Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
falcon.c
Go to the documentation of this file.
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2010 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "spi.h"
23 #include "nic.h"
24 #include "regs.h"
25 #include "io.h"
26 #include "phy.h"
27 #include "workarounds.h"
28 #include "selftest.h"
29 
30 /* Hardware control for SFC4000 (aka Falcon). */
31 
32 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
33 
34 static const unsigned int
35 /* "Large" EEPROM device: Atmel AT25640 or similar
36  * 8 KB, 16-bit address, 32 B write block */
37 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
40 /* Default flash device: Atmel AT25F1024
41  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
42 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
44  | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
47 
48 /**************************************************************************
49  *
50  * I2C bus - this is a bit-bashing interface using GPIO pins
51  * Note that it uses the output enables to tristate the outputs
52  * SDA is the data pin and SCL is the clock
53  *
54  **************************************************************************
55  */
56 static void falcon_setsda(void *data, int state)
57 {
58  struct efx_nic *efx = (struct efx_nic *)data;
60 
61  efx_reado(efx, &reg, FR_AB_GPIO_CTL);
62  EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
63  efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
64 }
65 
66 static void falcon_setscl(void *data, int state)
67 {
68  struct efx_nic *efx = (struct efx_nic *)data;
70 
71  efx_reado(efx, &reg, FR_AB_GPIO_CTL);
72  EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
73  efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
74 }
75 
76 static int falcon_getsda(void *data)
77 {
78  struct efx_nic *efx = (struct efx_nic *)data;
80 
81  efx_reado(efx, &reg, FR_AB_GPIO_CTL);
82  return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
83 }
84 
85 static int falcon_getscl(void *data)
86 {
87  struct efx_nic *efx = (struct efx_nic *)data;
89 
90  efx_reado(efx, &reg, FR_AB_GPIO_CTL);
91  return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
92 }
93 
94 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
95  .setsda = falcon_setsda,
96  .setscl = falcon_setscl,
97  .getsda = falcon_getsda,
98  .getscl = falcon_getscl,
99  .udelay = 5,
100  /* Wait up to 50 ms for slave to let us pull SCL high */
101  .timeout = DIV_ROUND_UP(HZ, 20),
102 };
103 
104 static void falcon_push_irq_moderation(struct efx_channel *channel)
105 {
106  efx_dword_t timer_cmd;
107  struct efx_nic *efx = channel->efx;
108 
109  /* Set timer register */
110  if (channel->irq_moderation) {
111  EFX_POPULATE_DWORD_2(timer_cmd,
112  FRF_AB_TC_TIMER_MODE,
114  FRF_AB_TC_TIMER_VAL,
115  channel->irq_moderation - 1);
116  } else {
117  EFX_POPULATE_DWORD_2(timer_cmd,
118  FRF_AB_TC_TIMER_MODE,
120  FRF_AB_TC_TIMER_VAL, 0);
121  }
124  channel->channel);
125 }
126 
127 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
128 
129 static void falcon_prepare_flush(struct efx_nic *efx)
130 {
131  falcon_deconfigure_mac_wrapper(efx);
132 
133  /* Wait for the tx and rx fifo's to get to the next packet boundary
134  * (~1ms without back-pressure), then to drain the remainder of the
135  * fifo's at data path speeds (negligible), with a healthy margin. */
136  msleep(10);
137 }
138 
139 /* Acknowledge a legacy interrupt from Falcon
140  *
141  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
142  *
143  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
144  * BIU. Interrupt acknowledge is read sensitive so must write instead
145  * (then read to ensure the BIU collector is flushed)
146  *
147  * NB most hardware supports MSI interrupts
148  */
149 inline void falcon_irq_ack_a1(struct efx_nic *efx)
150 {
152 
153  EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
154  efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
155  efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
156 }
157 
158 
160 {
161  struct efx_nic *efx = dev_id;
162  efx_oword_t *int_ker = efx->irq_status.addr;
163  int syserr;
164  int queues;
165 
166  /* Check to see if this is our interrupt. If it isn't, we
167  * exit without having touched the hardware.
168  */
169  if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
170  netif_vdbg(efx, intr, efx->net_dev,
171  "IRQ %d on CPU %d not for me\n", irq,
173  return IRQ_NONE;
174  }
176  netif_vdbg(efx, intr, efx->net_dev,
177  "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
178  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
179 
180  /* Check to see if we have a serious error condition */
181  syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
182  if (unlikely(syserr))
183  return efx_nic_fatal_interrupt(efx);
184 
185  /* Determine interrupting queues, clear interrupt status
186  * register and acknowledge the device interrupt.
187  */
189  queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
190  EFX_ZERO_OWORD(*int_ker);
191  wmb(); /* Ensure the vector is cleared before interrupt ack */
192  falcon_irq_ack_a1(efx);
193 
194  if (queues & 1)
195  efx_schedule_channel_irq(efx_get_channel(efx, 0));
196  if (queues & 2)
197  efx_schedule_channel_irq(efx_get_channel(efx, 1));
198  return IRQ_HANDLED;
199 }
200 /**************************************************************************
201  *
202  * EEPROM/flash
203  *
204  **************************************************************************
205  */
206 
207 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
208 
209 static int falcon_spi_poll(struct efx_nic *efx)
210 {
212  efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
213  return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
214 }
215 
216 /* Wait for SPI command completion */
217 static int falcon_spi_wait(struct efx_nic *efx)
218 {
219  /* Most commands will finish quickly, so we start polling at
220  * very short intervals. Sometimes the command may have to
221  * wait for VPD or expansion ROM access outside of our
222  * control, so we allow up to 100 ms. */
223  unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
224  int i;
225 
226  for (i = 0; i < 10; i++) {
227  if (!falcon_spi_poll(efx))
228  return 0;
229  udelay(10);
230  }
231 
232  for (;;) {
233  if (!falcon_spi_poll(efx))
234  return 0;
235  if (time_after_eq(jiffies, timeout)) {
236  netif_err(efx, hw, efx->net_dev,
237  "timed out waiting for SPI\n");
238  return -ETIMEDOUT;
239  }
241  }
242 }
243 
244 int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
245  unsigned int command, int address,
