Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
gpmi-nand.c
Go to the documentation of this file.
1 /*
2  * Freescale GPMI NAND Flash Driver
3  *
4  * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
5  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 
22 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
23 
24 #include <linux/clk.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/mtd/gpmi-nand.h>
29 #include <linux/mtd/partitions.h>
30 #include <linux/pinctrl/consumer.h>
31 #include <linux/of.h>
32 #include <linux/of_device.h>
33 #include <linux/of_mtd.h>
34 #include "gpmi-nand.h"
35 
36 /* add our owner bbt descriptor */
37 static uint8_t scan_ff_pattern[] = { 0xff };
38 static struct nand_bbt_descr gpmi_bbt_descr = {
39  .options = 0,
40  .offs = 0,
41  .len = 1,
42  .pattern = scan_ff_pattern
43 };
44 
45 /* We will use all the (page + OOB). */
46 static struct nand_ecclayout gpmi_hw_ecclayout = {
47  .eccbytes = 0,
48  .eccpos = { 0, },
49  .oobfree = { {.offset = 0, .length = 0} }
50 };
51 
52 static irqreturn_t bch_irq(int irq, void *cookie)
53 {
54  struct gpmi_nand_data *this = cookie;
55 
56  gpmi_clear_bch(this);
57  complete(&this->bch_done);
58  return IRQ_HANDLED;
59 }
60 
61 /*
62  * Calculate the ECC strength by hand:
63  * E : The ECC strength.
64  * G : the length of Galois Field.
65  * N : The chunk count of per page.
66  * O : the oobsize of the NAND chip.
67  * M : the metasize of per page.
68  *
69  * The formula is :
70  * E * G * N
71  * ------------ <= (O - M)
72  * 8
73  *
74  * So, we get E by:
75  * (O - M) * 8
76  * E <= -------------
77  * G * N
78  */
79 static inline int get_ecc_strength(struct gpmi_nand_data *this)
80 {
81  struct bch_geometry *geo = &this->bch_geometry;
82  struct mtd_info *mtd = &this->mtd;
83  int ecc_strength;
84 
85  ecc_strength = ((mtd->oobsize - geo->metadata_size) * 8)
86  / (geo->gf_len * geo->ecc_chunk_count);
87 
88  /* We need the minor even number. */
89  return round_down(ecc_strength, 2);
90 }
91 
93 {
94  struct bch_geometry *geo = &this->bch_geometry;
95  struct mtd_info *mtd = &this->mtd;
96  unsigned int metadata_size;
97  unsigned int status_size;
98  unsigned int block_mark_bit_offset;
99 
100  /*
101  * The size of the metadata can be changed, though we set it to 10
102  * bytes now. But it can't be too large, because we have to save
103  * enough space for BCH.
104  */
105  geo->metadata_size = 10;
106 
107  /* The default for the length of Galois Field. */
108  geo->gf_len = 13;
109 
110  /* The default for chunk size. There is no oobsize greater then 512. */
111  geo->ecc_chunk_size = 512;
112  while (geo->ecc_chunk_size < mtd->oobsize)
113  geo->ecc_chunk_size *= 2; /* keep C >= O */
114 
115  geo->ecc_chunk_count = mtd->writesize / geo->ecc_chunk_size;
116 
117  /* We use the same ECC strength for all chunks. */
118  geo->ecc_strength = get_ecc_strength(this);
119  if (!geo->ecc_strength) {
120  pr_err("wrong ECC strength.\n");
121  return -EINVAL;
122  }
123 
124  geo->page_size = mtd->writesize + mtd->oobsize;
125  geo->payload_size = mtd->writesize;
126 
127  /*
128  * The auxiliary buffer contains the metadata and the ECC status. The
129  * metadata is padded to the nearest 32-bit boundary. The ECC status
130  * contains one byte for every ECC chunk, and is also padded to the
131  * nearest 32-bit boundary.
132  */
133  metadata_size = ALIGN(geo->metadata_size, 4);
134  status_size = ALIGN(geo->ecc_chunk_count, 4);
135 
136  geo->auxiliary_size = metadata_size + status_size;
137  geo->auxiliary_status_offset = metadata_size;
138 
139  if (!this->swap_block_mark)
140  return 0;
141 
142  /*
143  * We need to compute the byte and bit offsets of
144  * the physical block mark within the ECC-based view of the page.
145  *
146  * NAND chip with 2K page shows below:
147  * (Block Mark)
148  * | |
149  * | D |
150  * |<---->|
151  * V V
152  * +---+----------+-+----------+-+----------+-+----------+-+
153  * | M | data |E| data |E| data |E| data |E|
154  * +---+----------+-+----------+-+----------+-+----------+-+
155  *
156  * The position of block mark moves forward in the ECC-based view
157  * of page, and the delta is:
158  *
159  * E * G * (N - 1)
160  * D = (---------------- + M)
161  * 8
162  *
163  * With the formula to compute the ECC strength, and the condition
164  * : C >= O (C is the ecc chunk size)
165  *
166  * It's easy to deduce to the following result:
167  *
168  * E * G (O - M) C - M C - M
169  * ----------- <= ------- <= -------- < ---------
170  * 8 N N (N - 1)
171  *
172  * So, we get:
173  *
174  * E * G * (N - 1)
175  * D = (---------------- + M) < C
176  * 8
177  *
178  * The above inequality means the position of block mark
179  * within the ECC-based view of the page is still in the data chunk,
180  * and it's NOT in the ECC bits of the chunk.
181  *
182  * Use the following to compute the bit position of the
183  * physical block mark within the ECC-based view of the page:
184  * (page_size - D) * 8
185  *
186  * --Huang Shijie
187  */
188  block_mark_bit_offset = mtd->writesize * 8 -
189  (geo->ecc_strength * geo->gf_len * (geo->ecc_chunk_count - 1)
190  + geo->metadata_size * 8);
191 
192  geo->block_mark_byte_offset = block_mark_bit_offset / 8;
193  geo->block_mark_bit_offset = block_mark_bit_offset % 8;
194  return 0;
195 }
196 
197 struct dma_chan *get_dma_chan(struct gpmi_nand_data *this)
198 {
199  int chipnr = this->current_chip;
200 
201  return this->dma_chans[chipnr];
202 }
203 
204 /* Can we use the upper's buffer directly for DMA? */
206 {
207  struct scatterlist *sgl = &this->data_sgl;
208  int ret;
209 
210  this->direct_dma_map_ok = true;
211 
212  /* first try to map the upper buffer directly */
213  sg_init_one(sgl, this->upper_buf, this->upper_len);
214  ret = dma_map_sg(this->dev, sgl, 1, dr);
215  if (ret == 0) {
216  /* We have to use our own DMA buffer. */
217  sg_init_one(sgl, this->data_buffer_dma, PAGE_SIZE);
218 
219  if (dr == DMA_TO_DEVICE)
220  memcpy(this->data_buffer_dma, this->upper_buf,
221  this->upper_len);
222 
223  ret = dma_map_sg(this->dev, sgl, 1, dr);
224  if (ret == 0)
225  pr_err("map failed.\n");
226 
227  this->direct_dma_map_ok = false;
228  }
229 }
230 
231 /* This will be called after the DMA operation is finished. */
232 static void dma_irq_callback(void *param)
233 {
234  struct gpmi_nand_data *this = param;
235  struct completion *dma_c = &this->dma_done;
236 
237  complete(dma_c);
238 
239  switch (this->dma_type) {
240  case DMA_FOR_COMMAND:
241  dma_unmap_sg(this->dev, &this->cmd_sgl, 1, DMA_TO_DEVICE);
242  break;
243 
244  case DMA_FOR_READ_DATA:
245  dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
246  if (this->direct_dma_map_ok == false)
247  memcpy(this->upper_buf, this->data_buffer_dma,
248  this->upper_len);
249  break;
250 
251  case DMA_FOR_WRITE_DATA:
252  dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
253  break;
254 
257  /* We have to wait the BCH interrupt to finish. */
258  break;
259 
260  default:
261  pr_err("in wrong DMA operation.\n");
262  }
263 }
264 
267 {
268  struct completion *dma_c = &this->dma_done;
269  int err;
270 
271  init_completion(dma_c);
272 
273  desc->callback = dma_irq_callback;
274  desc->callback_param = this;
275  dmaengine_submit(desc);
276  dma_async_issue_pending(get_dma_chan(this));
277 
278  /* Wait for the interrupt from the DMA block. */
279  err = wait_for_completion_timeout(dma_c, msecs_to_jiffies(1000));
280  if (!err) {
281  pr_err("DMA timeout, last DMA :%d\n", this->last_dma_type);
282  gpmi_dump_info(this);
283  return -ETIMEDOUT;
284  }
285  return 0;
286 }
287 
288 /*
289  * This function is used in BCH reading or BCH writing pages.
