Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hfcpci.c
Go to the documentation of this file.
1 /*
2  *
3  * hfcpci.c low level driver for CCD's hfc-pci based cards
4  *
5  * Author Werner Cornelius ([email protected])
6  * based on existing driver for CCD hfc ISA cards
7  * type approval valid for HFC-S PCI A based card
8  *
9  * Copyright 1999 by Werner Cornelius ([email protected])
10  * Copyright 2008 by Karsten Keil <[email protected]>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module options:
27  *
28  * debug:
29  * NOTE: only one poll value must be given for all cards
30  * See hfc_pci.h for debug flags.
31  *
32  * poll:
33  * NOTE: only one poll value must be given for all cards
34  * Give the number of samples for each fifo process.
35  * By default 128 is used. Decrease to reduce delay, increase to
36  * reduce cpu load. If unsure, don't mess with it!
37  * A value of 128 will use controller's interrupt. Other values will
38  * use kernel timer, because the controller will not allow lower values
39  * than 128.
40  * Also note that the value depends on the kernel timer frequency.
41  * If kernel uses a frequency of 1000 Hz, steps of 8 samples are possible.
42  * If the kernel uses 100 Hz, steps of 80 samples are possible.
43  * If the kernel uses 300 Hz, steps of about 26 samples are possible.
44  *
45  */
46 
47 #include <linux/interrupt.h>
48 #include <linux/module.h>
49 #include <linux/pci.h>
50 #include <linux/delay.h>
51 #include <linux/mISDNhw.h>
52 #include <linux/slab.h>
53 
54 #include "hfc_pci.h"
55 
56 static const char *hfcpci_revision = "2.0";
57 
58 static int HFC_cnt;
59 static uint debug;
60 static uint poll, tics;
61 static struct timer_list hfc_tl;
62 static unsigned long hfc_jiffies;
63 
64 MODULE_AUTHOR("Karsten Keil");
65 MODULE_LICENSE("GPL");
68 
69 enum {
93 };
94 
95 struct hfcPCI_hw {
96  unsigned char cirm;
97  unsigned char ctmt;
98  unsigned char clkdel;
99  unsigned char states;
100  unsigned char conn;
101  unsigned char mst_m;
102  unsigned char int_m1;
103  unsigned char int_m2;
104  unsigned char sctrl;
105  unsigned char sctrl_r;
106  unsigned char sctrl_e;
107  unsigned char trm;
108  unsigned char fifo_en;
109  unsigned char bswapped;
110  unsigned char protocol;
111  int nt_timer;
112  unsigned char __iomem *pci_io; /* start of PCI IO memory */
114  void *fifos; /* FIFO memory */
116  /* marker saving last b-fifo frame count */
118 };
119 
120 #define HFC_CFG_MASTER 1
121 #define HFC_CFG_SLAVE 2
122 #define HFC_CFG_PCM 3
123 #define HFC_CFG_2HFC 4
124 #define HFC_CFG_SLAVEHFC 5
125 #define HFC_CFG_NEG_F0 6
126 #define HFC_CFG_SW_DD_DU 7
127 
128 #define FLG_HFC_TIMER_T1 16
129 #define FLG_HFC_TIMER_T3 17
130 
131 #define NT_T1_COUNT 1120 /* number of 3.125ms interrupts (3.5s) */
132 #define NT_T3_COUNT 31 /* number of 3.125ms interrupts (97 ms) */
133 #define CLKDEL_TE 0x0e /* CLKDEL in TE mode */
134 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode */
135 
136 
137 struct hfc_pci {
144  struct pci_dev *pdev;
145  struct hfcPCI_hw hw;
146  spinlock_t lock; /* card lock */
147  struct dchannel dch;
148  struct bchannel bch[2];
149 };
150 
151 /* Interface functions */
152 static void
153 enable_hwirq(struct hfc_pci *hc)
154 {
155  hc->hw.int_m2 |= HFCPCI_IRQ_ENABLE;
156  Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
157 }
158 
159 static void
160 disable_hwirq(struct hfc_pci *hc)
161 {
162  hc->hw.int_m2 &= ~((u_char)HFCPCI_IRQ_ENABLE);
163  Write_hfc(hc, HFCPCI_INT_M2, hc->hw.int_m2);
164 }
165 
166 /*
167  * free hardware resources used by driver
168  */
169 static void
170 release_io_hfcpci(struct hfc_pci *hc)
171 {
172  /* disable memory mapped ports + busmaster */
173  pci_write_config_word(hc->pdev, PCI_COMMAND, 0);
174  del_timer(&hc->hw.timer);
175  pci_free_consistent(hc->pdev, 0x8000, hc->hw.fifos, hc->hw.dmahandle);
176  iounmap(hc->hw.pci_io);
177 }
178 
179 /*
180  * set mode (NT or TE)
181  */
182 static void
183 hfcpci_setmode(struct hfc_pci *hc)
184 {
185  if (hc->hw.protocol == ISDN_P_NT_S0) {
186  hc->hw.clkdel = CLKDEL_NT; /* ST-Bit delay for NT-Mode */
187  hc->hw.sctrl |= SCTRL_MODE_NT; /* NT-MODE */
188  hc->hw.states = 1; /* G1 */
189  } else {
190  hc->hw.clkdel = CLKDEL_TE; /* ST-Bit delay for TE-Mode */
191  hc->hw.sctrl &= ~SCTRL_MODE_NT; /* TE-MODE */
192  hc->hw.states = 2; /* F2 */
193  }
194  Write_hfc(hc, HFCPCI_CLKDEL, hc->hw.clkdel);
195  Write_hfc(hc, HFCPCI_STATES, HFCPCI_LOAD_STATE | hc->hw.states);
196  udelay(10);
197  Write_hfc(hc, HFCPCI_STATES, hc->hw.states | 0x40); /* Deactivate */
198  Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
199 }
200 
201 /*
202  * function called to reset the HFC PCI chip. A complete software reset of chip
203  * and fifos is done.