246  const void *in, void *out, size_t len)
247 {
248  bool addressed = (address >= 0);
249  bool reading = (out != NULL);
251  int rc;
252 
253  /* Input validation */
254  if (len > FALCON_SPI_MAX_LEN)
255  return -EINVAL;
256 
257  /* Check that previous command is not still running */
258  rc = falcon_spi_poll(efx);
259  if (rc)
260  return rc;
261 
262  /* Program address register, if we have an address */
263  if (addressed) {
264  EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
265  efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
266  }
267 
268  /* Program data register, if we have data */
269  if (in != NULL) {
270  memcpy(&reg, in, len);
271  efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
272  }
273 
274  /* Issue read/write command */
276  FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
277  FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
278  FRF_AB_EE_SPI_HCMD_DABCNT, len,
279  FRF_AB_EE_SPI_HCMD_READ, reading,
280  FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
281  FRF_AB_EE_SPI_HCMD_ADBCNT,
282  (addressed ? spi->addr_len : 0),
283  FRF_AB_EE_SPI_HCMD_ENC, command);
284  efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
285 
286  /* Wait for read/write to complete */
287  rc = falcon_spi_wait(efx);
288  if (rc)
289  return rc;
290 
291  /* Read data */
292  if (out != NULL) {
293  efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
294  memcpy(out, &reg, len);
295  }
296 
297  return 0;
298 }
299 
300 static size_t
301 falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
302 {
303  return min(FALCON_SPI_MAX_LEN,
304  (spi->block_size - (start & (spi->block_size - 1))));
305 }
306 
307 static inline u8
308 efx_spi_munge_command(const struct efx_spi_device *spi,
309  const u8 command, const unsigned int address)
310 {
311  return command | (((address >> 8) & spi->munge_address) << 3);
312 }
313 
314 /* Wait up to 10 ms for buffered write completion */
315 int
316 falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
317 {
318  unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
319  u8 status;
320  int rc;
321 
322  for (;;) {
323  rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
324  &status, sizeof(status));
325  if (rc)
326  return rc;
327  if (!(status & SPI_STATUS_NRDY))
328  return 0;
329  if (time_after_eq(jiffies, timeout)) {
330  netif_err(efx, hw, efx->net_dev,
331  "SPI write timeout on device %d"
332  " last status=0x%02x\n",
333  spi->device_id, status);
334  return -ETIMEDOUT;
335  }
337  }
338 }
339 
340 int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
341  loff_t start, size_t len, size_t *retlen, u8 *buffer)
342 {
343  size_t block_len, pos = 0;
344  unsigned int command;
345  int rc = 0;
346 
347  while (pos < len) {
348  block_len = min(len - pos, FALCON_SPI_MAX_LEN);
349 
350  command = efx_spi_munge_command(spi, SPI_READ, start + pos);
351  rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
352  buffer + pos, block_len);
353  if (rc)
354  break;
355  pos += block_len;
356 
357  /* Avoid locking up the system */
358  cond_resched();
359  if (signal_pending(current)) {
360  rc = -EINTR;
361  break;
362  }
363  }
364 
365  if (retlen)
366  *retlen = pos;
367  return rc;
368 }
369 
370 int
371 falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
372  loff_t start, size_t len, size_t *retlen, const u8 *buffer)
373 {
374  u8 verify_buffer[FALCON_SPI_MAX_LEN];
375  size_t block_len, pos = 0;
376  unsigned int command;
377  int rc = 0;
378 
379  while (pos < len) {
380  rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
381  if (rc)
382  break;
383 
384  block_len = min(len - pos,
385  falcon_spi_write_limit(spi, start + pos));
386  command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
387  rc = falcon_spi_cmd(efx, spi, command, start + pos,
388  buffer + pos, NULL, block_len);
389  if (rc)
390  break;
391 
392  rc = falcon_spi_wait_write(efx, spi);
393  if (rc)
394  break;
395 
396  command = efx_spi_munge_command(spi, SPI_READ, start + pos);
397  rc = falcon_spi_cmd(efx, spi, command, start + pos,
398  NULL, verify_buffer, block_len);
399  if (memcmp(verify_buffer, buffer + pos, block_len)) {
400  rc = -EIO;
401  break;
402  }
403 
404  pos += block_len;
405 
406  /* Avoid locking up the system */
407  cond_resched();
408  if (signal_pending(current)) {
409  rc = -EINTR;
410  break;
411  }
412  }
413 
414  if (retlen)
415  *retlen = pos;
416  return rc;
417 }
418 
419 /**************************************************************************
420  *
421  * MAC wrapper
422  *
423  **************************************************************************
424  */
425 
426 static void falcon_push_multicast_hash(struct efx_nic *efx)
427 {
428  union efx_multicast_hash *mc_hash = &efx->multicast_hash;
429 
430  WARN_ON(!mutex_is_locked(&efx->mac_lock));
431 
432  efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
433  efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
434 }
435 
436 static void falcon_reset_macs(struct efx_nic *efx)
437 {
438  struct falcon_nic_data *nic_data = efx->nic_data;
439  efx_oword_t reg, mac_ctrl;
440  int count;
441 
442  if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
443  /* It's not safe to use GLB_CTL_REG to reset the
444  * macs, so instead use the internal MAC resets
445  */
446  EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
447  efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
448 
449  for (count = 0; count < 10000; count++) {
450  efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
451  if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
452  0)
453  return;
454  udelay(10);
455  }
456 
457  netif_err(efx, hw, efx->net_dev,
458  "timed out waiting for XMAC core reset\n");
459  }
460 
461  /* Mac stats will fail whist the TX fifo is draining */
462  WARN_ON(nic_data->stats_disable_count == 0);
463 
464  efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
465  EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
466  efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
467 
468  efx_reado(efx, &reg, FR_AB_GLB_CTL);
469  EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
470  EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
471  EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
472  efx_writeo(efx, &reg, FR_AB_GLB_CTL);
473 
474  count = 0;
475  while (1) {
476  efx_reado(efx, &reg, FR_AB_GLB_CTL);
477  if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
478  !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
479  !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
480  netif_dbg(efx, hw, efx->net_dev,