290  * It will wait for the BCH interrupt as long as ONE second.
291  * Actually, we must wait for two interrupts :
292  * [1] firstly the DMA interrupt and
293  * [2] secondly the BCH interrupt.
294  */
297 {
298  struct completion *bch_c = &this->bch_done;
299  int err;
300 
301  /* Prepare to receive an interrupt from the BCH block. */
302  init_completion(bch_c);
303 
304  /* start the DMA */
305  start_dma_without_bch_irq(this, desc);
306 
307  /* Wait for the interrupt from the BCH block. */
308  err = wait_for_completion_timeout(bch_c, msecs_to_jiffies(1000));
309  if (!err) {
310  pr_err("BCH timeout, last DMA :%d\n", this->last_dma_type);
311  gpmi_dump_info(this);
312  return -ETIMEDOUT;
313  }
314  return 0;
315 }
316 
317 static int __devinit
318 acquire_register_block(struct gpmi_nand_data *this, const char *res_name)
319 {
320  struct platform_device *pdev = this->pdev;
321  struct resources *res = &this->resources;
322  struct resource *r;
323  void __iomem *p;
324 
325  r = platform_get_resource_byname(pdev, IORESOURCE_MEM, res_name);
326  if (!r) {
327  pr_err("Can't get resource for %s\n", res_name);
328  return -ENXIO;
329  }
330 
331  p = ioremap(r->start, resource_size(r));
332  if (!p) {
333  pr_err("Can't remap %s\n", res_name);
334  return -ENOMEM;
335  }
336 
338  res->gpmi_regs = p;
339  else if (!strcmp(res_name, GPMI_NAND_BCH_REGS_ADDR_RES_NAME))
340  res->bch_regs = p;
341  else
342  pr_err("unknown resource name : %s\n", res_name);
343 
344  return 0;
345 }
346 
347 static void release_register_block(struct gpmi_nand_data *this)
348 {
349  struct resources *res = &this->resources;
350  if (res->gpmi_regs)
351  iounmap(res->gpmi_regs);
352  if (res->bch_regs)
353  iounmap(res->bch_regs);
354  res->gpmi_regs = NULL;
355  res->bch_regs = NULL;
356 }
357 
358 static int __devinit
359 acquire_bch_irq(struct gpmi_nand_data *this, irq_handler_t irq_h)
360 {
361  struct platform_device *pdev = this->pdev;
362  struct resources *res = &this->resources;
363  const char *res_name = GPMI_NAND_BCH_INTERRUPT_RES_NAME;
364  struct resource *r;
365  int err;
366 
367  r = platform_get_resource_byname(pdev, IORESOURCE_IRQ, res_name);
368  if (!r) {
369  pr_err("Can't get resource for %s\n", res_name);
370  return -ENXIO;
371  }
372 
373  err = request_irq(r->start, irq_h, 0, res_name, this);
374  if (err) {
375  pr_err("Can't own %s\n", res_name);
376  return err;
377  }
378 
379  res->bch_low_interrupt = r->start;
380  res->bch_high_interrupt = r->end;
381  return 0;
382 }
383 
384 static void release_bch_irq(struct gpmi_nand_data *this)
385 {
386  struct resources *res = &this->resources;
387  int i = res->bch_low_interrupt;
388 
389  for (; i <= res->bch_high_interrupt; i++)
390  free_irq(i, this);
391 }
392 
393 static bool gpmi_dma_filter(struct dma_chan *chan, void *param)
394 {
395  struct gpmi_nand_data *this = param;
396  int dma_channel = (int)this->private;
397 
398  if (!mxs_dma_is_apbh(chan))
399  return false;
400  /*
401  * only catch the GPMI dma channels :
402  * for mx23 : MX23_DMA_GPMI0 ~ MX23_DMA_GPMI3
403  * (These four channels share the same IRQ!)
404  *
405  * for mx28 : MX28_DMA_GPMI0 ~ MX28_DMA_GPMI7
406  * (These eight channels share the same IRQ!)
407  */
408  if (dma_channel == chan->chan_id) {
409  chan->private = &this->dma_data;
410  return true;
411  }
412  return false;
413 }
414 
415 static void release_dma_channels(struct gpmi_nand_data *this)
416 {
417  unsigned int i;
418  for (i = 0; i < DMA_CHANS; i++)
419  if (this->dma_chans[i]) {
420  dma_release_channel(this->dma_chans[i]);
421  this->dma_chans[i] = NULL;
422  }
423 }
424 
425 static int __devinit acquire_dma_channels(struct gpmi_nand_data *this)
426 {
427  struct platform_device *pdev = this->pdev;
428  struct resource *r_dma;
429  struct device_node *dn;
430  u32 dma_channel;
431  int ret;
432  struct dma_chan *dma_chan;
434 
435  /* dma channel, we only use the first one. */
436  dn = pdev->dev.of_node;
437  ret = of_property_read_u32(dn, "fsl,gpmi-dma-channel", &dma_channel);
438  if (ret) {
439  pr_err("unable to get DMA channel from dt.\n");
440  goto acquire_err;
441  }
442  this->private = (void *)dma_channel;
443 
444  /* gpmi dma interrupt */
447  if (!r_dma) {
448  pr_err("Can't get resource for DMA\n");
449  goto acquire_err;
450  }
451  this->dma_data.chan_irq = r_dma->start;
452 
453  /* request dma channel */
454  dma_cap_zero(mask);
455  dma_cap_set(DMA_SLAVE, mask);
456 
457  dma_chan = dma_request_channel(mask, gpmi_dma_filter, this);
458  if (!dma_chan) {
459  pr_err("dma_request_channel failed.\n");
460  goto acquire_err;
461  }
462 
463  this->dma_chans[0] = dma_chan;
464  return 0;
465 
466 acquire_err:
467  release_dma_channels(this);
468  return -EINVAL;
469 }
470 
471 static void gpmi_put_clks(struct gpmi_nand_data *this)
472 {
473  struct resources *r = &this->resources;
474  struct clk *clk;
475  int i;
476 
477  for (i = 0; i < GPMI_CLK_MAX; i++) {
478  clk = r->clock[i];
479  if (clk) {
480  clk_put(clk);
481  r->clock[i] = NULL;
482  }
483  }
484 }
485 
486 static char *extra_clks_for_mx6q[GPMI_CLK_MAX] = {
487  "gpmi_apb", "gpmi_bch", "gpmi_bch_apb", "per1_bch",
488 };
489 
490 static int __devinit gpmi_get_clks(struct gpmi_nand_data *this)
491 {
492  struct resources *r = &this->resources;
493  char **extra_clks = NULL;
494  struct clk *clk;
495  int i;
496 
497  /* The main clock is stored in the first. */
498  r->clock[0] = clk_get(this->dev, "gpmi_io");
499  if (IS_ERR(r->clock[0]))
500  goto err_clock;
501 
502  /* Get extra clocks */
503  if (GPMI_IS_MX6Q(this))
504  extra_clks = extra_clks_for_mx6q;
505  if (!extra_clks)
506  return 0;
507 
508  for (i = 1; i < GPMI_CLK_MAX; i++) {
509  if (extra_clks[i - 1] == NULL)
510  break;
511 
512  clk = clk_get(this->dev, extra_clks[i - 1]);
513  if (IS_ERR(clk))
514  goto err_clock;
515 
516  r->clock[i] = clk;
517  }
518 
519  if (GPMI_IS_MX6Q(this))
520  /*
521  * Set the default value for the gpmi clock in mx6q:
522  *
523  * If you want to use the ONFI nand which is in the
524  * Synchronous Mode, you should change the clock as you need.