204  */
205 static void
206 reset_hfcpci(struct hfc_pci *hc)
207 {
208  u_char val;
209  int cnt = 0;
210 
211  printk(KERN_DEBUG "reset_hfcpci: entered\n");
212  val = Read_hfc(hc, HFCPCI_CHIP_ID);
213  printk(KERN_INFO "HFC_PCI: resetting HFC ChipId(%x)\n", val);
214  /* enable memory mapped ports, disable busmaster */
215  pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
216  disable_hwirq(hc);
217  /* enable memory ports + busmaster */
218  pci_write_config_word(hc->pdev, PCI_COMMAND,
220  val = Read_hfc(hc, HFCPCI_STATUS);
221  printk(KERN_DEBUG "HFC-PCI status(%x) before reset\n", val);
222  hc->hw.cirm = HFCPCI_RESET; /* Reset On */
223  Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
225  mdelay(10); /* Timeout 10ms */
226  hc->hw.cirm = 0; /* Reset Off */
227  Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
228  val = Read_hfc(hc, HFCPCI_STATUS);
229  printk(KERN_DEBUG "HFC-PCI status(%x) after reset\n", val);
230  while (cnt < 50000) { /* max 50000 us */
231  udelay(5);
232  cnt += 5;
233  val = Read_hfc(hc, HFCPCI_STATUS);
234  if (!(val & 2))
235  break;
236  }
237  printk(KERN_DEBUG "HFC-PCI status(%x) after %dus\n", val, cnt);
238 
239  hc->hw.fifo_en = 0x30; /* only D fifos enabled */
240 
241  hc->hw.bswapped = 0; /* no exchange */
242  hc->hw.ctmt = HFCPCI_TIM3_125 | HFCPCI_AUTO_TIMER;
243  hc->hw.trm = HFCPCI_BTRANS_THRESMASK; /* no echo connect , threshold */
244  hc->hw.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
245  hc->hw.sctrl_r = 0;
246  hc->hw.sctrl_e = HFCPCI_AUTO_AWAKE; /* S/T Auto awake */
247  hc->hw.mst_m = 0;
248  if (test_bit(HFC_CFG_MASTER, &hc->cfg))
249  hc->hw.mst_m |= HFCPCI_MASTER; /* HFC Master Mode */
250  if (test_bit(HFC_CFG_NEG_F0, &hc->cfg))
251  hc->hw.mst_m |= HFCPCI_F0_NEGATIV;
252  Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
253  Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
254  Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
255  Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
256 
257  hc->hw.int_m1 = HFCPCI_INTS_DTRANS | HFCPCI_INTS_DREC |
259  Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
260 
261  /* Clear already pending ints */
262  val = Read_hfc(hc, HFCPCI_INT_S1);
263 
264  /* set NT/TE mode */
265  hfcpci_setmode(hc);
266 
267  Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
268  Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
269 
270  /*
271  * Init GCI/IOM2 in master mode
272  * Slots 0 and 1 are set for B-chan 1 and 2
273  * D- and monitor/CI channel are not enabled
274  * STIO1 is used as output for data, B1+B2 from ST->IOM+HFC
275  * STIO2 is used as data input, B1+B2 from IOM->ST
276  * ST B-channel send disabled -> continuous 1s
277  * The IOM slots are always enabled
278  */
279  if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
280  /* set data flow directions: connect B1,B2: HFC to/from PCM */
281  hc->hw.conn = 0x09;
282  } else {
283  hc->hw.conn = 0x36; /* set data flow directions */
284  if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
285  Write_hfc(hc, HFCPCI_B1_SSL, 0xC0);
286  Write_hfc(hc, HFCPCI_B2_SSL, 0xC1);
287  Write_hfc(hc, HFCPCI_B1_RSL, 0xC0);
288  Write_hfc(hc, HFCPCI_B2_RSL, 0xC1);
289  } else {
290  Write_hfc(hc, HFCPCI_B1_SSL, 0x80);
291  Write_hfc(hc, HFCPCI_B2_SSL, 0x81);
292  Write_hfc(hc, HFCPCI_B1_RSL, 0x80);
293  Write_hfc(hc, HFCPCI_B2_RSL, 0x81);
294  }
295  }
296  Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
297  val = Read_hfc(hc, HFCPCI_INT_S2);
298 }
299 
300 /*
301  * Timer function called when kernel timer expires
302  */
303 static void
304 hfcpci_Timer(struct hfc_pci *hc)
305 {
306  hc->hw.timer.expires = jiffies + 75;
307  /* WD RESET */
308 /*
309  * WriteReg(hc, HFCD_DATA, HFCD_CTMT, hc->hw.ctmt | 0x80);
310  * add_timer(&hc->hw.timer);
311  */
312 }
313 
314 
315 /*
316  * select a b-channel entry matching and active
317  */
318 static struct bchannel *
319 Sel_BCS(struct hfc_pci *hc, int channel)
320 {
321  if (test_bit(FLG_ACTIVE, &hc->bch[0].Flags) &&
322  (hc->bch[0].nr & channel))
323  return &hc->bch[0];
324  else if (test_bit(FLG_ACTIVE, &hc->bch[1].Flags) &&
325  (hc->bch[1].nr & channel))
326  return &hc->bch[1];
327  else
328  return NULL;
329 }
330 
331 /*
332  * clear the desired B-channel rx fifo
333  */
334 static void
335 hfcpci_clear_fifo_rx(struct hfc_pci *hc, int fifo)
336 {
337  u_char fifo_state;
338  struct bzfifo *bzr;
339 
340  if (fifo) {
341  bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
342  fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2RX;
343  } else {
344  bzr = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
345  fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1RX;
346  }
347  if (fifo_state)
348  hc->hw.fifo_en ^= fifo_state;
349  Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
350  hc->hw.last_bfifo_cnt[fifo] = 0;
351  bzr->f1 = MAX_B_FRAMES;
352  bzr->f2 = bzr->f1; /* init F pointers to remain constant */
353  bzr->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
354  bzr->za[MAX_B_FRAMES].z2 = cpu_to_le16(
355  le16_to_cpu(bzr->za[MAX_B_FRAMES].z1));
356  if (fifo_state)
357  hc->hw.fifo_en |= fifo_state;
358  Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
359 }
360 
361 /*
362  * clear the desired B-channel tx fifo
363  */
364 static void hfcpci_clear_fifo_tx(struct hfc_pci *hc, int fifo)
365 {
366  u_char fifo_state;
367  struct bzfifo *bzt;
368 
369  if (fifo) {
370  bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
371  fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B2TX;
372  } else {
373  bzt = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
374  fifo_state = hc->hw.fifo_en & HFCPCI_FIFOEN_B1TX;
375  }
376  if (fifo_state)
377  hc->hw.fifo_en ^= fifo_state;
378  Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
379  if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
380  printk(KERN_DEBUG "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) "
381  "z1(%x) z2(%x) state(%x)\n",
382  fifo, bzt->f1, bzt->f2,
383  le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
384  le16_to_cpu(bzt->za[MAX_B_FRAMES].z2),
385  fifo_state);
386  bzt->f2 = MAX_B_FRAMES;
387  bzt->f1 = bzt->f2; /* init F pointers to remain constant */