481  "Completed MAC reset after %d loops\n",
482  count);
483  break;
484  }
485  if (count > 20) {
486  netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
487  break;
488  }
489  count++;
490  udelay(10);
491  }
492 
493  /* Ensure the correct MAC is selected before statistics
494  * are re-enabled by the caller */
495  efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
496 
497  falcon_setup_xaui(efx);
498 }
499 
500 void falcon_drain_tx_fifo(struct efx_nic *efx)
501 {
503 
504  if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
505  (efx->loopback_mode != LOOPBACK_NONE))
506  return;
507 
508  efx_reado(efx, &reg, FR_AB_MAC_CTRL);
509  /* There is no point in draining more than once */
510  if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
511  return;
512 
513  falcon_reset_macs(efx);
514 }
515 
516 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
517 {
519 
520  if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
521  return;
522 
523  /* Isolate the MAC -> RX */
524  efx_reado(efx, &reg, FR_AZ_RX_CFG);
525  EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
526  efx_writeo(efx, &reg, FR_AZ_RX_CFG);
527 
528  /* Isolate TX -> MAC */
530 }
531 
533 {
534  struct efx_link_state *link_state = &efx->link_state;
536  int link_speed, isolate;
537 
538  isolate = !!ACCESS_ONCE(efx->reset_pending);
539 
540  switch (link_state->speed) {
541  case 10000: link_speed = 3; break;
542  case 1000: link_speed = 2; break;
543  case 100: link_speed = 1; break;
544  default: link_speed = 0; break;
545  }
546  /* MAC_LINK_STATUS controls MAC backpressure but doesn't work
547  * as advertised. Disable to ensure packets are not
548  * indefinitely held and TX queue can be flushed at any point
549  * while the link is down. */
551  FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
552  FRF_AB_MAC_BCAD_ACPT, 1,
553  FRF_AB_MAC_UC_PROM, efx->promiscuous,
554  FRF_AB_MAC_LINK_STATUS, 1, /* always set */
555  FRF_AB_MAC_SPEED, link_speed);
556  /* On B0, MAC backpressure can be disabled and packets get
557  * discarded. */
558  if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
559  EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
560  !link_state->up || isolate);
561  }
562 
563  efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
564 
565  /* Restore the multicast hash registers. */
566  falcon_push_multicast_hash(efx);
567 
568  efx_reado(efx, &reg, FR_AZ_RX_CFG);
569  /* Enable XOFF signal from RX FIFO (we enabled it during NIC
570  * initialisation but it may read back as 0) */
571  EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
572  /* Unisolate the MAC -> RX */
573  if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
574  EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
575  efx_writeo(efx, &reg, FR_AZ_RX_CFG);
576 }
577 
578 static void falcon_stats_request(struct efx_nic *efx)
579 {
580  struct falcon_nic_data *nic_data = efx->nic_data;
582 
583  WARN_ON(nic_data->stats_pending);
584  WARN_ON(nic_data->stats_disable_count);
585 
586  if (nic_data->stats_dma_done == NULL)
587  return; /* no mac selected */
588 
590  nic_data->stats_pending = true;
591  wmb(); /* ensure done flag is clear */
592 
593  /* Initiate DMA transfer of stats */
595  FRF_AB_MAC_STAT_DMA_CMD, 1,
596  FRF_AB_MAC_STAT_DMA_ADR,
597  efx->stats_buffer.dma_addr);
598  efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
599 
600  mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
601 }
602 
603 static void falcon_stats_complete(struct efx_nic *efx)
604 {
605  struct falcon_nic_data *nic_data = efx->nic_data;
606 
607  if (!nic_data->stats_pending)
608  return;
609 
610  nic_data->stats_pending = false;
611  if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
612  rmb(); /* read the done flag before the stats */
614  } else {
615  netif_err(efx, hw, efx->net_dev,
616  "timed out waiting for statistics\n");
617  }
618 }
619 
620 static void falcon_stats_timer_func(unsigned long context)
621 {
622  struct efx_nic *efx = (struct efx_nic *)context;
623  struct falcon_nic_data *nic_data = efx->nic_data;
624 
625  spin_lock(&efx->stats_lock);
626 
627  falcon_stats_complete(efx);
628  if (nic_data->stats_disable_count == 0)
629  falcon_stats_request(efx);
630 
631  spin_unlock(&efx->stats_lock);
632 }
633 
634 static bool falcon_loopback_link_poll(struct efx_nic *efx)
635 {
636  struct efx_link_state old_state = efx->link_state;
637 
638  WARN_ON(!mutex_is_locked(&efx->mac_lock));
639  WARN_ON(!LOOPBACK_INTERNAL(efx));
640 
641  efx->link_state.fd = true;
642  efx->link_state.fc = efx->wanted_fc;
643  efx->link_state.up = true;
644  efx->link_state.speed = 10000;
645 
646  return !efx_link_state_equal(&efx->link_state, &old_state);
647 }
648 
649 static int falcon_reconfigure_port(struct efx_nic *efx)
650 {
651  int rc;
652 
653  WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
654 
655  /* Poll the PHY link state *before* reconfiguring it. This means we
656  * will pick up the correct speed (in loopback) to select the correct
657  * MAC.
658  */
659  if (LOOPBACK_INTERNAL(efx))
660  falcon_loopback_link_poll(efx);
661  else
662  efx->phy_op->poll(efx);
663 
665  falcon_deconfigure_mac_wrapper(efx);
666 
667  falcon_reset_macs(efx);
668 
669  efx->phy_op->reconfigure(efx);
670  rc = falcon_reconfigure_xmac(efx);
671  BUG_ON(rc);
672 
674 
675  /* Synchronise efx->link_state with the kernel */
677 
678  return 0;
679 }
680 
681 /**************************************************************************
682  *
683  * PHY access via GMII
684  *
685  **************************************************************************
686  */
687 
688 /* Wait for GMII access to complete */
689 static int falcon_gmii_wait(struct efx_nic *efx)
690 {
691  efx_oword_t md_stat;
692  int count;
693 
694  /* wait up to 50ms - taken max from datasheet */
695  for (count = 0; count < 5000; count++) {
696  efx_reado(efx, &md_stat, FR_AB_MD_STAT);
697  if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
698  if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
699  EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
700  netif_err(efx, hw, efx->net_dev,
701  "error from GMII access "
702  EFX_OWORD_FMT"\n",
703  EFX_OWORD_VAL(md_stat));
704  return -EIO;
705  }
706  return 0;
707  }
708  udelay(10);
709  }
710  netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
711  return -ETIMEDOUT;
712 }
713 
714 /* Write an MDIO register of a PHY connected to Falcon. */
715 static int falcon_mdio_write(struct net_device *net_dev,
716  int prtad, int devad, u16 addr, u16 value)
717 {
718  struct efx_nic *efx = netdev_priv(net_dev);