525  */
526  clk_set_rate(r->clock[0], 22000000);
527 
528  return 0;
529 
530 err_clock:
531  dev_dbg(this->dev, "failed in finding the clocks.\n");
532  gpmi_put_clks(this);
533  return -ENOMEM;
534 }
535 
536 static int __devinit acquire_resources(struct gpmi_nand_data *this)
537 {
538  struct pinctrl *pinctrl;
539  int ret;
540 
541  ret = acquire_register_block(this, GPMI_NAND_GPMI_REGS_ADDR_RES_NAME);
542  if (ret)
543  goto exit_regs;
544 
545  ret = acquire_register_block(this, GPMI_NAND_BCH_REGS_ADDR_RES_NAME);
546  if (ret)
547  goto exit_regs;
548 
549  ret = acquire_bch_irq(this, bch_irq);
550  if (ret)
551  goto exit_regs;
552 
553  ret = acquire_dma_channels(this);
554  if (ret)
555  goto exit_dma_channels;
556 
557  pinctrl = devm_pinctrl_get_select_default(&this->pdev->dev);
558  if (IS_ERR(pinctrl)) {
559  ret = PTR_ERR(pinctrl);
560  goto exit_pin;
561  }
562 
563  ret = gpmi_get_clks(this);
564  if (ret)
565  goto exit_clock;
566  return 0;
567 
568 exit_clock:
569 exit_pin:
570  release_dma_channels(this);
571 exit_dma_channels:
572  release_bch_irq(this);
573 exit_regs:
574  release_register_block(this);
575  return ret;
576 }
577 
578 static void release_resources(struct gpmi_nand_data *this)
579 {
580  gpmi_put_clks(this);
581  release_register_block(this);
582  release_bch_irq(this);
583  release_dma_channels(this);
584 }
585 
586 static int __devinit init_hardware(struct gpmi_nand_data *this)
587 {
588  int ret;
589 
590  /*
591  * This structure contains the "safe" GPMI timing that should succeed
592  * with any NAND Flash device
593  * (although, with less-than-optimal performance).
594  */
595  struct nand_timing safe_timing = {
596  .data_setup_in_ns = 80,
597  .data_hold_in_ns = 60,
598  .address_setup_in_ns = 25,
599  .gpmi_sample_delay_in_ns = 6,
600  .tREA_in_ns = -1,
601  .tRLOH_in_ns = -1,
602  .tRHOH_in_ns = -1,
603  };
604 
605  /* Initialize the hardwares. */
606  ret = gpmi_init(this);
607  if (ret)
608  return ret;
609 
610  this->timing = safe_timing;
611  return 0;
612 }
613 
614 static int read_page_prepare(struct gpmi_nand_data *this,
615  void *destination, unsigned length,
616  void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
617  void **use_virt, dma_addr_t *use_phys)
618 {
619  struct device *dev = this->dev;
620 
621  if (virt_addr_valid(destination)) {
622  dma_addr_t dest_phys;
623 
624  dest_phys = dma_map_single(dev, destination,
625  length, DMA_FROM_DEVICE);
626  if (dma_mapping_error(dev, dest_phys)) {
627  if (alt_size < length) {
628  pr_err("Alternate buffer is too small\n");
629  return -ENOMEM;
630  }
631  goto map_failed;
632  }
633  *use_virt = destination;
634  *use_phys = dest_phys;
635  this->direct_dma_map_ok = true;
636  return 0;
637  }
638 
639 map_failed:
640  *use_virt = alt_virt;
641  *use_phys = alt_phys;
642  this->direct_dma_map_ok = false;
643  return 0;
644 }
645 
646 static inline void read_page_end(struct gpmi_nand_data *this,
647  void *destination, unsigned length,
648  void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
649  void *used_virt, dma_addr_t used_phys)
650 {
651  if (this->direct_dma_map_ok)
652  dma_unmap_single(this->dev, used_phys, length, DMA_FROM_DEVICE);
653 }
654 
655 static inline void read_page_swap_end(struct gpmi_nand_data *this,
656  void *destination, unsigned length,
657  void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
658  void *used_virt, dma_addr_t used_phys)
659 {
660  if (!this->direct_dma_map_ok)
661  memcpy(destination, alt_virt, length);
662 }
663 
664 static int send_page_prepare(struct gpmi_nand_data *this,
665  const void *source, unsigned length,
666  void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
667  const void **use_virt, dma_addr_t *use_phys)
668 {
669  struct device *dev = this->dev;
670 
671  if (virt_addr_valid(source)) {
672  dma_addr_t source_phys;
673 
674  source_phys = dma_map_single(dev, (void *)source, length,
675  DMA_TO_DEVICE);
676  if (dma_mapping_error(dev, source_phys)) {
677  if (alt_size < length) {
678  pr_err("Alternate buffer is too small\n");
679  return -ENOMEM;
680  }
681  goto map_failed;
682  }
683  *use_virt = source;
684  *use_phys = source_phys;
685  return 0;
686  }
687 map_failed:
688  /*
689  * Copy the content of the source buffer into the alternate
690  * buffer and set up the return values accordingly.