388  bzt->za[MAX_B_FRAMES].z1 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 1);
389  bzt->za[MAX_B_FRAMES].z2 = cpu_to_le16(B_FIFO_SIZE + B_SUB_VAL - 2);
390  if (fifo_state)
391  hc->hw.fifo_en |= fifo_state;
392  Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
393  if (hc->bch[fifo].debug & DEBUG_HW_BCHANNEL)
395  "hfcpci_clear_fifo_tx%d f1(%x) f2(%x) z1(%x) z2(%x)\n",
396  fifo, bzt->f1, bzt->f2,
397  le16_to_cpu(bzt->za[MAX_B_FRAMES].z1),
398  le16_to_cpu(bzt->za[MAX_B_FRAMES].z2));
399 }
400 
401 /*
402  * read a complete B-frame out of the buffer
403  */
404 static void
405 hfcpci_empty_bfifo(struct bchannel *bch, struct bzfifo *bz,
406  u_char *bdata, int count)
407 {
408  u_char *ptr, *ptr1, new_f2;
409  int maxlen, new_z2;
410  struct zt *zp;
411 
412  if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
413  printk(KERN_DEBUG "hfcpci_empty_fifo\n");
414  zp = &bz->za[bz->f2]; /* point to Z-Regs */
415  new_z2 = le16_to_cpu(zp->z2) + count; /* new position in fifo */
416  if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
417  new_z2 -= B_FIFO_SIZE; /* buffer wrap */
418  new_f2 = (bz->f2 + 1) & MAX_B_FRAMES;
419  if ((count > MAX_DATA_SIZE + 3) || (count < 4) ||
420  (*(bdata + (le16_to_cpu(zp->z1) - B_SUB_VAL)))) {
421  if (bch->debug & DEBUG_HW)
422  printk(KERN_DEBUG "hfcpci_empty_fifo: incoming packet "
423  "invalid length %d or crc\n", count);
424 #ifdef ERROR_STATISTIC
425  bch->err_inv++;
426 #endif
427  bz->za[new_f2].z2 = cpu_to_le16(new_z2);
428  bz->f2 = new_f2; /* next buffer */
429  } else {
430  bch->rx_skb = mI_alloc_skb(count - 3, GFP_ATOMIC);
431  if (!bch->rx_skb) {
432  printk(KERN_WARNING "HFCPCI: receive out of memory\n");
433  return;
434  }
435  count -= 3;
436  ptr = skb_put(bch->rx_skb, count);
437 
438  if (le16_to_cpu(zp->z2) + count <= B_FIFO_SIZE + B_SUB_VAL)
439  maxlen = count; /* complete transfer */
440  else
441  maxlen = B_FIFO_SIZE + B_SUB_VAL -
442  le16_to_cpu(zp->z2); /* maximum */
443 
444  ptr1 = bdata + (le16_to_cpu(zp->z2) - B_SUB_VAL);
445  /* start of data */
446  memcpy(ptr, ptr1, maxlen); /* copy data */
447  count -= maxlen;
448 
449  if (count) { /* rest remaining */
450  ptr += maxlen;
451  ptr1 = bdata; /* start of buffer */
452  memcpy(ptr, ptr1, count); /* rest */
453  }
454  bz->za[new_f2].z2 = cpu_to_le16(new_z2);
455  bz->f2 = new_f2; /* next buffer */
456  recv_Bchannel(bch, MISDN_ID_ANY, false);
457  }
458 }
459 
460 /*
461  * D-channel receive procedure
462  */
463 static int
464 receive_dmsg(struct hfc_pci *hc)
465 {
466  struct dchannel *dch = &hc->dch;
467  int maxlen;
468  int rcnt, total;
469  int count = 5;
470  u_char *ptr, *ptr1;
471  struct dfifo *df;
472  struct zt *zp;
473 
474  df = &((union fifo_area *)(hc->hw.fifos))->d_chan.d_rx;
475  while (((df->f1 & D_FREG_MASK) != (df->f2 & D_FREG_MASK)) && count--) {
476  zp = &df->za[df->f2 & D_FREG_MASK];
477  rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
478  if (rcnt < 0)
479  rcnt += D_FIFO_SIZE;
480  rcnt++;
481  if (dch->debug & DEBUG_HW_DCHANNEL)
483  "hfcpci recd f1(%d) f2(%d) z1(%x) z2(%x) cnt(%d)\n",
484  df->f1, df->f2,
485  le16_to_cpu(zp->z1),
486  le16_to_cpu(zp->z2),
487  rcnt);
488 
489  if ((rcnt > MAX_DFRAME_LEN + 3) || (rcnt < 4) ||
490  (df->data[le16_to_cpu(zp->z1)])) {
491  if (dch->debug & DEBUG_HW)
493  "empty_fifo hfcpci paket inv. len "
494  "%d or crc %d\n",
495  rcnt,
496  df->data[le16_to_cpu(zp->z1)]);
497 #ifdef ERROR_STATISTIC
498  cs->err_rx++;
499 #endif
500  df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
501  (MAX_D_FRAMES + 1); /* next buffer */
502  df->za[df->f2 & D_FREG_MASK].z2 =
503  cpu_to_le16((le16_to_cpu(zp->z2) + rcnt) &
504  (D_FIFO_SIZE - 1));
505  } else {
506  dch->rx_skb = mI_alloc_skb(rcnt - 3, GFP_ATOMIC);
507  if (!dch->rx_skb) {
509  "HFC-PCI: D receive out of memory\n");
510  break;
511  }
512  total = rcnt;
513  rcnt -= 3;
514  ptr = skb_put(dch->rx_skb, rcnt);
515 
516  if (le16_to_cpu(zp->z2) + rcnt <= D_FIFO_SIZE)
517  maxlen = rcnt; /* complete transfer */
518  else
519  maxlen = D_FIFO_SIZE - le16_to_cpu(zp->z2);
520  /* maximum */
521 
522  ptr1 = df->data + le16_to_cpu(zp->z2);
523  /* start of data */
524  memcpy(ptr, ptr1, maxlen); /* copy data */
525  rcnt -= maxlen;
526 
527  if (rcnt) { /* rest remaining */
528  ptr += maxlen;
529  ptr1 = df->data; /* start of buffer */
530  memcpy(ptr, ptr1, rcnt); /* rest */
531  }
532  df->f2 = ((df->f2 + 1) & MAX_D_FRAMES) |
533  (MAX_D_FRAMES + 1); /* next buffer */
534  df->za[df->f2 & D_FREG_MASK].z2 = cpu_to_le16((
535  le16_to_cpu(zp->z2) + total) & (D_FIFO_SIZE - 1));
536  recv_Dchannel(dch);
537  }
538  }
539  return 1;
540 }
541 
542 /*
543  * check for transparent receive data and read max one 'poll' size if avail
544  */
545 static void
546 hfcpci_empty_fifo_trans(struct bchannel *bch, struct bzfifo *rxbz,
547  struct bzfifo *txbz, u_char *bdata)
548 {
549  __le16 *z1r, *z2r, *z1t, *z2t;
550  int new_z2, fcnt_rx, fcnt_tx, maxlen;
551  u_char *ptr, *ptr1;
552 
553  z1r = &rxbz->za[MAX_B_FRAMES].z1; /* pointer to z reg */
554  z2r = z1r + 1;
555  z1t = &txbz->za[MAX_B_FRAMES].z1;
556  z2t = z1t + 1;
557 
558  fcnt_rx = le16_to_cpu(*z1r) - le16_to_cpu(*z2r);
559  if (!fcnt_rx)
560  return; /* no data avail */
561 
562  if (fcnt_rx <= 0)
563  fcnt_rx += B_FIFO_SIZE; /* bytes actually buffered */
564  new_z2 = le16_to_cpu(*z2r) + fcnt_rx; /* new position in fifo */
565  if (new_z2 >= (B_FIFO_SIZE + B_SUB_VAL))
566  new_z2 -= B_FIFO_SIZE; /* buffer wrap */
567 
568  fcnt_tx = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
569  if (fcnt_tx <= 0)
570  fcnt_tx += B_FIFO_SIZE;
571  /* fcnt_tx contains available bytes in tx-fifo */
572  fcnt_tx = B_FIFO_SIZE - fcnt_tx;
573  /* remaining bytes to send (bytes in tx-fifo) */
574 
575  if (test_bit(FLG_RX_OFF, &bch->Flags)) {
576  bch->dropcnt += fcnt_rx;
577  *z2r = cpu_to_le16(new_z2);
578  return;
579  }
580  maxlen = bchannel_get_rxbuf(bch, fcnt_rx);
581  if (maxlen < 0) {
582  pr_warning("B%d: No bufferspace for %d bytes\n",
583  bch->nr, fcnt_rx);
584  } else {
585  ptr = skb_put(bch->rx_skb, fcnt_rx);
586  if (le16_to_cpu(*z2r) + fcnt_rx <= B_FIFO_SIZE + B_SUB_VAL)
587  maxlen = fcnt_rx; /* complete transfer */
588  else
589  maxlen = B_FIFO_SIZE + B_SUB_VAL - le16_to_cpu(*z2r);