719  struct falcon_nic_data *nic_data = efx->nic_data;
721  int rc;
722 
723  netif_vdbg(efx, hw, efx->net_dev,
724  "writing MDIO %d register %d.%d with 0x%04x\n",
725  prtad, devad, addr, value);
726 
727  mutex_lock(&nic_data->mdio_lock);
728 
729  /* Check MDIO not currently being accessed */
730  rc = falcon_gmii_wait(efx);
731  if (rc)
732  goto out;
733 
734  /* Write the address/ID register */
735  EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
736  efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
737 
738  EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
739  FRF_AB_MD_DEV_ADR, devad);
740  efx_writeo(efx, &reg, FR_AB_MD_ID);
741 
742  /* Write data */
743  EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
744  efx_writeo(efx, &reg, FR_AB_MD_TXD);
745 
747  FRF_AB_MD_WRC, 1,
748  FRF_AB_MD_GC, 0);
749  efx_writeo(efx, &reg, FR_AB_MD_CS);
750 
751  /* Wait for data to be written */
752  rc = falcon_gmii_wait(efx);
753  if (rc) {
754  /* Abort the write operation */
756  FRF_AB_MD_WRC, 0,
757  FRF_AB_MD_GC, 1);
758  efx_writeo(efx, &reg, FR_AB_MD_CS);
759  udelay(10);
760  }
761 
762 out:
763  mutex_unlock(&nic_data->mdio_lock);
764  return rc;
765 }
766 
767 /* Read an MDIO register of a PHY connected to Falcon. */
768 static int falcon_mdio_read(struct net_device *net_dev,
769  int prtad, int devad, u16 addr)
770 {
771  struct efx_nic *efx = netdev_priv(net_dev);
772  struct falcon_nic_data *nic_data = efx->nic_data;
774  int rc;
775 
776  mutex_lock(&nic_data->mdio_lock);
777 
778  /* Check MDIO not currently being accessed */
779  rc = falcon_gmii_wait(efx);
780  if (rc)
781  goto out;
782 
783  EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
784  efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
785 
786  EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
787  FRF_AB_MD_DEV_ADR, devad);
788  efx_writeo(efx, &reg, FR_AB_MD_ID);
789 
790  /* Request data to be read */
791  EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
792  efx_writeo(efx, &reg, FR_AB_MD_CS);
793 
794  /* Wait for data to become available */
795  rc = falcon_gmii_wait(efx);
796  if (rc == 0) {
797  efx_reado(efx, &reg, FR_AB_MD_RXD);
798  rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
799  netif_vdbg(efx, hw, efx->net_dev,
800  "read from MDIO %d register %d.%d, got %04x\n",
801  prtad, devad, addr, rc);
802  } else {
803  /* Abort the read operation */
805  FRF_AB_MD_RIC, 0,
806  FRF_AB_MD_GC, 1);
807  efx_writeo(efx, &reg, FR_AB_MD_CS);
808 
809  netif_dbg(efx, hw, efx->net_dev,
810  "read from MDIO %d register %d.%d, got error %d\n",
811  prtad, devad, addr, rc);
812  }
813 
814 out:
815  mutex_unlock(&nic_data->mdio_lock);
816  return rc;
817 }
818 
819 /* This call is responsible for hooking in the MAC and PHY operations */
820 static int falcon_probe_port(struct efx_nic *efx)
821 {
822  struct falcon_nic_data *nic_data = efx->nic_data;
823  int rc;
824 
825  switch (efx->phy_type) {
826  case PHY_TYPE_SFX7101:
828  break;
829  case PHY_TYPE_QT2022C2:
830  case PHY_TYPE_QT2025C:
832  break;
833  case PHY_TYPE_TXC43128:
834  efx->phy_op = &falcon_txc_phy_ops;
835  break;
836  default:
837  netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
838  efx->phy_type);
839  return -ENODEV;
840  }
841 
842  /* Fill out MDIO structure and loopback modes */
843  mutex_init(&nic_data->mdio_lock);
844  efx->mdio.mdio_read = falcon_mdio_read;
845  efx->mdio.mdio_write = falcon_mdio_write;
846  rc = efx->phy_op->probe(efx);
847  if (rc != 0)
848  return rc;
849 
850  /* Initial assumption */
851  efx->link_state.speed = 10000;
852  efx->link_state.fd = true;
853 
854  /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
855  if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
856  efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
857  else
858  efx->wanted_fc = EFX_FC_RX;
859  if (efx->mdio.mmds & MDIO_DEVS_AN)
860  efx->wanted_fc |= EFX_FC_AUTO;
861 
862  /* Allocate buffer for stats */
863  rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
865  if (rc)
866  return rc;
867  netif_dbg(efx, probe, efx->net_dev,
868  "stats buffer at %llx (virt %p phys %llx)\n",
869  (u64)efx->stats_buffer.dma_addr,
870  efx->stats_buffer.addr,
871  (u64)virt_to_phys(efx->stats_buffer.addr));
872  nic_data->stats_dma_done = efx->stats_buffer.addr + XgDmaDone_offset;
873 
874  return 0;
875 }
876 
877 static void falcon_remove_port(struct efx_nic *efx)
878 {
879  efx->phy_op->remove(efx);
880  efx_nic_free_buffer(efx, &efx->stats_buffer);
881 }
882 
883 /* Global events are basically PHY events */
884 static bool
885 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
886 {
887  struct efx_nic *efx = channel->efx;
888  struct falcon_nic_data *nic_data = efx->nic_data;
889 
890  if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
891  EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
892  EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
893  /* Ignored */
894  return true;
895 
896  if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
897  EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
898  nic_data->xmac_poll_required = true;
899  return true;
900  }
901 
902  if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
903  EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
904  EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
905  netif_err(efx, rx_err, efx->net_dev,
906  "channel %d seen global RX_RESET event. Resetting.\n",
907  channel->channel);
908 
909  atomic_inc(&efx->rx_reset);
912  return true;
913  }
914 
915  return false;
916 }
917 
918 /**************************************************************************
919  *
920  * Falcon test code
921  *
922  **************************************************************************/
923 
924 static int
925 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
926 {
927  struct falcon_nic_data *nic_data = efx->nic_data;
928  struct falcon_nvconfig *nvconfig;
929  struct efx_spi_device *spi;
930  void *region;
931  int rc, magic_num, struct_ver;
932  __le16 *word, *limit;
933  u32 csum;
934 
935  if (efx_spi_present(&nic_data->spi_flash))
936  spi = &nic_data->spi_flash;
937  else if (efx_spi_present(&nic_data->spi_eeprom))
938  spi = &nic_data->spi_eeprom;
939  else
940  return -EINVAL;
941 
943  if (!region)
944  return -ENOMEM;
945  nvconfig = region + FALCON_NVCONFIG_OFFSET;
946 
947  mutex_lock(&nic_data->spi_lock);
948  rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
949  mutex_unlock(&nic_data->spi_lock);
950  if (rc) {
951  netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
952  efx_spi_present(&nic_data->spi_flash) ?