691  */
692  memcpy(alt_virt, source, length);
693 
694  *use_virt = alt_virt;
695  *use_phys = alt_phys;
696  return 0;
697 }
698 
699 static void send_page_end(struct gpmi_nand_data *this,
700  const void *source, unsigned length,
701  void *alt_virt, dma_addr_t alt_phys, unsigned alt_size,
702  const void *used_virt, dma_addr_t used_phys)
703 {
704  struct device *dev = this->dev;
705  if (used_virt == source)
706  dma_unmap_single(dev, used_phys, length, DMA_TO_DEVICE);
707 }
708 
709 static void gpmi_free_dma_buffer(struct gpmi_nand_data *this)
710 {
711  struct device *dev = this->dev;
712 
713  if (this->page_buffer_virt && virt_addr_valid(this->page_buffer_virt))
714  dma_free_coherent(dev, this->page_buffer_size,
715  this->page_buffer_virt,
716  this->page_buffer_phys);
717  kfree(this->cmd_buffer);
718  kfree(this->data_buffer_dma);
719 
720  this->cmd_buffer = NULL;
721  this->data_buffer_dma = NULL;
722  this->page_buffer_virt = NULL;
723  this->page_buffer_size = 0;
724 }
725 
726 /* Allocate the DMA buffers */
727 static int gpmi_alloc_dma_buffer(struct gpmi_nand_data *this)
728 {
729  struct bch_geometry *geo = &this->bch_geometry;
730  struct device *dev = this->dev;
731 
732  /* [1] Allocate a command buffer. PAGE_SIZE is enough. */
733  this->cmd_buffer = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
734  if (this->cmd_buffer == NULL)
735  goto error_alloc;
736 
737  /* [2] Allocate a read/write data buffer. PAGE_SIZE is enough. */
738  this->data_buffer_dma = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
739  if (this->data_buffer_dma == NULL)
740  goto error_alloc;
741 
742  /*
743  * [3] Allocate the page buffer.
744  *
745  * Both the payload buffer and the auxiliary buffer must appear on
746  * 32-bit boundaries. We presume the size of the payload buffer is a
747  * power of two and is much larger than four, which guarantees the
748  * auxiliary buffer will appear on a 32-bit boundary.
749  */
750  this->page_buffer_size = geo->payload_size + geo->auxiliary_size;
751  this->page_buffer_virt = dma_alloc_coherent(dev, this->page_buffer_size,
752  &this->page_buffer_phys, GFP_DMA);
753  if (!this->page_buffer_virt)
754  goto error_alloc;
755 
756 
757  /* Slice up the page buffer. */
758  this->payload_virt = this->page_buffer_virt;
759  this->payload_phys = this->page_buffer_phys;
760  this->auxiliary_virt = this->payload_virt + geo->payload_size;
761  this->auxiliary_phys = this->payload_phys + geo->payload_size;
762  return 0;
763 
764 error_alloc:
765  gpmi_free_dma_buffer(this);
766  pr_err("allocate DMA buffer ret!!\n");
767  return -ENOMEM;
768 }
769 
770 static void gpmi_cmd_ctrl(struct mtd_info *mtd, int data, unsigned int ctrl)
771 {
772  struct nand_chip *chip = mtd->priv;
773  struct gpmi_nand_data *this = chip->priv;
774  int ret;
775 
776  /*
777  * Every operation begins with a command byte and a series of zero or
778  * more address bytes. These are distinguished by either the Address
779  * Latch Enable (ALE) or Command Latch Enable (CLE) signals being
780  * asserted. When MTD is ready to execute the command, it will deassert
781  * both latch enables.
782  *
783  * Rather than run a separate DMA operation for every single byte, we
784  * queue them up and run a single DMA operation for the entire series
785  * of command and data bytes. NAND_CMD_NONE means the END of the queue.
786  */
787  if ((ctrl & (NAND_ALE | NAND_CLE))) {
788  if (data != NAND_CMD_NONE)
789  this->cmd_buffer[this->command_length++] = data;
790  return;
791  }
792 
793  if (!this->command_length)
794  return;
795 
796  ret = gpmi_send_command(this);
797  if (ret)
798  pr_err("Chip: %u, Error %d\n", this->current_chip, ret);
799 
800  this->command_length = 0;
801 }
802 
803 static int gpmi_dev_ready(struct mtd_info *mtd)
804 {
805  struct nand_chip *chip = mtd->priv;
806  struct gpmi_nand_data *this = chip->priv;
807 
808  return gpmi_is_ready(this, this->current_chip);
809 }
810 
811 static void gpmi_select_chip(struct mtd_info *mtd, int chipnr)
812 {
813  struct nand_chip *chip = mtd->priv;
814  struct gpmi_nand_data *this = chip->priv;
815 
816  if ((this->current_chip < 0) && (chipnr >= 0))
817  gpmi_begin(this);
818  else if ((this->current_chip >= 0) && (chipnr < 0))
819  gpmi_end(this);
820 
821  this->current_chip = chipnr;
822 }
823 
824 static void gpmi_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
825 {
826  struct nand_chip *chip = mtd->priv;
827  struct gpmi_nand_data *this = chip->priv;
828 
829  pr_debug("len is %d\n", len);
830  this->upper_buf = buf;
831  this->upper_len = len;
832 
833  gpmi_read_data(this);
834 }
835 
836 static void gpmi_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
837 {
838  struct nand_chip *chip = mtd->priv;
839  struct gpmi_nand_data *this = chip->priv;
840 
841  pr_debug("len is %d\n", len);
842  this->upper_buf = (uint8_t *)buf;
843  this->upper_len = len;
844 
845  gpmi_send_data(this);
846 }
847 
848 static uint8_t gpmi_read_byte(struct mtd_info *mtd)
849 {
850  struct nand_chip *chip = mtd->priv;
851  struct gpmi_nand_data *this = chip->priv;
852  uint8_t *buf = this->data_buffer_dma;
853 
854  gpmi_read_buf(mtd, buf, 1);
855  return buf[0];
856 }
857 
858 /*
859  * Handles block mark swapping.
860  * It can be called in swapping the block mark, or swapping it back,
861  * because the the operations are the same.
862  */
863 static void block_mark_swapping(struct gpmi_nand_data *this,
864  void *payload, void *auxiliary)
865 {
866  struct bch_geometry *nfc_geo = &this->bch_geometry;
867  unsigned char *p;
868  unsigned char *a;
869  unsigned int bit;
870  unsigned char mask;
871  unsigned char from_data;
872  unsigned char from_oob;
873 
874  if (!this->swap_block_mark)
875  return;
876 
877  /*
878  * If control arrives here, we're swapping. Make some convenience
879  * variables.
880  */
881  bit = nfc_geo->block_mark_bit_offset;
882  p = payload + nfc_geo->block_mark_byte_offset;
883  a = auxiliary;
884 
885  /*
886  * Get the byte from the data area that overlays the block mark. Since
887  * the ECC engine applies its own view to the bits in the page, the
888  * physical block mark won't (in general) appear on a byte boundary in
889  * the data.
890  */
891  from_data = (p[0] >> bit) | (p[1] << (8 - bit));
892 
893  /* Get the byte from the OOB. */
894  from_oob = a[0];
895 
896  /* Swap them. */
897  a[0] = from_data;
898 
899  mask = (0x1 << bit) - 1;
900  p[0] = (p[0] & mask) | (from_oob << bit);
901 
902  mask = ~0 << bit;
903  p[1] = (p[1] & mask) | (from_oob >> (8 - bit));
904 }
905 
906 static int gpmi_ecc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
907  uint8_t *buf, int oob_required, int page)
908 {
909  struct gpmi_nand_data *this = chip->priv;
910  struct bch_geometry *nfc_geo = &this->bch_geometry;
911  void *payload_virt;
912  dma_addr_t payload_phys;
913  void *auxiliary_virt;
914  dma_addr_t auxiliary_phys;
915  unsigned int i;
916  unsigned char *status;
917  unsigned int failed;
918  unsigned int corrected;
919  int ret;
920 
921  pr_debug("page number is : %d\n", page);
922  ret = read_page_prepare(this, buf, mtd->writesize,
923  this->payload_virt, this->payload_phys,
924  nfc_geo->payload_size,
925  &payload_virt, &payload_phys);
926  if (ret) {
927  pr_err("Inadequate DMA buffer\n");
928  ret = -ENOMEM;
929  return ret;
930  }
931  auxiliary_virt = this->auxiliary_virt;
932  auxiliary_phys = this->auxiliary_phys;
933 
934  /* go! */
935  ret = gpmi_read_page(this, payload_phys, auxiliary_phys);
936  read_page_end(this, buf, mtd->writesize,
937  this->payload_virt, this->payload_phys,
938  nfc_geo->payload_size,
939  payload_virt, payload_phys);
940  if (ret) {
941  pr_err("Error in ECC-based read: %d\n", ret);
942  goto exit_nfc;
943  }
944 
945  /* handle the block mark swapping */
946  block_mark_swapping(this, payload_virt, auxiliary_virt);
947 
948  /* Loop over status bytes, accumulating ECC status. */
949  failed = 0;
950  corrected = 0;
951  status = auxiliary_virt + nfc_geo->auxiliary_status_offset;
952 
953  for (i = 0; i < nfc_geo->ecc_chunk_count; i++, status++) {
954  if ((*status == STATUS_GOOD) || (*status == STATUS_ERASED))
955  continue;
956 
957  if (*status == STATUS_UNCORRECTABLE) {
958  failed++;
959  continue;
960  }
961  corrected += *status;
962  }
963 
964  /*
965  * Propagate ECC status to the owning MTD only when failed or
966  * corrected times nearly reaches our ECC correction threshold.