590  /* maximum */
591 
592  ptr1 = bdata + (le16_to_cpu(*z2r) - B_SUB_VAL);
593  /* start of data */
594  memcpy(ptr, ptr1, maxlen); /* copy data */
595  fcnt_rx -= maxlen;
596 
597  if (fcnt_rx) { /* rest remaining */
598  ptr += maxlen;
599  ptr1 = bdata; /* start of buffer */
600  memcpy(ptr, ptr1, fcnt_rx); /* rest */
601  }
602  recv_Bchannel(bch, fcnt_tx, false); /* bch, id, !force */
603  }
604  *z2r = cpu_to_le16(new_z2); /* new position */
605 }
606 
607 /*
608  * B-channel main receive routine
609  */
610 static void
611 main_rec_hfcpci(struct bchannel *bch)
612 {
613  struct hfc_pci *hc = bch->hw;
614  int rcnt, real_fifo;
615  int receive = 0, count = 5;
616  struct bzfifo *txbz, *rxbz;
617  u_char *bdata;
618  struct zt *zp;
619 
620  if ((bch->nr & 2) && (!hc->hw.bswapped)) {
621  rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b2;
622  txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
623  bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b2;
624  real_fifo = 1;
625  } else {
626  rxbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.rxbz_b1;
627  txbz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
628  bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.rxdat_b1;
629  real_fifo = 0;
630  }
631 Begin:
632  count--;
633  if (rxbz->f1 != rxbz->f2) {
634  if (bch->debug & DEBUG_HW_BCHANNEL)
635  printk(KERN_DEBUG "hfcpci rec ch(%x) f1(%d) f2(%d)\n",
636  bch->nr, rxbz->f1, rxbz->f2);
637  zp = &rxbz->za[rxbz->f2];
638 
639  rcnt = le16_to_cpu(zp->z1) - le16_to_cpu(zp->z2);
640  if (rcnt < 0)
641  rcnt += B_FIFO_SIZE;
642  rcnt++;
643  if (bch->debug & DEBUG_HW_BCHANNEL)
645  "hfcpci rec ch(%x) z1(%x) z2(%x) cnt(%d)\n",
646  bch->nr, le16_to_cpu(zp->z1),
647  le16_to_cpu(zp->z2), rcnt);
648  hfcpci_empty_bfifo(bch, rxbz, bdata, rcnt);
649  rcnt = rxbz->f1 - rxbz->f2;
650  if (rcnt < 0)
651  rcnt += MAX_B_FRAMES + 1;
652  if (hc->hw.last_bfifo_cnt[real_fifo] > rcnt + 1) {
653  rcnt = 0;
654  hfcpci_clear_fifo_rx(hc, real_fifo);
655  }
656  hc->hw.last_bfifo_cnt[real_fifo] = rcnt;
657  if (rcnt > 1)
658  receive = 1;
659  else
660  receive = 0;
661  } else if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
662  hfcpci_empty_fifo_trans(bch, rxbz, txbz, bdata);
663  return;
664  } else
665  receive = 0;
666  if (count && receive)
667  goto Begin;
668 
669 }
670 
671 /*
672  * D-channel send routine
673  */
674 static void
675 hfcpci_fill_dfifo(struct hfc_pci *hc)
676 {
677  struct dchannel *dch = &hc->dch;
678  int fcnt;
679  int count, new_z1, maxlen;
680  struct dfifo *df;
681  u_char *src, *dst, new_f1;
682 
683  if ((dch->debug & DEBUG_HW_DCHANNEL) && !(dch->debug & DEBUG_HW_DFIFO))
684  printk(KERN_DEBUG "%s\n", __func__);
685 
686  if (!dch->tx_skb)
687  return;
688  count = dch->tx_skb->len - dch->tx_idx;
689  if (count <= 0)
690  return;
691  df = &((union fifo_area *) (hc->hw.fifos))->d_chan.d_tx;
692 
693  if (dch->debug & DEBUG_HW_DFIFO)
694  printk(KERN_DEBUG "%s:f1(%d) f2(%d) z1(f1)(%x)\n", __func__,
695  df->f1, df->f2,
696  le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1));
697  fcnt = df->f1 - df->f2; /* frame count actually buffered */
698  if (fcnt < 0)
699  fcnt += (MAX_D_FRAMES + 1); /* if wrap around */
700  if (fcnt > (MAX_D_FRAMES - 1)) {
701  if (dch->debug & DEBUG_HW_DCHANNEL)
703  "hfcpci_fill_Dfifo more as 14 frames\n");
704 #ifdef ERROR_STATISTIC
705  cs->err_tx++;
706 #endif
707  return;
708  }
709  /* now determine free bytes in FIFO buffer */
710  maxlen = le16_to_cpu(df->za[df->f2 & D_FREG_MASK].z2) -
711  le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) - 1;
712  if (maxlen <= 0)
713  maxlen += D_FIFO_SIZE; /* count now contains available bytes */
714 
715  if (dch->debug & DEBUG_HW_DCHANNEL)
716  printk(KERN_DEBUG "hfcpci_fill_Dfifo count(%d/%d)\n",
717  count, maxlen);
718  if (count > maxlen) {
719  if (dch->debug & DEBUG_HW_DCHANNEL)
720  printk(KERN_DEBUG "hfcpci_fill_Dfifo no fifo mem\n");
721  return;
722  }
723  new_z1 = (le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1) + count) &
724  (D_FIFO_SIZE - 1);
725  new_f1 = ((df->f1 + 1) & D_FREG_MASK) | (D_FREG_MASK + 1);
726  src = dch->tx_skb->data + dch->tx_idx; /* source pointer */
727  dst = df->data + le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
728  maxlen = D_FIFO_SIZE - le16_to_cpu(df->za[df->f1 & D_FREG_MASK].z1);
729  /* end fifo */
730  if (maxlen > count)
731  maxlen = count; /* limit size */
732  memcpy(dst, src, maxlen); /* first copy */
733 
734  count -= maxlen; /* remaining bytes */
735  if (count) {
736  dst = df->data; /* start of buffer */
737  src += maxlen; /* new position */
738  memcpy(dst, src, count);
739  }
740  df->za[new_f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
741  /* for next buffer */
742  df->za[df->f1 & D_FREG_MASK].z1 = cpu_to_le16(new_z1);
743  /* new pos actual buffer */
744  df->f1 = new_f1; /* next frame */
745  dch->tx_idx = dch->tx_skb->len;
746 }
747 
748 /*
749  * B-channel send routine
750  */
751 static void
752 hfcpci_fill_fifo(struct bchannel *bch)
753 {
754  struct hfc_pci *hc = bch->hw;
755  int maxlen, fcnt;
756  int count, new_z1;
757  struct bzfifo *bz;
758  u_char *bdata;
759  u_char new_f1, *src, *dst;
760  __le16 *z1t, *z2t;
761 
762  if ((bch->debug & DEBUG_HW_BCHANNEL) && !(bch->debug & DEBUG_HW_BFIFO))
763  printk(KERN_DEBUG "%s\n", __func__);
764  if ((!bch->tx_skb) || bch->tx_skb->len == 0) {
765  if (!test_bit(FLG_FILLEMPTY, &bch->Flags) &&
766  !test_bit(FLG_TRANSPARENT, &bch->Flags))
767  return;
768  count = HFCPCI_FILLEMPTY;
769  } else {
770  count = bch->tx_skb->len - bch->tx_idx;
771  }
772  if ((bch->nr & 2) && (!hc->hw.bswapped)) {
773  bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b2;
774  bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b2;
775  } else {
776  bz = &((union fifo_area *)(hc->hw.fifos))->b_chans.txbz_b1;
777  bdata = ((union fifo_area *)(hc->hw.fifos))->b_chans.txdat_b1;
778  }
779 
780  if (test_bit(FLG_TRANSPARENT, &bch->Flags)) {
781  z1t = &bz->za[MAX_B_FRAMES].z1;
782  z2t = z1t + 1;
783  if (bch->debug & DEBUG_HW_BCHANNEL)
784  printk(KERN_DEBUG "hfcpci_fill_fifo_trans ch(%x) "
785  "cnt(%d) z1(%x) z2(%x)\n", bch->nr, count,
786  le16_to_cpu(*z1t), le16_to_cpu(*z2t));
