (checksum != (u16) NVM_SUM) {
674  hw_dbg("NVM Checksum Invalid\n");
675  ret_val = -E1000_ERR_NVM;
676  goto out;
677  }
678 
679 out:
680  return ret_val;
681 }
682 
692 {
693  s32 ret_val;
694  u16 checksum = 0;
695  u16 i, nvm_data;
696 
697  for (i = 0; i < NVM_CHECKSUM_REG; i++) {
698  ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
699  if (ret_val) {
700  hw_dbg("NVM Read Error while updating checksum.\n");
701  goto out;
702  }
703  checksum += nvm_data;
704  }
705  checksum = (u16) NVM_SUM - checksum;
706  ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
707  if (ret_val)
708  hw_dbg("NVM Write Error while updating checksum.\n");
709 
710 out:
711  return ret_val;
712 }