967  */
968  if (failed || corrected >= (nfc_geo->ecc_strength - 1)) {
969  mtd->ecc_stats.failed += failed;
970  mtd->ecc_stats.corrected += corrected;
971  }
972 
973  if (oob_required) {
974  /*
975  * It's time to deliver the OOB bytes. See gpmi_ecc_read_oob()
976  * for details about our policy for delivering the OOB.
977  *
978  * We fill the caller's buffer with set bits, and then copy the
979  * block mark to th caller's buffer. Note that, if block mark
980  * swapping was necessary, it has already been done, so we can
981  * rely on the first byte of the auxiliary buffer to contain
982  * the block mark.
983  */
984  memset(chip->oob_poi, ~0, mtd->oobsize);
985  chip->oob_poi[0] = ((uint8_t *) auxiliary_virt)[0];
986  }
987 
988  read_page_swap_end(this, buf, mtd->writesize,
989  this->payload_virt, this->payload_phys,
990  nfc_geo->payload_size,
991  payload_virt, payload_phys);
992 exit_nfc:
993  return ret;
994 }
995 
996 static int gpmi_ecc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
997  const uint8_t *buf, int oob_required)
998 {
999  struct gpmi_nand_data *this = chip->priv;
1000  struct bch_geometry *nfc_geo = &this->bch_geometry;
1001  const void *payload_virt;
1002  dma_addr_t payload_phys;
1003  const void *auxiliary_virt;
1004  dma_addr_t auxiliary_phys;
1005  int ret;
1006 
1007  pr_debug("ecc write page.\n");
1008  if (this->swap_block_mark) {
1009  /*
1010  * If control arrives here, we're doing block mark swapping.
1011  * Since we can't modify the caller's buffers, we must copy them
1012  * into our own.
1013  */
1014  memcpy(this->payload_virt, buf, mtd->writesize);
1015  payload_virt = this->payload_virt;
1016  payload_phys = this->payload_phys;
1017 
1018  memcpy(this->auxiliary_virt, chip->oob_poi,
1019  nfc_geo->auxiliary_size);
1020  auxiliary_virt = this->auxiliary_virt;
1021  auxiliary_phys = this->auxiliary_phys;
1022 
1023  /* Handle block mark swapping. */
1024  block_mark_swapping(this,
1025  (void *) payload_virt, (void *) auxiliary_virt);
1026  } else {
1027  /*
1028  * If control arrives here, we're not doing block mark swapping,
1029  * so we can to try and use the caller's buffers.
1030  */
1031  ret = send_page_prepare(this,
1032  buf, mtd->writesize,
1033  this->payload_virt, this->payload_phys,
1034  nfc_geo->payload_size,
1035  &payload_virt, &payload_phys);
1036  if (ret) {
1037  pr_err("Inadequate payload DMA buffer\n");
1038  return 0;
1039  }
1040 
1041  ret = send_page_prepare(this,
1042  chip->oob_poi, mtd->oobsize,
1043  this->auxiliary_virt, this->auxiliary_phys,
1044  nfc_geo->auxiliary_size,
1045  &auxiliary_virt, &auxiliary_phys);
1046  if (ret) {
1047  pr_err("Inadequate auxiliary DMA buffer\n");
1048  goto exit_auxiliary;
1049  }
1050  }
1051 
1052  /* Ask the NFC. */
1053  ret = gpmi_send_page(this, payload_phys, auxiliary_phys);
1054  if (ret)
1055  pr_err("Error in ECC-based write: %d\n", ret);
1056 
1057  if (!this->swap_block_mark) {
1058  send_page_end(this, chip->oob_poi, mtd->oobsize,
1059  this->auxiliary_virt, this->auxiliary_phys,
1060  nfc_geo->auxiliary_size,
1061  auxiliary_virt, auxiliary_phys);
1062 exit_auxiliary:
1063  send_page_end(this, buf, mtd->writesize,
1064  this->payload_virt, this->payload_phys,
1065  nfc_geo->payload_size,
1066  payload_virt, payload_phys);
1067  }
1068 
1069  return 0;
1070 }
1071 
1072 /*
1073  * There are several places in this driver where we have to handle the OOB and
1074  * block marks. This is the function where things are the most complicated, so
1075  * this is where we try to explain it all. All the other places refer back to
1076  * here.
1077  *
1078  * These are the rules, in order of decreasing importance:
1079  *
1080  * 1) Nothing the caller does can be allowed to imperil the block mark.
1081  *
1082  * 2) In read operations, the first byte of the OOB we return must reflect the
1083  * true state of the block mark, no matter where that block mark appears in
1084  * the physical page.
1085  *
1086  * 3) ECC-based read operations return an OOB full of set bits (since we never
1087  * allow ECC-based writes to the OOB, it doesn't matter what ECC-based reads
1088  * return).
1089  *
1090  * 4) "Raw" read operations return a direct view of the physical bytes in the
1091  * page, using the conventional definition of which bytes are data and which
1092  * are OOB. This gives the caller a way to see the actual, physical bytes
1093  * in the page, without the distortions applied by our ECC engine.
1094  *
1095  *
1096  * What we do for this specific read operation depends on two questions:
1097  *
1098  * 1) Are we doing a "raw" read, or an ECC-based read?
1099  *
1100  * 2) Are we using block mark swapping or transcription?
1101  *
1102  * There are four cases, illustrated by the following Karnaugh map:
1103  *
1104  * | Raw | ECC-based |
1105  * -------------+-------------------------+-------------------------+
1106  * | Read the conventional | |
1107  * | OOB at the end of the | |
1108  * Swapping | page and return it. It | |
1109  * | contains exactly what | |
1110  * | we want. | Read the block mark and |
1111  * -------------+-------------------------+ return it in a buffer |
1112  * | Read the conventional | full of set bits. |
1113  * | OOB at the end of the | |
1114  * | page and also the block | |
1115  * Transcribing | mark in the metadata. | |
1116  * | Copy the block mark | |
1117  * | into the first byte of | |
1118  * | the OOB. | |
1119  * -------------+-------------------------+-------------------------+
1120  *
1121  * Note that we break rule #4 in the Transcribing/Raw case because we're not
1122  * giving an accurate view of the actual, physical bytes in the page (we're
1123  * overwriting the block mark). That's OK because it's more important to follow
1124  * rule #2.