787  fcnt = le16_to_cpu(*z2t) - le16_to_cpu(*z1t);
788  if (fcnt <= 0)
789  fcnt += B_FIFO_SIZE;
790  if (test_bit(FLG_FILLEMPTY, &bch->Flags)) {
791  /* fcnt contains available bytes in fifo */
792  if (count > fcnt)
793  count = fcnt;
794  new_z1 = le16_to_cpu(*z1t) + count;
795  /* new buffer Position */
796  if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
797  new_z1 -= B_FIFO_SIZE; /* buffer wrap */
798  dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
799  maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
800  /* end of fifo */
801  if (bch->debug & DEBUG_HW_BFIFO)
802  printk(KERN_DEBUG "hfcpci_FFt fillempty "
803  "fcnt(%d) maxl(%d) nz1(%x) dst(%p)\n",
804  fcnt, maxlen, new_z1, dst);
805  if (maxlen > count)
806  maxlen = count; /* limit size */
807  memset(dst, bch->fill[0], maxlen); /* first copy */
808  count -= maxlen; /* remaining bytes */
809  if (count) {
810  dst = bdata; /* start of buffer */
811  memset(dst, bch->fill[0], count);
812  }
813  *z1t = cpu_to_le16(new_z1); /* now send data */
814  return;
815  }
816  /* fcnt contains available bytes in fifo */
817  fcnt = B_FIFO_SIZE - fcnt;
818  /* remaining bytes to send (bytes in fifo) */
819 
820  next_t_frame:
821  count = bch->tx_skb->len - bch->tx_idx;
822  /* maximum fill shall be poll*2 */
823  if (count > (poll << 1) - fcnt)
824  count = (poll << 1) - fcnt;
825  if (count <= 0)
826  return;
827  /* data is suitable for fifo */
828  new_z1 = le16_to_cpu(*z1t) + count;
829  /* new buffer Position */
830  if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
831  new_z1 -= B_FIFO_SIZE; /* buffer wrap */
832  src = bch->tx_skb->data + bch->tx_idx;
833  /* source pointer */
834  dst = bdata + (le16_to_cpu(*z1t) - B_SUB_VAL);
835  maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(*z1t);
836  /* end of fifo */
837  if (bch->debug & DEBUG_HW_BFIFO)
838  printk(KERN_DEBUG "hfcpci_FFt fcnt(%d) "
839  "maxl(%d) nz1(%x) dst(%p)\n",
840  fcnt, maxlen, new_z1, dst);
841  fcnt += count;
842  bch->tx_idx += count;
843  if (maxlen > count)
844  maxlen = count; /* limit size */
845  memcpy(dst, src, maxlen); /* first copy */
846  count -= maxlen; /* remaining bytes */
847  if (count) {
848  dst = bdata; /* start of buffer */
849  src += maxlen; /* new position */
850  memcpy(dst, src, count);
851  }
852  *z1t = cpu_to_le16(new_z1); /* now send data */
853  if (bch->tx_idx < bch->tx_skb->len)
854  return;
855  dev_kfree_skb(bch->tx_skb);
856  if (get_next_bframe(bch))
857  goto next_t_frame;
858  return;
859  }
860  if (bch->debug & DEBUG_HW_BCHANNEL)
862  "%s: ch(%x) f1(%d) f2(%d) z1(f1)(%x)\n",
863  __func__, bch->nr, bz->f1, bz->f2,
864  bz->za[bz->f1].z1);
865  fcnt = bz->f1 - bz->f2; /* frame count actually buffered */
866  if (fcnt < 0)
867  fcnt += (MAX_B_FRAMES + 1); /* if wrap around */
868  if (fcnt > (MAX_B_FRAMES - 1)) {
869  if (bch->debug & DEBUG_HW_BCHANNEL)
871  "hfcpci_fill_Bfifo more as 14 frames\n");
872  return;
873  }
874  /* now determine free bytes in FIFO buffer */
875  maxlen = le16_to_cpu(bz->za[bz->f2].z2) -
876  le16_to_cpu(bz->za[bz->f1].z1) - 1;
877  if (maxlen <= 0)
878  maxlen += B_FIFO_SIZE; /* count now contains available bytes */
879 
880  if (bch->debug & DEBUG_HW_BCHANNEL)
881  printk(KERN_DEBUG "hfcpci_fill_fifo ch(%x) count(%d/%d)\n",
882  bch->nr, count, maxlen);
883 
884  if (maxlen < count) {
885  if (bch->debug & DEBUG_HW_BCHANNEL)
886  printk(KERN_DEBUG "hfcpci_fill_fifo no fifo mem\n");
887  return;
888  }
889  new_z1 = le16_to_cpu(bz->za[bz->f1].z1) + count;
890  /* new buffer Position */
891  if (new_z1 >= (B_FIFO_SIZE + B_SUB_VAL))
892  new_z1 -= B_FIFO_SIZE; /* buffer wrap */
893 
894  new_f1 = ((bz->f1 + 1) & MAX_B_FRAMES);
895  src = bch->tx_skb->data + bch->tx_idx; /* source pointer */
896  dst = bdata + (le16_to_cpu(bz->za[bz->f1].z1) - B_SUB_VAL);
897  maxlen = (B_FIFO_SIZE + B_SUB_VAL) - le16_to_cpu(bz->za[bz->f1].z1);
898  /* end fifo */
899  if (maxlen > count)
900  maxlen = count; /* limit size */
901  memcpy(dst, src, maxlen); /* first copy */
902 
903  count -= maxlen; /* remaining bytes */
904  if (count) {
905  dst = bdata; /* start of buffer */
906  src += maxlen; /* new position */
907  memcpy(dst, src, count);
908  }
909  bz->za[new_f1].z1 = cpu_to_le16(new_z1); /* for next buffer */
910  bz->f1 = new_f1; /* next frame */
911  dev_kfree_skb(bch->tx_skb);
912  get_next_bframe(bch);
913 }
914 
915 
916 
917 /*
918  * handle L1 state changes TE
919  */
920 
921 static void
922 ph_state_te(struct dchannel *dch)
923 {
924  if (dch->debug)
925  printk(KERN_DEBUG "%s: TE newstate %x\n",
926  __func__, dch->state);
927  switch (dch->state) {
928  case 0:
929  l1_event(dch->l1, HW_RESET_IND);
930  break;
931  case 3:
932  l1_event(dch->l1, HW_DEACT_IND);
933  break;
934  case 5:
935  case 8:
936  l1_event(dch->l1, ANYSIGNAL);
937  break;
938  case 6:
939  l1_event(dch->l1, INFO2);
940  break;
941  case 7:
942  l1_event(dch->l1, INFO4_P8);
943  break;
944  }
945 }
946 
947 /*
948  * handle L1 state changes NT
949  */
950 
951 static void
952 handle_nt_timer3(struct dchannel *dch) {
953  struct hfc_pci *hc = dch->hw;
954 
956  hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
957  Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
958  hc->hw.nt_timer = 0;
960  if (test_bit(HFC_CFG_MASTER, &hc->cfg))
961  hc->hw.mst_m |= HFCPCI_MASTER;
962  Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
963  _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
965 }
966 
967 static void
968 ph_state_nt(struct dchannel *dch)
969 {
970  struct hfc_pci *hc = dch->hw;
971 
972  if (dch->debug)
973  printk(KERN_DEBUG "%s: NT newstate %x\n",
974  __func__, dch->state);
975  switch (dch->state) {
976  case 2:
977  if (hc->hw.nt_timer < 0) {
978  hc->hw.nt_timer = 0;
981  hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
982  Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
983  /* Clear already pending ints */
984  (void) Read_hfc(hc, HFCPCI_INT_S1);
986  udelay(10);
987  Write_hfc(hc, HFCPCI_STATES, 4);
988  dch->state = 4;
989  } else if (hc->hw.nt_timer == 0) {
990  hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
991  Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
992  hc->hw.nt_timer = NT_T1_COUNT;