953  "flash" : "EEPROM");
954  rc = -EIO;
955  goto out;
956  }
957 
958  magic_num = le16_to_cpu(nvconfig->board_magic_num);
959  struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
960 
961  rc = -EINVAL;
962  if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
963  netif_err(efx, hw, efx->net_dev,
964  "NVRAM bad magic 0x%x\n", magic_num);
965  goto out;
966  }
967  if (struct_ver < 2) {
968  netif_err(efx, hw, efx->net_dev,
969  "NVRAM has ancient version 0x%x\n", struct_ver);
970  goto out;
971  } else if (struct_ver < 4) {
972  word = &nvconfig->board_magic_num;
973  limit = (__le16 *) (nvconfig + 1);
974  } else {
975  word = region;
976  limit = region + FALCON_NVCONFIG_END;
977  }
978  for (csum = 0; word < limit; ++word)
979  csum += le16_to_cpu(*word);
980 
981  if (~csum & 0xffff) {
982  netif_err(efx, hw, efx->net_dev,
983  "NVRAM has incorrect checksum\n");
984  goto out;
985  }
986 
987  rc = 0;
988  if (nvconfig_out)
989  memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
990 
991  out:
992  kfree(region);
993  return rc;
994 }
995 
996 static int falcon_test_nvram(struct efx_nic *efx)
997 {
998  return falcon_read_nvram(efx, NULL);
999 }
1000 
1001 static const struct efx_nic_register_test falcon_b0_register_tests[] = {
1002  { FR_AZ_ADR_REGION,
1003  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1004  { FR_AZ_RX_CFG,
1005  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1006  { FR_AZ_TX_CFG,
1007  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1009  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1010  { FR_AB_MAC_CTRL,
1011  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1013  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1014  { FR_AZ_RX_DC_CFG,
1015  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1017  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1018  { FR_BZ_DP_CTRL,
1019  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1020  { FR_AB_GM_CFG2,
1021  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1022  { FR_AB_GMF_CFG0,
1023  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1024  { FR_AB_XM_GLB_CFG,
1025  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1026  { FR_AB_XM_TX_CFG,
1027  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1028  { FR_AB_XM_RX_CFG,
1029  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1031  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1032  { FR_AB_XM_FC,
1033  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1034  { FR_AB_XM_ADR_LO,
1035  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1036  { FR_AB_XX_SD_CTL,
1037  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1038 };
1039 
1040 static int
1041 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1042 {
1043  enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1044  int rc, rc2;
1045 
1046  mutex_lock(&efx->mac_lock);
1047  if (efx->loopback_modes) {
1048  /* We need the 312 clock from the PHY to test the XMAC
1049  * registers, so move into XGMII loopback if available */
1050  if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1052  else
1053  efx->loopback_mode = __ffs(efx->loopback_modes);
1054  }
1056  mutex_unlock(&efx->mac_lock);
1057 
1058  efx_reset_down(efx, reset_method);
1059 
1060  tests->registers =
1061  efx_nic_test_registers(efx, falcon_b0_register_tests,
1062  ARRAY_SIZE(falcon_b0_register_tests))
1063  ? -1 : 1;
1064 
1065  rc = falcon_reset_hw(efx, reset_method);
1066  rc2 = efx_reset_up(efx, reset_method, rc == 0);
1067  return rc ? rc : rc2;
1068 }
1069 
1070 /**************************************************************************
1071  *
1072  * Device reset
1073  *
1074  **************************************************************************
1075  */
1076 
1077 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1078 {
1079  switch (reason) {
1083  case RESET_TYPE_TX_SKIP:
1084  /* These can occasionally occur due to hardware bugs.
1085  * We try to reset without disrupting the link.
1086  */
1087  return RESET_TYPE_INVISIBLE;
1088  default:
1089  return RESET_TYPE_ALL;
1090  }
1091 }
1092 
1093 static int falcon_map_reset_flags(u32 *flags)
1094 {
1095  enum {
1096  FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1098  FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1099  FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1100  };
1101 
1102  if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1103  *flags &= ~FALCON_RESET_WORLD;
1104  return RESET_TYPE_WORLD;
1105  }
1106 
1107  if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1108  *flags &= ~FALCON_RESET_ALL;
1109  return RESET_TYPE_ALL;
1110  }
1111 
1112  if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1113  *flags &= ~FALCON_RESET_INVISIBLE;
1114  return RESET_TYPE_INVISIBLE;
1115  }
1116 
1117  return -EINVAL;
1118 }
1119 
1120 /* Resets NIC to known state. This routine must be called in process
1121  * context and is allowed to sleep. */
1122 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1123 {
1124  struct falcon_nic_data *nic_data = efx->nic_data;
1125  efx_oword_t glb_ctl_reg_ker;
1126  int rc;
1127 
1128  netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1129  RESET_TYPE(method));
1130 
1131  /* Initiate device reset */
1132  if (method == RESET_TYPE_WORLD) {
1133  rc = pci_save_state(efx->pci_dev);
1134  if (rc) {
1135  netif_err(efx, drv, efx->net_dev,
1136  "failed to backup PCI state of primary "
1137  "function prior to hardware reset\n");
1138  goto fail1;
1139  }
1140  if (efx_nic_is_dual_func(efx)) {
1141  rc = pci_save_state(nic_data->pci_dev2);
1142  if (rc) {
1143  netif_err(efx, drv, efx->net_dev,
1144  "failed to backup PCI state of "
1145  "secondary function prior to "
1146  "hardware reset\n");
1147  goto fail2;
1148  }
1149  }
1150 
1151  EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1152  FRF_AB_EXT_PHY_RST_DUR,
1154  FRF_AB_SWRST, 1);
1155  } else {
1156  EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1157  /* exclude PHY from "invisible" reset */
1158  FRF_AB_EXT_PHY_RST_CTL,
1159  method == RESET_TYPE_INVISIBLE,
1160  /* exclude EEPROM/flash and PCIe */
1161  FRF_AB_PCIE_CORE_RST_CTL, 1,
1162  FRF_AB_PCIE_NSTKY_RST_CTL, 1,
1163  FRF_AB_PCIE_SD_RST_CTL, 1,
1164  FRF_AB_EE_RST_CTL, 1,
1165  FRF_AB_EXT_PHY_RST_DUR,
1167  FRF_AB_SWRST, 1);
1168  }
1169  efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1170 
1171  netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
1173 
1174  /* Restore PCI configuration if needed */
1175  if (method == RESET_TYPE_WORLD) {
1176  if (efx_nic_is_dual_func(efx))
1177  pci_restore_state(nic_data->pci_dev2);
1178  pci_restore_state(efx->pci_dev);
1179  netif_dbg(efx, drv, efx->net_dev,
1180  "successfully restored PCI config\n");
1181  }
1182 
1183  /* Assert that reset complete */
1184  efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
1185  if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
1186  rc = -ETIMEDOUT;
1187  netif_err(efx, hw, efx->net_dev,
1188  "timed out waiting for hardware reset\n");
1189  goto fail3;
1190  }
1191  netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
1192 
1193  return 0;
1194 
1195  /* pci_save_state() and pci_restore_state() MUST be called in pairs */
1196 fail2:
1197  pci_restore_state(efx->pci_dev);
1198 fail1:
1199 fail3:
1200  return rc;
1201 }
1202 
1203 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1204 {
1205  struct falcon_nic_data *nic_data = efx->nic_data;
1206  int rc;
1207 
1208  mutex_lock(&nic_data->spi_lock);
1209  rc = __falcon_reset_hw(efx, method);
1210  mutex_unlock(&nic_data->spi_lock);
1211 
1212  return rc;
1213 }
1214 
1215 static void falcon_monitor(struct efx_nic *efx)
1216 {
1217  bool link_changed;
1218  int rc;
1219 
1220  BUG_ON(!mutex_is_locked(&efx->mac_lock));
1221 
1222  rc = falcon_board(efx)->type->monitor(efx);
1223  if (rc) {
1224  netif_err(efx, hw, efx->net_dev,
1225  "Board sensor %s; shutting down PHY\n",
1226  (rc == -ERANGE) ? "reported fault" : "failed");
1227  efx->phy_mode |= PHY_MODE_LOW_POWER;
1228  rc = __efx_reconfigure_port(efx);
1229  WARN_ON(rc);
1230  }
1231 
1232  if (LOOPBACK_INTERNAL(efx))
1233  link_changed = falcon_loopback_link_poll(efx);
1234  else
1235  link_changed = efx->phy_op->poll(efx);
1236 
1237  if (link_changed) {
1238  falcon_stop_nic_stats(efx);
1239  falcon_deconfigure_mac_wrapper(efx);
1240 
1241  falcon_reset_macs(efx);
1242  rc = falcon_reconfigure_xmac(efx);
1243  BUG_ON(rc);
1244 
1246 
1248  }
1249 
1250  falcon_poll_xmac(efx);
1251 }
1252 
1253 /* Zeroes out the SRAM contents. This routine must be called in
1254  * process context and is allowed to sleep.