1125  *
1126  * It turns out that knowing whether we want an "ECC-based" or "raw" read is not
1127  * easy. When reading a page, for example, the NAND Flash MTD code calls our
1128  * ecc.read_page or ecc.read_page_raw function. Thus, the fact that MTD wants an
1129  * ECC-based or raw view of the page is implicit in which function it calls
1130  * (there is a similar pair of ECC-based/raw functions for writing).
1131  *
1132  * FIXME: The following paragraph is incorrect, now that there exist
1133  * ecc.read_oob_raw and ecc.write_oob_raw functions.
1134  *
1135  * Since MTD assumes the OOB is not covered by ECC, there is no pair of
1136  * ECC-based/raw functions for reading or or writing the OOB. The fact that the
1137  * caller wants an ECC-based or raw view of the page is not propagated down to
1138  * this driver.
1139  */
1140 static int gpmi_ecc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1141  int page)
1142 {
1143  struct gpmi_nand_data *this = chip->priv;
1144 
1145  pr_debug("page number is %d\n", page);
1146  /* clear the OOB buffer */
1147  memset(chip->oob_poi, ~0, mtd->oobsize);
1148 
1149  /* Read out the conventional OOB. */
1150  chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1151  chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1152 
1153  /*
1154  * Now, we want to make sure the block mark is correct. In the
1155  * Swapping/Raw case, we already have it. Otherwise, we need to
1156  * explicitly read it.
1157  */
1158  if (!this->swap_block_mark) {
1159  /* Read the block mark into the first byte of the OOB buffer. */
1160  chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1161  chip->oob_poi[0] = chip->read_byte(mtd);
1162  }
1163 
1164  return 0;
1165 }
1166 
1167 static int
1168 gpmi_ecc_write_oob(struct mtd_info *mtd, struct nand_chip *chip, int page)
1169 {
1170  /*
1171  * The BCH will use all the (page + oob).
1172  * Our gpmi_hw_ecclayout can only prohibit the JFFS2 to write the oob.
1173  * But it can not stop some ioctls such MEMWRITEOOB which uses
1174  * MTD_OPS_PLACE_OOB. So We have to implement this function to prohibit
1175  * these ioctls too.
1176  */
1177  return -EPERM;
1178 }
1179 
1180 static int gpmi_block_markbad(struct mtd_info *mtd, loff_t ofs)
1181 {
1182  struct nand_chip *chip = mtd->priv;
1183  struct gpmi_nand_data *this = chip->priv;
1184  int block, ret = 0;
1185  uint8_t *block_mark;
1186  int column, page, status, chipnr;
1187 
1188  /* Get block number */
1189  block = (int)(ofs >> chip->bbt_erase_shift);
1190  if (chip->bbt)
1191  chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
1192 
1193  /* Do we have a flash based bad block table ? */
1194  if (chip->bbt_options & NAND_BBT_USE_FLASH)
1195  ret = nand_update_bbt(mtd, ofs);
1196  else {
1197  chipnr = (int)(ofs >> chip->chip_shift);
1198  chip->select_chip(mtd, chipnr);
1199 
1200  column = this->swap_block_mark ? mtd->writesize : 0;
1201 
1202  /* Write the block mark. */
1203  block_mark = this->data_buffer_dma;
1204  block_mark[0] = 0; /* bad block marker */
1205 
1206  /* Shift to get page */
1207  page = (int)(ofs >> chip->page_shift);
1208 
1209  chip->cmdfunc(mtd, NAND_CMD_SEQIN, column, page);
1210  chip->write_buf(mtd, block_mark, 1);
1211  chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1212 
1213  status = chip->waitfunc(mtd, chip);
1214  if (status & NAND_STATUS_FAIL)
1215  ret = -EIO;
1216 
1217  chip->select_chip(mtd, -1);
1218  }
1219  if (!ret)
1220  mtd->ecc_stats.badblocks++;
1221 
1222  return ret;
1223 }
1224 
1225 static int nand_boot_set_geometry(struct gpmi_nand_data *this)
1226 {
1227  struct boot_rom_geometry *geometry = &this->rom_geometry;
1228 
1229  /*
1230  * Set the boot block stride size.
1231  *
1232  * In principle, we should be reading this from the OTP bits, since
1233  * that's where the ROM is going to get it. In fact, we don't have any
1234  * way to read the OTP bits, so we go with the default and hope for the
1235  * best.
1236  */
1237  geometry->stride_size_in_pages = 64;
1238 
1239  /*
1240  * Set the search area stride exponent.
1241  *
1242  * In principle, we should be reading this from the OTP bits, since
1243  * that's where the ROM is going to get it. In fact, we don't have any
1244  * way to read the OTP bits, so we go with the default and hope for the
1245  * best.
1246  */
1247  geometry->search_area_stride_exponent = 2;
1248  return 0;
1249 }
1250 
1251 static const char *fingerprint = "STMP";
1252 static int mx23_check_transcription_stamp(struct gpmi_nand_data *this)
1253 {
1254  struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1255  struct device *dev = this->dev;
1256  struct mtd_info *mtd = &this->mtd;
1257  struct nand_chip *chip = &this->nand;
1258  unsigned int search_area_size_in_strides;
1259  unsigned int stride;
1260  unsigned int page;
1261  uint8_t *buffer = chip->buffers->databuf;
1262  int saved_chip_number;
1263  int found_an_ncb_fingerprint = false;
1264 
1265  /* Compute the number of strides in a search area. */
1266  search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1267 
1268  saved_chip_number = this->current_chip;
1269  chip->select_chip(mtd, 0);
1270 
1271  /*
1272  * Loop through the first search area, looking for the NCB fingerprint.
1273  */
1274  dev_dbg(dev, "Scanning for an NCB fingerprint...\n");
1275 
1276  for (stride = 0; stride < search_area_size_in_strides; stride++) {
1277  /* Compute the page addresses. */
1278  page = stride * rom_geo->stride_size_in_pages;
1279 
1280  dev_dbg(dev, "Looking for a fingerprint in page 0x%x\n", page);
1281 
1282  /*
1283  * Read the NCB fingerprint. The fingerprint is four bytes long
1284  * and starts in the 12th byte of the page.