993  hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
994  hc->hw.ctmt |= HFCPCI_TIM3_125;
995  Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
999  /* allow G2 -> G3 transition */
1001  } else {
1003  }
1004  break;
1005  case 1:
1006  hc->hw.nt_timer = 0;
1009  hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1010  Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1012  hc->hw.mst_m &= ~HFCPCI_MASTER;
1013  Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1015  _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
1017  break;
1018  case 4:
1019  hc->hw.nt_timer = 0;
1022  hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1023  Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1024  break;
1025  case 3:
1026  if (!test_and_set_bit(FLG_HFC_TIMER_T3, &dch->Flags)) {
1028  &dch->Flags)) {
1029  handle_nt_timer3(dch);
1030  break;
1031  }
1033  hc->hw.int_m1 |= HFCPCI_INTS_TIMER;
1034  Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1035  hc->hw.nt_timer = NT_T3_COUNT;
1036  hc->hw.ctmt &= ~HFCPCI_AUTO_TIMER;
1037  hc->hw.ctmt |= HFCPCI_TIM3_125;
1038  Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt |
1039  HFCPCI_CLTIMER);
1040  }
1041  break;
1042  }
1043 }
1044 
1045 static void
1046 ph_state(struct dchannel *dch)
1047 {
1048  struct hfc_pci *hc = dch->hw;
1049 
1050  if (hc->hw.protocol == ISDN_P_NT_S0) {
1051  if (test_bit(FLG_HFC_TIMER_T3, &dch->Flags) &&
1052  hc->hw.nt_timer < 0)
1053  handle_nt_timer3(dch);
1054  else
1055  ph_state_nt(dch);
1056  } else
1057  ph_state_te(dch);
1058 }
1059 
1060 /*
1061  * Layer 1 callback function
1062  */
1063 static int
1064 hfc_l1callback(struct dchannel *dch, u_int cmd)
1065 {
1066  struct hfc_pci *hc = dch->hw;
1067 
1068  switch (cmd) {
1069  case INFO3_P8:
1070  case INFO3_P10:
1071  if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1072  hc->hw.mst_m |= HFCPCI_MASTER;
1073  Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1074  break;
1075  case HW_RESET_REQ:
1077  /* HFC ST 3 */
1078  udelay(6);
1079  Write_hfc(hc, HFCPCI_STATES, 3); /* HFC ST 2 */
1080  if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1081  hc->hw.mst_m |= HFCPCI_MASTER;
1082  Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1085  l1_event(dch->l1, HW_POWERUP_IND);
1086  break;
1087  case HW_DEACT_REQ:
1088  hc->hw.mst_m &= ~HFCPCI_MASTER;
1089  Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1090  skb_queue_purge(&dch->squeue);
1091  if (dch->tx_skb) {
1092  dev_kfree_skb(dch->tx_skb);
1093  dch->tx_skb = NULL;
1094  }
1095  dch->tx_idx = 0;
1096  if (dch->rx_skb) {
1097  dev_kfree_skb(dch->rx_skb);
1098  dch->rx_skb = NULL;
1099  }
1102  del_timer(&dch->timer);
1103  break;
1104  case HW_POWERUP_REQ:
1106  break;
1107  case PH_ACTIVATE_IND:
1109  _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1110  GFP_ATOMIC);
1111  break;
1112  case PH_DEACTIVATE_IND:
1114  _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
1115  GFP_ATOMIC);
1116  break;
1117  default:
1118  if (dch->debug & DEBUG_HW)
1119  printk(KERN_DEBUG "%s: unknown command %x\n",
1120  __func__, cmd);
1121  return -1;
1122  }
1123  return 0;
1124 }
1125 
1126 /*
1127  * Interrupt handler
1128  */
1129 static inline void
1130 tx_birq(struct bchannel *bch)
1131 {
1132  if (bch->tx_skb && bch->tx_idx < bch->tx_skb->len)
1133  hfcpci_fill_fifo(bch);
1134  else {
1135  if (bch->tx_skb)
1136  dev_kfree_skb(bch->tx_skb);
1137  if (get_next_bframe(bch))
1138  hfcpci_fill_fifo(bch);
1139  }
1140 }
1141 
1142 static inline void
1143 tx_dirq(struct dchannel *dch)
1144 {
1145  if (dch->tx_skb && dch->tx_idx < dch->tx_skb->len)
1146  hfcpci_fill_dfifo(dch->hw);
1147  else {
1148  if (dch->tx_skb)
1149  dev_kfree_skb(dch->tx_skb);
1150  if (get_next_dframe(dch))
1151  hfcpci_fill_dfifo(dch->hw);
1152  }
1153 }
1154 
1155 static irqreturn_t
1156 hfcpci_int(int intno, void *dev_id)
1157 {
1158  struct hfc_pci *hc = dev_id;
1159  u_char exval;
1160  struct bchannel *bch;
1161  u_char val, stat;
1162 
1163  spin_lock(&hc->lock);
1164  if (!(hc->hw.int_m2 & 0x08)) {
1165  spin_unlock(&hc->lock);
1166  return IRQ_NONE; /* not initialised */
1167  }
1168  stat = Read_hfc(hc, HFCPCI_STATUS);
1169  if (HFCPCI_ANYINT & stat) {
1170  val = Read_hfc(hc, HFCPCI_INT_S1);
1171  if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1173  "HFC-PCI: stat(%02x) s1(%02x)\n", stat, val);
1174  } else {
1175  /* shared */
1176  spin_unlock(&hc->lock);
1177  return IRQ_NONE;
1178  }
1179  hc->irqcnt++;
1180 
1181  if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1182  printk(KERN_DEBUG "HFC-PCI irq %x\n", val);
1183  val &= hc->hw.int_m1;
1184  if (val & 0x40) { /* state machine irq */
1185  exval = Read_hfc(hc, HFCPCI_STATES) & 0xf;
1186  if (hc->dch.debug & DEBUG_HW_DCHANNEL)
1187  printk(KERN_DEBUG "ph_state chg %d->%d\n",
1188  hc->dch.state, exval);
1189  hc->dch.state = exval;
1191  val &= ~0x40;
1192  }
1193  if (val & 0x80) { /* timer irq */
1194  if (hc->hw.protocol == ISDN_P_NT_S0) {
1195  if ((--hc->hw.nt_timer) < 0)
1197  }
1198  val &= ~0x80;
1199  Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt | HFCPCI_CLTIMER);
1200  }
1201  if (val & 0x08) { /* B1 rx */
1202  bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1203  if (bch)
1204  main_rec_hfcpci(bch);
1205  else if (hc->dch.debug)
1206  printk(KERN_DEBUG "hfcpci spurious 0x08 IRQ\n");
1207  }
1208  if (val & 0x10) { /* B2 rx */
1209  bch = Sel_BCS(hc, 2);
1210  if (bch)
1211  main_rec_hfcpci(bch);
1212  else if (hc->dch.debug)
1213  printk(KERN_DEBUG "hfcpci spurious 0x10 IRQ\n");
1214  }
1215  if (val & 0x01) { /* B1 tx */
1216  bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
1217  if (bch)
1218  tx_birq(bch);
1219  else if (hc->dch.debug)
1220  printk(KERN_DEBUG "hfcpci spurious 0x01 IRQ\n");
1221  }
1222  if (val & 0x02) { /* B2 tx */
1223  bch = Sel_BCS(hc, 2);
1224  if (bch)
1225  tx_birq(bch);
1226  else if (hc->dch.debug)
1227  printk(KERN_DEBUG "hfcpci spurious 0x02 IRQ\n");
1228  }
1229  if (val & 0x20) /* D rx */
1230  receive_dmsg(hc);
1231  if (val & 0x04) { /* D tx */
1232  if (test_and_clear_bit(FLG_BUSY_TIMER, &hc->dch.Flags))
1233  del_timer(&hc->dch.timer);
1234  tx_dirq(&hc->dch);
1235  }
1236  spin_unlock(&hc->lock);
1237  return IRQ_HANDLED;