1255  */
1256 static int falcon_reset_sram(struct efx_nic *efx)
1257 {
1258  efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
1259  int count;
1260 
1261  /* Set the SRAM wake/sleep GPIO appropriately. */
1262  efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1263  EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
1264  EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
1265  efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
1266 
1267  /* Initiate SRAM reset */
1268  EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
1269  FRF_AZ_SRM_INIT_EN, 1,
1270  FRF_AZ_SRM_NB_SZ, 0);
1271  efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1272 
1273  /* Wait for SRAM reset to complete */
1274  count = 0;
1275  do {
1276  netif_dbg(efx, hw, efx->net_dev,
1277  "waiting for SRAM reset (attempt %d)...\n", count);
1278 
1279  /* SRAM reset is slow; expect around 16ms */
1281 
1282  /* Check for reset complete */
1283  efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
1284  if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
1285  netif_dbg(efx, hw, efx->net_dev,
1286  "SRAM reset complete\n");
1287 
1288  return 0;
1289  }
1290  } while (++count < 20); /* wait up to 0.4 sec */
1291 
1292  netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
1293  return -ETIMEDOUT;
1294 }
1295 
1296 static void falcon_spi_device_init(struct efx_nic *efx,
1297  struct efx_spi_device *spi_device,
1298  unsigned int device_id, u32 device_type)
1299 {
1300  if (device_type != 0) {
1301  spi_device->device_id = device_id;
1302  spi_device->size =
1303  1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
1304  spi_device->addr_len =
1305  SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
1306  spi_device->munge_address = (spi_device->size == 1 << 9 &&
1307  spi_device->addr_len == 1);
1308  spi_device->erase_command =
1309  SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
1310  spi_device->erase_size =
1311  1 << SPI_DEV_TYPE_FIELD(device_type,
1312  SPI_DEV_TYPE_ERASE_SIZE);
1313  spi_device->block_size =
1314  1 << SPI_DEV_TYPE_FIELD(device_type,
1315  SPI_DEV_TYPE_BLOCK_SIZE);
1316  } else {
1317  spi_device->size = 0;
1318  }
1319 }
1320 
1321 /* Extract non-volatile configuration */
1322 static int falcon_probe_nvconfig(struct efx_nic *efx)
1323 {
1324  struct falcon_nic_data *nic_data = efx->nic_data;
1325  struct falcon_nvconfig *nvconfig;
1326  int rc;
1327 
1328  nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
1329  if (!nvconfig)
1330  return -ENOMEM;
1331 
1332  rc = falcon_read_nvram(efx, nvconfig);
1333  if (rc)
1334  goto out;
1335 
1336  efx->phy_type = nvconfig->board_v2.port0_phy_type;
1337  efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
1338 
1339  if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
1340  falcon_spi_device_init(
1341  efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
1342  le32_to_cpu(nvconfig->board_v3
1343  .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
1344  falcon_spi_device_init(
1345  efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
1346  le32_to_cpu(nvconfig->board_v3
1347  .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
1348  }
1349 
1350  /* Read the MAC addresses */
1351  memcpy(efx->net_dev->perm_addr, nvconfig->mac_address[0], ETH_ALEN);
1352 
1353  netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
1354  efx->phy_type, efx->mdio.prtad);
1355 
1356  rc = falcon_probe_board(efx,
1357  le16_to_cpu(nvconfig->board_v2.board_revision));
1358 out:
1359  kfree(nvconfig);
1360  return rc;
1361 }
1362 
1363 static void falcon_dimension_resources(struct efx_nic *efx)
1364 {
1365  efx->rx_dc_base = 0x20000;
1366  efx->tx_dc_base = 0x26000;
1367 }
1368 
1369 /* Probe all SPI devices on the NIC */
1370 static void falcon_probe_spi_devices(struct efx_nic *efx)
1371 {
1372  struct falcon_nic_data *nic_data = efx->nic_data;
1373  efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
1374  int boot_dev;
1375 
1376  efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
1377  efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1378  efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1379 
1380  if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
1381  boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
1383  netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
1384  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
1385  "flash" : "EEPROM");
1386  } else {
1387  /* Disable VPD and set clock dividers to safe
1388  * values for initial programming. */
1389  boot_dev = -1;
1390  netif_dbg(efx, probe, efx->net_dev,
1391  "Booted from internal ASIC settings;"
1392  " setting SPI config\n");
1393  EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
1394  /* 125 MHz / 7 ~= 20 MHz */
1395  FRF_AB_EE_SF_CLOCK_DIV, 7,
1396  /* 125 MHz / 63 ~= 2 MHz */
1397  FRF_AB_EE_EE_CLOCK_DIV, 63);
1398  efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
1399  }
1400 
1401  mutex_init(&nic_data->spi_lock);
1402 
1403  if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
1404  falcon_spi_device_init(efx, &nic_data->spi_flash,
1406  default_flash_type);
1407  if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
1408  falcon_spi_device_init(efx, &nic_data->spi_eeprom,
1410  large_eeprom_type);
1411 }
1412 
1413 static int falcon_probe_nic(struct efx_nic *efx)
1414 {
1415  struct falcon_nic_data *nic_data;
1416  struct falcon_board *board;
1417  int rc;
1418 
1419  /* Allocate storage for hardware specific data */
1420  nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
1421  if (!nic_data)
1422  return -ENOMEM;
1423  efx->nic_data = nic_data;
1424 
1425  rc = -ENODEV;
1426 
1427  if (efx_nic_fpga_ver(efx) != 0) {
1428  netif_err(efx, probe, efx->net_dev,
1429  "Falcon FPGA not supported\n");
1430  goto fail1;
1431  }
1432 
1433  if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1434  efx_oword_t nic_stat;
1435  struct pci_dev *dev;
1436  u8 pci_rev = efx->pci_dev->revision;
1437 
1438  if ((pci_rev == 0xff) || (pci_rev == 0)) {
1439  netif_err(efx, probe, efx->net_dev,
1440  "Falcon rev A0 not supported\n");
1441  goto fail1;
1442  }
1443  efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
1444  if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
1445  netif_err(efx, probe, efx->net_dev,
1446  "Falcon rev A1 1G not supported\n");
1447  goto fail1;
1448  }
1449  if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
1450  netif_err(efx, probe, efx->net_dev,
1451  "Falcon rev A1 PCI-X not supported\n");
1452  goto fail1;
1453  }
1454 
1455  dev = pci_dev_get(efx->pci_dev);
1458  dev))) {