1285  */
1286  chip->cmdfunc(mtd, NAND_CMD_READ0, 12, page);
1287  chip->read_buf(mtd, buffer, strlen(fingerprint));
1288 
1289  /* Look for the fingerprint. */
1290  if (!memcmp(buffer, fingerprint, strlen(fingerprint))) {
1291  found_an_ncb_fingerprint = true;
1292  break;
1293  }
1294 
1295  }
1296 
1297  chip->select_chip(mtd, saved_chip_number);
1298 
1299  if (found_an_ncb_fingerprint)
1300  dev_dbg(dev, "\tFound a fingerprint\n");
1301  else
1302  dev_dbg(dev, "\tNo fingerprint found\n");
1303  return found_an_ncb_fingerprint;
1304 }
1305 
1306 /* Writes a transcription stamp. */
1307 static int mx23_write_transcription_stamp(struct gpmi_nand_data *this)
1308 {
1309  struct device *dev = this->dev;
1310  struct boot_rom_geometry *rom_geo = &this->rom_geometry;
1311  struct mtd_info *mtd = &this->mtd;
1312  struct nand_chip *chip = &this->nand;
1313  unsigned int block_size_in_pages;
1314  unsigned int search_area_size_in_strides;
1315  unsigned int search_area_size_in_pages;
1316  unsigned int search_area_size_in_blocks;
1317  unsigned int block;
1318  unsigned int stride;
1319  unsigned int page;
1320  uint8_t *buffer = chip->buffers->databuf;
1321  int saved_chip_number;
1322  int status;
1323 
1324  /* Compute the search area geometry. */
1325  block_size_in_pages = mtd->erasesize / mtd->writesize;
1326  search_area_size_in_strides = 1 << rom_geo->search_area_stride_exponent;
1327  search_area_size_in_pages = search_area_size_in_strides *
1328  rom_geo->stride_size_in_pages;
1329  search_area_size_in_blocks =
1330  (search_area_size_in_pages + (block_size_in_pages - 1)) /
1331  block_size_in_pages;
1332 
1333  dev_dbg(dev, "Search Area Geometry :\n");
1334  dev_dbg(dev, "\tin Blocks : %u\n", search_area_size_in_blocks);
1335  dev_dbg(dev, "\tin Strides: %u\n", search_area_size_in_strides);
1336  dev_dbg(dev, "\tin Pages : %u\n", search_area_size_in_pages);
1337 
1338  /* Select chip 0. */
1339  saved_chip_number = this->current_chip;
1340  chip->select_chip(mtd, 0);
1341 
1342  /* Loop over blocks in the first search area, erasing them. */
1343  dev_dbg(dev, "Erasing the search area...\n");
1344 
1345  for (block = 0; block < search_area_size_in_blocks; block++) {
1346  /* Compute the page address. */
1347  page = block * block_size_in_pages;
1348 
1349  /* Erase this block. */
1350  dev_dbg(dev, "\tErasing block 0x%x\n", block);
1351  chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1352  chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1353 
1354  /* Wait for the erase to finish. */
1355  status = chip->waitfunc(mtd, chip);
1356  if (status & NAND_STATUS_FAIL)
1357  dev_err(dev, "[%s] Erase failed.\n", __func__);
1358  }
1359 
1360  /* Write the NCB fingerprint into the page buffer. */
1361  memset(buffer, ~0, mtd->writesize);
1362  memset(chip->oob_poi, ~0, mtd->oobsize);
1363  memcpy(buffer + 12, fingerprint, strlen(fingerprint));
1364 
1365  /* Loop through the first search area, writing NCB fingerprints. */
1366  dev_dbg(dev, "Writing NCB fingerprints...\n");
1367  for (stride = 0; stride < search_area_size_in_strides; stride++) {
1368  /* Compute the page addresses. */
1369  page = stride * rom_geo->stride_size_in_pages;
1370 
1371  /* Write the first page of the current stride. */
1372  dev_dbg(dev, "Writing an NCB fingerprint in page 0x%x\n", page);
1373  chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1374  chip->ecc.write_page_raw(mtd, chip, buffer, 0);
1375  chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1376 
1377  /* Wait for the write to finish. */
1378  status = chip->waitfunc(mtd, chip);
1379  if (status & NAND_STATUS_FAIL)
1380  dev_err(dev, "[%s] Write failed.\n", __func__);
1381  }
1382 
1383  /* Deselect chip 0. */
1384  chip->select_chip(mtd, saved_chip_number);
1385  return 0;
1386 }
1387 
1388 static int mx23_boot_init(struct gpmi_nand_data *this)
1389 {
1390  struct device *dev = this->dev;
1391  struct nand_chip *chip = &this->nand;
1392  struct mtd_info *mtd = &this->mtd;
1393  unsigned int block_count;
1394  unsigned int block;
1395  int chipnr;
1396  int page;
1397  loff_t byte;
1398  uint8_t block_mark;
1399  int ret = 0;
1400 
1401  /*
1402  * If control arrives here, we can't use block mark swapping, which
1403  * means we're forced to use transcription. First, scan for the
1404  * transcription stamp. If we find it, then we don't have to do
1405  * anything -- the block marks are already transcribed.
1406  */
1407  if (mx23_check_transcription_stamp(this))
1408  return 0;
1409 
1410  /*
1411  * If control arrives here, we couldn't find a transcription stamp, so
1412  * so we presume the block marks are in the conventional location.
1413  */
1414  dev_dbg(dev, "Transcribing bad block marks...\n");
1415 
1416  /* Compute the number of blocks in the entire medium. */
1417  block_count = chip->chipsize >> chip->phys_erase_shift;
1418 
1419  /*
1420  * Loop over all the blocks in the medium, transcribing block marks as
1421  * we go.
1422  */
1423  for (block = 0; block < block_count; block++) {
1424  /*
1425  * Compute the chip, page and byte addresses for this block's
1426  * conventional mark.
1427  */
1428  chipnr = block >> (chip->chip_shift - chip->phys_erase_shift);
1429  page = block << (chip->phys_erase_shift - chip->page_shift);
1430  byte = block << chip->phys_erase_shift;
1431 
1432  /* Send the command to read the conventional block mark. */
1433  chip->select_chip(mtd, chipnr);
1434  chip->cmdfunc(mtd, NAND_CMD_READ0, mtd->writesize, page);
1435  block_mark = chip->read_byte(mtd);
1436  chip->select_chip(mtd, -1);
1437 
1438  /*
1439  * Check if the block is marked bad. If so, we need to mark it
1440  * again, but this time the result will be a mark in the
1441  * location where we transcribe block marks.
1442  */
1443  if (block_mark != 0xff) {
1444  dev_dbg(dev, "Transcribing mark in block %u\n", block);
1445  ret = chip->block_markbad(mtd, byte);
1446  if (ret)
1447  dev_err(dev, "Failed to mark block bad with "
1448  "ret %d\n", ret);
1449  }
1450  }
1451 
1452  /* Write the stamp that indicates we've transcribed the block marks. */
1453  mx23_write_transcription_stamp(this);
1454  return 0;
1455 }
1456 
1457 static int nand_boot_init(struct gpmi_nand_data *this)
1458 {
1459  nand_boot_set_geometry(this);
1460 
1461  /* This is ROM arch-specific initilization before the BBT scanning. */
1462  if (GPMI_IS_MX23(this))
1463  return mx23_boot_init(this);
1464  return 0;
1465 }
1466 
1467 static int gpmi_set_geometry(struct gpmi_nand_data *this)
1468 {
1469  int ret;
1470 
1471  /* Free the temporary DMA memory for reading ID. */
1472  gpmi_free_dma_buffer(this);
1473 
1474  /* Set up the NFC geometry which is used by BCH. */
1475  ret = bch_set_geometry(this);
1476  if (ret) {
1477  pr_err("set geometry ret : %d\n", ret);
1478  return ret;
1479  }
1480 
1481  /* Alloc the new DMA buffers according to the pagesize and oobsize */
1482  return gpmi_alloc_dma_buffer(this);
1483 }
1484 
1485 static int gpmi_pre_bbt_scan(struct gpmi_nand_data *this)
1486 {
1487  int ret;
1488 
1489  /* Set up swap_block_mark, must be set before the gpmi_set_geometry() */
1490  if (GPMI_IS_MX23(this))
1491  this->swap_block_mark = false;
1492  else
1493  this->swap_block_mark = true;
1494 
1495  /* Set up the medium geometry */
1496  ret = gpmi_set_geometry(this);
1497  if (ret)
1498  return ret;
1499 
1500  /* Adjust the ECC strength according to the chip. */
1501  this->nand.ecc.strength = this->bch_geometry.ecc_strength;
1502  this->mtd.ecc_strength = this->bch_geometry.ecc_strength;
1503  this->mtd.bitflip_threshold = this->bch_geometry.ecc_strength;
1504 
1505  /* NAND boot init, depends on the gpmi_set_geometry(). */
1506  return nand_boot_init(this);
1507 }
1508 
1509 static int gpmi_scan_bbt(struct mtd_info *mtd)
1510 {
1511  struct nand_chip *chip = mtd->priv;
1512  struct gpmi_nand_data *this = chip->priv;
1513  int ret;
1514 
1515  /* Prepare for the BBT scan. */
1516  ret = gpmi_pre_bbt_scan(this);
1517  if (ret)
1518  return ret;
1519 
1520  /*
1521  * Can we enable the extra features? such as EDO or Sync mode.