1238 }
1239 
1240 /*
1241  * timer callback for D-chan busy resolution. Currently no function
1242  */
1243 static void
1244 hfcpci_dbusy_timer(struct hfc_pci *hc)
1245 {
1246 }
1247 
1248 /*
1249  * activate/deactivate hardware for selected channels and mode
1250  */
1251 static int
1252 mode_hfcpci(struct bchannel *bch, int bc, int protocol)
1253 {
1254  struct hfc_pci *hc = bch->hw;
1255  int fifo2;
1256  u_char rx_slot = 0, tx_slot = 0, pcm_mode;
1257 
1258  if (bch->debug & DEBUG_HW_BCHANNEL)
1260  "HFCPCI bchannel protocol %x-->%x ch %x-->%x\n",
1261  bch->state, protocol, bch->nr, bc);
1262 
1263  fifo2 = bc;
1264  pcm_mode = (bc >> 24) & 0xff;
1265  if (pcm_mode) { /* PCM SLOT USE */
1266  if (!test_bit(HFC_CFG_PCM, &hc->cfg))
1268  "%s: pcm channel id without HFC_CFG_PCM\n",
1269  __func__);
1270  rx_slot = (bc >> 8) & 0xff;
1271  tx_slot = (bc >> 16) & 0xff;
1272  bc = bc & 0xff;
1273  } else if (test_bit(HFC_CFG_PCM, &hc->cfg) && (protocol > ISDN_P_NONE))
1274  printk(KERN_WARNING "%s: no pcm channel id but HFC_CFG_PCM\n",
1275  __func__);
1276  if (hc->chanlimit > 1) {
1277  hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1278  hc->hw.sctrl_e &= ~0x80;
1279  } else {
1280  if (bc & 2) {
1281  if (protocol != ISDN_P_NONE) {
1282  hc->hw.bswapped = 1; /* B1 and B2 exchanged */
1283  hc->hw.sctrl_e |= 0x80;
1284  } else {
1285  hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1286  hc->hw.sctrl_e &= ~0x80;
1287  }
1288  fifo2 = 1;
1289  } else {
1290  hc->hw.bswapped = 0; /* B1 and B2 normal mode */
1291  hc->hw.sctrl_e &= ~0x80;
1292  }
1293  }
1294  switch (protocol) {
1295  case (-1): /* used for init */
1296  bch->state = -1;
1297  bch->nr = bc;
1298  case (ISDN_P_NONE):
1299  if (bch->state == ISDN_P_NONE)
1300  return 0;
1301  if (bc & 2) {
1302  hc->hw.sctrl &= ~SCTRL_B2_ENA;
1303  hc->hw.sctrl_r &= ~SCTRL_B2_ENA;
1304  } else {
1305  hc->hw.sctrl &= ~SCTRL_B1_ENA;
1306  hc->hw.sctrl_r &= ~SCTRL_B1_ENA;
1307  }
1308  if (fifo2 & 2) {
1309  hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B2;
1310  hc->hw.int_m1 &= ~(HFCPCI_INTS_B2TRANS +
1312  } else {
1313  hc->hw.fifo_en &= ~HFCPCI_FIFOEN_B1;
1314  hc->hw.int_m1 &= ~(HFCPCI_INTS_B1TRANS +
1316  }
1317 #ifdef REVERSE_BITORDER
1318  if (bch->nr & 2)
1319  hc->hw.cirm &= 0x7f;
1320  else
1321  hc->hw.cirm &= 0xbf;
1322 #endif
1323  bch->state = ISDN_P_NONE;
1324  bch->nr = bc;
1327  break;
1328  case (ISDN_P_B_RAW):
1329  bch->state = protocol;
1330  bch->nr = bc;
1331  hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1332  hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1333  if (bc & 2) {
1334  hc->hw.sctrl |= SCTRL_B2_ENA;
1335  hc->hw.sctrl_r |= SCTRL_B2_ENA;
1336 #ifdef REVERSE_BITORDER
1337  hc->hw.cirm |= 0x80;
1338 #endif
1339  } else {
1340  hc->hw.sctrl |= SCTRL_B1_ENA;
1341  hc->hw.sctrl_r |= SCTRL_B1_ENA;
1342 #ifdef REVERSE_BITORDER
1343  hc->hw.cirm |= 0x40;
1344 #endif
1345  }
1346  if (fifo2 & 2) {
1347  hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1348  if (!tics)
1349  hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1351  hc->hw.ctmt |= 2;
1352  hc->hw.conn &= ~0x18;
1353  } else {
1354  hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1355  if (!tics)
1356  hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1358  hc->hw.ctmt |= 1;
1359  hc->hw.conn &= ~0x03;
1360  }
1362  break;
1363  case (ISDN_P_B_HDLC):
1364  bch->state = protocol;
1365  bch->nr = bc;
1366  hfcpci_clear_fifo_rx(hc, (fifo2 & 2) ? 1 : 0);
1367  hfcpci_clear_fifo_tx(hc, (fifo2 & 2) ? 1 : 0);
1368  if (bc & 2) {
1369  hc->hw.sctrl |= SCTRL_B2_ENA;
1370  hc->hw.sctrl_r |= SCTRL_B2_ENA;
1371  } else {
1372  hc->hw.sctrl |= SCTRL_B1_ENA;
1373  hc->hw.sctrl_r |= SCTRL_B1_ENA;
1374  }
1375  if (fifo2 & 2) {
1376  hc->hw.last_bfifo_cnt[1] = 0;
1377  hc->hw.fifo_en |= HFCPCI_FIFOEN_B2;
1378  hc->hw.int_m1 |= (HFCPCI_INTS_B2TRANS +
1380  hc->hw.ctmt &= ~2;
1381  hc->hw.conn &= ~0x18;
1382  } else {
1383  hc->hw.last_bfifo_cnt[0] = 0;
1384  hc->hw.fifo_en |= HFCPCI_FIFOEN_B1;
1385  hc->hw.int_m1 |= (HFCPCI_INTS_B1TRANS +
1387  hc->hw.ctmt &= ~1;
1388  hc->hw.conn &= ~0x03;
1389  }
1391  break;
1392  default:
1393  printk(KERN_DEBUG "prot not known %x\n", protocol);
1394  return -ENOPROTOOPT;
1395  }
1396  if (test_bit(HFC_CFG_PCM, &hc->cfg)) {
1397  if ((protocol == ISDN_P_NONE) ||
1398  (protocol == -1)) { /* init case */
1399  rx_slot = 0;
1400  tx_slot = 0;
1401  } else {
1402  if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg)) {
1403  rx_slot |= 0xC0;
1404  tx_slot |= 0xC0;
1405  } else {
1406  rx_slot |= 0x80;
1407  tx_slot |= 0x80;
1408  }
1409  }
1410  if (bc & 2) {
1411  hc->hw.conn &= 0xc7;
1412  hc->hw.conn |= 0x08;
1413  printk(KERN_DEBUG "%s: Write_hfc: B2_SSL 0x%x\n",
1414  __func__, tx_slot);
1415  printk(KERN_DEBUG "%s: Write_hfc: B2_RSL 0x%x\n",
1416  __func__, rx_slot);
1417  Write_hfc(hc, HFCPCI_B2_SSL, tx_slot);
1418  Write_hfc(hc, HFCPCI_B2_RSL, rx_slot);
1419  } else {
1420  hc->hw.conn &= 0xf8;
1421  hc->hw.conn |= 0x01;
1422  printk(KERN_DEBUG "%s: Write_hfc: B1_SSL 0x%x\n",
1423  __func__, tx_slot);
1424  printk(KERN_DEBUG "%s: Write_hfc: B1_RSL 0x%x\n",
1425  __func__, rx_slot);
1426  Write_hfc(hc, HFCPCI_B1_SSL, tx_slot);
1427  Write_hfc(hc, HFCPCI_B1_RSL, rx_slot);
1428  }
1429  }
1430  Write_hfc(hc, HFCPCI_SCTRL_E, hc->hw.sctrl_e);
1431  Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1432  Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1433  Write_hfc(hc, HFCPCI_SCTRL, hc->hw.sctrl);
1434  Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1435  Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1436  Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1437 #ifdef REVERSE_BITORDER
1438  Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1439 #endif
1440  return 0;
1441 }
1442 
1443 static int
1444 set_hfcpci_rxtest(struct bchannel *bch, int protocol, int chan)
1445 {
1446  struct hfc_pci *hc = bch->hw;
1447 
1448  if (bch->debug & DEBUG_HW_BCHANNEL)
1450  "HFCPCI bchannel test rx protocol %x-->%x ch %x-->%x\n",
1451  bch->state, protocol, bch->nr, chan);
1452  if (bch->nr != chan) {
1454  "HFCPCI rxtest wrong channel parameter %x/%x\n",
1455  bch->nr, chan);
1456  return -EINVAL;
1457  }
1458  switch (protocol) {