1459  if (dev->bus == efx->pci_dev->bus &&
1460  dev->devfn == efx->pci_dev->devfn + 1) {
1461  nic_data->pci_dev2 = dev;
1462  break;
1463  }
1464  }
1465  if (!nic_data->pci_dev2) {
1466  netif_err(efx, probe, efx->net_dev,
1467  "failed to find secondary function\n");
1468  rc = -ENODEV;
1469  goto fail2;
1470  }
1471  }
1472 
1473  /* Now we can reset the NIC */
1474  rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
1475  if (rc) {
1476  netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
1477  goto fail3;
1478  }
1479 
1480  /* Allocate memory for INT_KER */
1481  rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
1482  if (rc)
1483  goto fail4;
1484  BUG_ON(efx->irq_status.dma_addr & 0x0f);
1485 
1486  netif_dbg(efx, probe, efx->net_dev,
1487  "INT_KER at %llx (virt %p phys %llx)\n",
1488  (u64)efx->irq_status.dma_addr,
1489  efx->irq_status.addr,
1490  (u64)virt_to_phys(efx->irq_status.addr));
1491 
1492  falcon_probe_spi_devices(efx);
1493 
1494  /* Read in the non-volatile configuration */
1495  rc = falcon_probe_nvconfig(efx);
1496  if (rc) {
1497  if (rc == -EINVAL)
1498  netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
1499  goto fail5;
1500  }
1501 
1502  efx->timer_quantum_ns = 4968; /* 621 cycles */
1503 
1504  /* Initialise I2C adapter */
1505  board = falcon_board(efx);
1506  board->i2c_adap.owner = THIS_MODULE;
1507  board->i2c_data = falcon_i2c_bit_operations;
1508  board->i2c_data.data = efx;
1509  board->i2c_adap.algo_data = &board->i2c_data;
1510  board->i2c_adap.dev.parent = &efx->pci_dev->dev;
1511  strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
1512  sizeof(board->i2c_adap.name));
1513  rc = i2c_bit_add_bus(&board->i2c_adap);
1514  if (rc)
1515  goto fail5;
1516 
1517  rc = falcon_board(efx)->type->init(efx);
1518  if (rc) {
1519  netif_err(efx, probe, efx->net_dev,
1520  "failed to initialise board\n");
1521  goto fail6;
1522  }
1523 
1524  nic_data->stats_disable_count = 1;
1525  setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
1526  (unsigned long)efx);
1527 
1528  return 0;
1529 
1530  fail6:
1531  BUG_ON(i2c_del_adapter(&board->i2c_adap));
1532  memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1533  fail5:
1534  efx_nic_free_buffer(efx, &efx->irq_status);
1535  fail4:
1536  fail3:
1537  if (nic_data->pci_dev2) {
1538  pci_dev_put(nic_data->pci_dev2);
1539  nic_data->pci_dev2 = NULL;
1540  }
1541  fail2:
1542  fail1:
1543  kfree(efx->nic_data);
1544  return rc;
1545 }
1546 
1547 static void falcon_init_rx_cfg(struct efx_nic *efx)
1548 {
1549  /* Prior to Siena the RX DMA engine will split each frame at
1550  * intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
1551  * be so large that that never happens. */
1552  const unsigned huge_buf_size = (3 * 4096) >> 5;
1553  /* RX control FIFO thresholds (32 entries) */
1554  const unsigned ctrl_xon_thr = 20;
1555  const unsigned ctrl_xoff_thr = 25;
1556  efx_oword_t reg;
1557 
1558  efx_reado(efx, &reg, FR_AZ_RX_CFG);
1559  if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
1560  /* Data FIFO size is 5.5K */
1561  EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
1562  EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
1563  huge_buf_size);
1564  EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
1565  EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
1566  EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
1567  EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
1568  } else {
1569  /* Data FIFO size is 80K; register fields moved */
1570  EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
1571  EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
1572  huge_buf_size);
1573  /* Send XON and XOFF at ~3 * max MTU away from empty/full */
1574  EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
1575  EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
1576  EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
1577  EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
1578  EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
1579 
1580  /* Enable hash insertion. This is broken for the
1581  * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
1582  * IPv4 hashes. */
1583  EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
1584  EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
1585  EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
1586  }
1587  /* Always enable XOFF signal from RX FIFO. We enable
1588  * or disable transmission of pause frames at the MAC. */
1589  EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1590  efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1591 }
1592 
1593 /* This call performs hardware-specific global initialisation, such as
1594  * defining the descriptor cache sizes and number of RSS channels.
1595  * It does not set up any buffers, descriptor rings or event queues.
1596  */
1597 static int falcon_init_nic(struct efx_nic *efx)
1598 {
1599  efx_oword_t temp;
1600  int rc;
1601 
1602  /* Use on-chip SRAM */
1603  efx_reado(efx, &temp, FR_AB_NIC_STAT);
1604  EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
1605  efx_writeo(efx, &temp, FR_AB_NIC_STAT);
1606 
1607  rc = falcon_reset_sram(efx);
1608  if (rc)
1609  return rc;
1610 
1611  /* Clear the parity enables on the TX data fifos as
1612  * they produce false parity errors because of timing issues
1613  */
1614  if (EFX_WORKAROUND_5129(efx)) {
1615  efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
1616  EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
1617  efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
1618  }
1619 
1620  if (EFX_WORKAROUND_7244(efx)) {
1621  efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
1622  EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
1623  EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
1624  EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
1625  EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
1626  efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
1627  }
1628 
1629  /* XXX This is documented only for Falcon A0/A1 */
1630  /* Setup RX. Wait for descriptor is broken and must
1631  * be disabled. RXDP recovery shouldn't be needed, but is.
1632  */
1633  efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
1634  EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
1635  EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
1636  if (EFX_WORKAROUND_5583(efx))
1637  EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
1638  efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
1639 
1640  /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
1641  * descriptors (which is bad).