1522  *
1523  * We do not check the return value now. That's means if we fail in
1524  * enable the extra features, we still can run in the normal way.
1525  */
1526  gpmi_extra_init(this);
1527 
1528  /* use the default BBT implementation */
1529  return nand_default_bbt(mtd);
1530 }
1531 
1532 static void gpmi_nfc_exit(struct gpmi_nand_data *this)
1533 {
1534  nand_release(&this->mtd);
1535  gpmi_free_dma_buffer(this);
1536 }
1537 
1538 static int __devinit gpmi_nfc_init(struct gpmi_nand_data *this)
1539 {
1540  struct mtd_info *mtd = &this->mtd;
1541  struct nand_chip *chip = &this->nand;
1542  struct mtd_part_parser_data ppdata = {};
1543  int ret;
1544 
1545  /* init current chip */
1546  this->current_chip = -1;
1547 
1548  /* init the MTD data structures */
1549  mtd->priv = chip;
1550  mtd->name = "gpmi-nand";
1551  mtd->owner = THIS_MODULE;
1552 
1553  /* init the nand_chip{}, we don't support a 16-bit NAND Flash bus. */
1554  chip->priv = this;
1555  chip->select_chip = gpmi_select_chip;
1556  chip->cmd_ctrl = gpmi_cmd_ctrl;
1557  chip->dev_ready = gpmi_dev_ready;
1558  chip->read_byte = gpmi_read_byte;
1559  chip->read_buf = gpmi_read_buf;
1560  chip->write_buf = gpmi_write_buf;
1561  chip->ecc.read_page = gpmi_ecc_read_page;
1562  chip->ecc.write_page = gpmi_ecc_write_page;
1563  chip->ecc.read_oob = gpmi_ecc_read_oob;
1564  chip->ecc.write_oob = gpmi_ecc_write_oob;
1565  chip->scan_bbt = gpmi_scan_bbt;
1566  chip->badblock_pattern = &gpmi_bbt_descr;
1567  chip->block_markbad = gpmi_block_markbad;
1568  chip->options |= NAND_NO_SUBPAGE_WRITE;
1569  chip->ecc.mode = NAND_ECC_HW;
1570  chip->ecc.size = 1;
1571  chip->ecc.strength = 8;
1572  chip->ecc.layout = &gpmi_hw_ecclayout;
1573  if (of_get_nand_on_flash_bbt(this->dev->of_node))
1575 
1576  /* Allocate a temporary DMA buffer for reading ID in the nand_scan() */
1577  this->bch_geometry.payload_size = 1024;
1578  this->bch_geometry.auxiliary_size = 128;
1579  ret = gpmi_alloc_dma_buffer(this);
1580  if (ret)
1581  goto err_out;
1582 
1583  ret = nand_scan(mtd, 1);
1584  if (ret) {
1585  pr_err("Chip scan failed\n");
1586  goto err_out;
1587  }
1588 
1589  ppdata.of_node = this->pdev->dev.of_node;
1590  ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
1591  if (ret)
1592  goto err_out;
1593  return 0;
1594 
1595 err_out:
1596  gpmi_nfc_exit(this);
1597  return ret;
1598 }
1599 
1600 static const struct platform_device_id gpmi_ids[] = {
1601  { .name = "imx23-gpmi-nand", .driver_data = IS_MX23, },
1602  { .name = "imx28-gpmi-nand", .driver_data = IS_MX28, },
1603  { .name = "imx6q-gpmi-nand", .driver_data = IS_MX6Q, },
1604  {},
1605 };
1606 
1607 static const struct of_device_id gpmi_nand_id_table[] = {
1608  {
1609  .compatible = "fsl,imx23-gpmi-nand",
1610  .data = (void *)&gpmi_ids[IS_MX23]
1611  }, {
1612  .compatible = "fsl,imx28-gpmi-nand",
1613  .data = (void *)&gpmi_ids[IS_MX28]
1614  }, {
1615  .compatible = "fsl,imx6q-gpmi-nand",
1616  .data = (void *)&gpmi_ids[IS_MX6Q]
1617  }, {}
1618 };
1619 MODULE_DEVICE_TABLE(of, gpmi_nand_id_table);
1620 
1621 static int __devinit gpmi_nand_probe(struct platform_device *pdev)
1622 {
1623  struct gpmi_nand_data *this;
1624  const struct of_device_id *of_id;
1625  int ret;
1626 
1627  of_id = of_match_device(gpmi_nand_id_table, &pdev->dev);
1628  if (of_id) {
1629  pdev->id_entry = of_id->data;
1630  } else {
1631  pr_err("Failed to find the right device id.\n");
1632  return -ENOMEM;
1633  }
1634 
1635  this = kzalloc(sizeof(*this), GFP_KERNEL);
1636  if (!this) {
1637  pr_err("Failed to allocate per-device memory\n");
1638  return -ENOMEM;
1639  }
1640 
1641  platform_set_drvdata(pdev, this);
1642  this->pdev = pdev;
1643  this->dev = &pdev->dev;
1644 
1645  ret = acquire_resources(this);
1646  if (ret)
1647  goto exit_acquire_resources;
1648 
1649  ret = init_hardware(this);
1650  if (ret)
1651  goto exit_nfc_init;
1652 
1653  ret = gpmi_nfc_init(this);
1654  if (ret)
1655  goto exit_nfc_init;
1656 
1657  dev_info(this->dev, "driver registered.\n");
1658 
1659  return 0;
1660 
1661 exit_nfc_init:
1662  release_resources(this);
1663 exit_acquire_resources:
1664  platform_set_drvdata(pdev, NULL);
1665  kfree(this);
1666  dev_err(this->dev, "driver registration failed: %d\n", ret);
1667 
1668  return ret;
1669 }
1670 
1671 static int __devexit gpmi_nand_remove(struct platform_device *pdev)
1672 {
1673  struct gpmi_nand_data *this = platform_get_drvdata(pdev);
1674 
1675  gpmi_nfc_exit(this);
1676  release_resources(this);
1677  platform_set_drvdata(pdev, NULL);
1678  kfree(this);
1679  return 0;
1680 }
1681 
1682 static struct platform_driver gpmi_nand_driver = {
1683  .driver = {
1684  .name = "gpmi-nand",
1685  .of_match_table = gpmi_nand_id_table,
1686  },
1687  .probe = gpmi_nand_probe,
1688  .remove = __devexit_p(gpmi_nand_remove),
1689  .id_table = gpmi_ids,
1690 };
1691 module_platform_driver(gpmi_nand_driver);
1692 
1693 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1694 MODULE_DESCRIPTION("i.MX GPMI NAND Flash Controller Driver");
1695 MODULE_LICENSE("GPL");