1642  */
1643  efx_reado(efx, &temp, FR_AZ_TX_CFG);
1644  EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
1645  efx_writeo(efx, &temp, FR_AZ_TX_CFG);
1646 
1647  falcon_init_rx_cfg(efx);
1648 
1649  if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1650  /* Set hash key for IPv4 */
1651  memcpy(&temp, efx->rx_hash_key, sizeof(temp));
1652  efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
1653 
1654  /* Set destination of both TX and RX Flush events */
1655  EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
1656  efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
1657  }
1658 
1659  efx_nic_init_common(efx);
1660 
1661  return 0;
1662 }
1663 
1664 static void falcon_remove_nic(struct efx_nic *efx)
1665 {
1666  struct falcon_nic_data *nic_data = efx->nic_data;
1667  struct falcon_board *board = falcon_board(efx);
1668  int rc;
1669 
1670  board->type->fini(efx);
1671 
1672  /* Remove I2C adapter and clear it in preparation for a retry */
1673  rc = i2c_del_adapter(&board->i2c_adap);
1674  BUG_ON(rc);
1675  memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
1676 
1677  efx_nic_free_buffer(efx, &efx->irq_status);
1678 
1679  __falcon_reset_hw(efx, RESET_TYPE_ALL);
1680 
1681  /* Release the second function after the reset */
1682  if (nic_data->pci_dev2) {
1683  pci_dev_put(nic_data->pci_dev2);
1684  nic_data->pci_dev2 = NULL;
1685  }
1686 
1687  /* Tear down the private nic state */
1688  kfree(efx->nic_data);
1689  efx->nic_data = NULL;
1690 }
1691 
1692 static void falcon_update_nic_stats(struct efx_nic *efx)
1693 {
1694  struct falcon_nic_data *nic_data = efx->nic_data;
1695  efx_oword_t cnt;
1696 
1697  if (nic_data->stats_disable_count)
1698  return;
1699 
1700  efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
1701  efx->n_rx_nodesc_drop_cnt +=
1702  EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
1703 
1704  if (nic_data->stats_pending &&
1705  *nic_data->stats_dma_done == FALCON_STATS_DONE) {
1706  nic_data->stats_pending = false;
1707  rmb(); /* read the done flag before the stats */
1709  }
1710 }
1711 
1713 {
1714  struct falcon_nic_data *nic_data = efx->nic_data;
1715 
1716  spin_lock_bh(&efx->stats_lock);
1717  if (--nic_data->stats_disable_count == 0)
1718  falcon_stats_request(efx);
1719  spin_unlock_bh(&efx->stats_lock);
1720 }
1721 
1723 {
1724  struct falcon_nic_data *nic_data = efx->nic_data;
1725  int i;
1726 
1727  might_sleep();
1728 
1729  spin_lock_bh(&efx->stats_lock);
1730  ++nic_data->stats_disable_count;
1731  spin_unlock_bh(&efx->stats_lock);
1732 
1733  del_timer_sync(&nic_data->stats_timer);
1734 
1735  /* Wait enough time for the most recent transfer to
1736  * complete. */
1737  for (i = 0; i < 4 && nic_data->stats_pending; i++) {
1738  if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
1739  break;
1740  msleep(1);
1741  }
1742 
1743  spin_lock_bh(&efx->stats_lock);
1744  falcon_stats_complete(efx);
1745  spin_unlock_bh(&efx->stats_lock);
1746 }
1747 
1748 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1749 {
1750  falcon_board(efx)->type->set_id_led(efx, mode);
1751 }
1752 
1753 /**************************************************************************
1754  *
1755  * Wake on LAN
1756  *
1757  **************************************************************************
1758  */
1759 
1760 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1761 {
1762  wol->supported = 0;
1763  wol->wolopts = 0;
1764  memset(&wol->sopass, 0, sizeof(wol->sopass));
1765 }
1766 
1767 static int falcon_set_wol(struct efx_nic *efx, u32 type)
1768 {
1769  if (type != 0)
1770  return -EINVAL;
1771  return 0;
1772 }
1773 
1774 /**************************************************************************
1775  *
1776  * Revision-dependent attributes used by efx.c and nic.c
1777  *
1778  **************************************************************************
1779  */
1780 
1782  .probe = falcon_probe_nic,
1783  .remove = falcon_remove_nic,
1784  .init = falcon_init_nic,
1785  .dimension_resources = falcon_dimension_resources,
1786  .fini = efx_port_dummy_op_void,
1787  .monitor = falcon_monitor,
1788  .map_reset_reason = falcon_map_reset_reason,
1789  .map_reset_flags = falcon_map_reset_flags,
1790  .reset = falcon_reset_hw,
1791  .probe_port = falcon_probe_port,
1792  .remove_port = falcon_remove_port,
1793  .handle_global_event = falcon_handle_global_event,
1794  .prepare_flush = falcon_prepare_flush,
1795  .update_stats = falcon_update_nic_stats,
1796  .start_stats = falcon_start_nic_stats,
1797  .stop_stats = falcon_stop_nic_stats,
1798  .set_id_led = falcon_set_id_led,
1799  .push_irq_moderation = falcon_push_irq_moderation,
1800  .reconfigure_port = falcon_reconfigure_port,
1801  .reconfigure_mac = falcon_reconfigure_xmac,
1802  .check_mac_fault = falcon_xmac_check_fault,
1803  .get_wol = falcon_get_wol,
1804  .set_wol = falcon_set_wol,
1805  .resume_wol = efx_port_dummy_op_void,
1806  .test_nvram = falcon_test_nvram,
1807 
1808  .revision = EFX_REV_FALCON_A1,
1809  .mem_map_size = 0x20000,
1810  .txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
1811  .rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
1812  .buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
1813  .evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
1814  .evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
1815  .max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
1816  .rx_buffer_padding = 0x24,
1817  .max_interrupt_mode = EFX_INT_MODE_MSI,
1818  .phys_addr_channels = 4,
1819  .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
1820  .offload_features = NETIF_F_IP_CSUM,
1821 };
1822 
1824  .probe = falcon_probe_nic,
1825  .remove = falcon_remove_nic,
1826  .init = falcon_init_nic,
1827  .dimension_resources = falcon_dimension_resources,
1828  .fini = efx_port_dummy_op_void,
1829  .monitor = falcon_monitor,
1830  .map_reset_reason = falcon_map_reset_reason,
1831  .map_reset_flags = falcon_map_reset_flags,
1832  .reset = falcon_reset_hw,
1833  .probe_port = falcon_probe_port,
1834  .remove_port = falcon_remove_port,
1835  .handle_global_event = falcon_handle_global_event,
1836  .prepare_flush = falcon_prepare_flush,
1837  .update_stats = falcon_update_nic_stats,
1838  .start_stats = falcon_start_nic_stats,
1839  .stop_stats = falcon_stop_nic_stats,
1840  .set_id_led = falcon_set_id_led,
1841  .push_irq_moderation = falcon_push_irq_moderation,
1842  .reconfigure_port = falcon_reconfigure_port,
1843  .reconfigure_mac = falcon_reconfigure_xmac,
1844  .check_mac_fault = falcon_xmac_check_fault,
1845  .get_wol = falcon_get_wol,
1846  .set_wol = falcon_set_wol,
1847  .resume_wol = efx_port_dummy_op_void,
1848  .test_chip = falcon_b0_test_chip,
1849  .test_nvram = falcon_test_nvram,
1850 
1851  .revision = EFX_REV_FALCON_B0,
1852  /* Map everything up to and including the RSS indirection
1853  * table. Don't map MSI-X table, MSI-X PBA since Linux
1854  * requires that they not be mapped. */
1855  .mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
1864  .rx_buffer_hash_size = 0x10,
1865  .rx_buffer_padding = 0,
1866  .max_interrupt_mode = EFX_INT_MODE_MSIX,
1867  .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
1868  * interrupt handler only supports 32
1869  * channels */
1870  .timer_period_max = 1 << FRF_AB_TC_TIMER_VAL_WIDTH,
1871  .offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
1872 };
1873