1459  case (ISDN_P_B_RAW):
1460  bch->state = protocol;
1461  hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1462  if (chan & 2) {
1463  hc->hw.sctrl_r |= SCTRL_B2_ENA;
1464  hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1465  if (!tics)
1466  hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1467  hc->hw.ctmt |= 2;
1468  hc->hw.conn &= ~0x18;
1469 #ifdef REVERSE_BITORDER
1470  hc->hw.cirm |= 0x80;
1471 #endif
1472  } else {
1473  hc->hw.sctrl_r |= SCTRL_B1_ENA;
1474  hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1475  if (!tics)
1476  hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1477  hc->hw.ctmt |= 1;
1478  hc->hw.conn &= ~0x03;
1479 #ifdef REVERSE_BITORDER
1480  hc->hw.cirm |= 0x40;
1481 #endif
1482  }
1483  break;
1484  case (ISDN_P_B_HDLC):
1485  bch->state = protocol;
1486  hfcpci_clear_fifo_rx(hc, (chan & 2) ? 1 : 0);
1487  if (chan & 2) {
1488  hc->hw.sctrl_r |= SCTRL_B2_ENA;
1489  hc->hw.last_bfifo_cnt[1] = 0;
1490  hc->hw.fifo_en |= HFCPCI_FIFOEN_B2RX;
1491  hc->hw.int_m1 |= HFCPCI_INTS_B2REC;
1492  hc->hw.ctmt &= ~2;
1493  hc->hw.conn &= ~0x18;
1494  } else {
1495  hc->hw.sctrl_r |= SCTRL_B1_ENA;
1496  hc->hw.last_bfifo_cnt[0] = 0;
1497  hc->hw.fifo_en |= HFCPCI_FIFOEN_B1RX;
1498  hc->hw.int_m1 |= HFCPCI_INTS_B1REC;
1499  hc->hw.ctmt &= ~1;
1500  hc->hw.conn &= ~0x03;
1501  }
1502  break;
1503  default:
1504  printk(KERN_DEBUG "prot not known %x\n", protocol);
1505  return -ENOPROTOOPT;
1506  }
1507  Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1508  Write_hfc(hc, HFCPCI_FIFO_EN, hc->hw.fifo_en);
1509  Write_hfc(hc, HFCPCI_SCTRL_R, hc->hw.sctrl_r);
1510  Write_hfc(hc, HFCPCI_CTMT, hc->hw.ctmt);
1511  Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1512 #ifdef REVERSE_BITORDER
1513  Write_hfc(hc, HFCPCI_CIRM, hc->hw.cirm);
1514 #endif
1515  return 0;
1516 }
1517 
1518 static void
1519 deactivate_bchannel(struct bchannel *bch)
1520 {
1521  struct hfc_pci *hc = bch->hw;
1522  u_long flags;
1523 
1524  spin_lock_irqsave(&hc->lock, flags);
1525  mISDN_clear_bchannel(bch);
1526  mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1527  spin_unlock_irqrestore(&hc->lock, flags);
1528 }
1529 
1530 /*
1531  * Layer 1 B-channel hardware access
1532  */
1533 static int
1534 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
1535 {
1536  return mISDN_ctrl_bchannel(bch, cq);
1537 }
1538 static int
1539 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1540 {
1541  struct bchannel *bch = container_of(ch, struct bchannel, ch);
1542  struct hfc_pci *hc = bch->hw;
1543  int ret = -EINVAL;
1544  u_long flags;
1545 
1546  if (bch->debug & DEBUG_HW)
1547  printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1548  switch (cmd) {
1549  case HW_TESTRX_RAW:
1550  spin_lock_irqsave(&hc->lock, flags);
1551  ret = set_hfcpci_rxtest(bch, ISDN_P_B_RAW, (int)(long)arg);
1552  spin_unlock_irqrestore(&hc->lock, flags);
1553  break;
1554  case HW_TESTRX_HDLC:
1555  spin_lock_irqsave(&hc->lock, flags);
1556  ret = set_hfcpci_rxtest(bch, ISDN_P_B_HDLC, (int)(long)arg);
1557  spin_unlock_irqrestore(&hc->lock, flags);
1558  break;
1559  case HW_TESTRX_OFF:
1560  spin_lock_irqsave(&hc->lock, flags);
1561  mode_hfcpci(bch, bch->nr, ISDN_P_NONE);
1562  spin_unlock_irqrestore(&hc->lock, flags);
1563  ret = 0;
1564  break;
1565  case CLOSE_CHANNEL:
1567  deactivate_bchannel(bch);
1568  ch->protocol = ISDN_P_NONE;
1569  ch->peer = NULL;
1570  module_put(THIS_MODULE);
1571  ret = 0;
1572  break;
1573  case CONTROL_CHANNEL:
1574  ret = channel_bctrl(bch, arg);
1575  break;
1576  default:
1577  printk(KERN_WARNING "%s: unknown prim(%x)\n",
1578  __func__, cmd);
1579  }
1580  return ret;
1581 }
1582 
1583 /*
1584  * Layer2 -> Layer 1 Dchannel data
1585  */
1586 static int
1587 hfcpci_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
1588 {
1589  struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
1590  struct dchannel *dch = container_of(dev, struct dchannel, dev);
1591  struct hfc_pci *hc = dch->hw;
1592  int ret = -EINVAL;
1593  struct mISDNhead *hh = mISDN_HEAD_P(skb);
1594  unsigned int id;
1595  u_long flags;
1596 
1597  switch (hh->prim) {
1598  case PH_DATA_REQ:
1599  spin_lock_irqsave(&hc->lock, flags);
1600  ret = dchannel_senddata(dch, skb);
1601  if (ret > 0) { /* direct TX */
1602  id = hh->id; /* skb can be freed */
1603  hfcpci_fill_dfifo(dch->hw);
1604  ret = 0;
1605  spin_unlock_irqrestore(&hc->lock, flags);
1606  queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
1607  } else
1608  spin_unlock_irqrestore(&hc->lock, flags);
1609  return ret;
1610  case PH_ACTIVATE_REQ:
1611  spin_lock_irqsave(&hc->lock, flags);
1612  if (hc->hw.protocol == ISDN_P_NT_S0) {
1613  ret = 0;
1614  if (test_bit(HFC_CFG_MASTER, &hc->cfg))
1615  hc->hw.mst_m |= HFCPCI_MASTER;
1616  Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1617  if (test_bit(FLG_ACTIVE, &dch->Flags)) {
1618  spin_unlock_irqrestore(&hc->lock, flags);
1619  _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
1621  break;
1622  }
1625  HFCPCI_DO_ACTION | 1);
1626  } else
1627  ret = l1_event(dch->l1, hh->prim);
1628  spin_unlock_irqrestore(&hc->lock, flags);
1629  break;
1630  case PH_DEACTIVATE_REQ:
1632  spin_lock_irqsave(&hc->lock, flags);
1633  if (hc->hw.protocol == ISDN_P_NT_S0) {
1634  /* prepare deactivation */
1635  Write_hfc(hc, HFCPCI_STATES, 0x40);
1636  skb_queue_purge(&dch->squeue);
1637  if (dch->tx_skb) {
1638  dev_kfree_skb(dch->tx_skb);
1639  dch->tx_skb = NULL;
1640  }
1641  dch->tx_idx = 0;
1642  if (dch->rx_skb) {
1643  dev_kfree_skb(dch->rx_skb);
1644  dch->rx_skb = NULL;
1645  }
1648  del_timer(&dch->timer);
1649 #ifdef FIXME
1650  if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
1651  dchannel_sched_event(&hc->dch, D_CLEARBUSY);
1652 #endif
1653  hc->hw.mst_m &= ~HFCPCI_MASTER;
1654  Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1655  ret = 0;
1656  } else {
1657  ret = l1_event(dch->l1, hh->prim);
1658  }
1659  spin_unlock_irqrestore(&hc->lock, flags);
1660  break;
1661  }
1662  if (!ret)
1663  dev_kfree_skb(skb);
1664  return ret;
1665 }
1666 
1667 /*
1668  * Layer2 -> Layer 1 Bchannel data
1669  */
1670 static int
1671 hfcpci_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
1672 {
1673  struct bchannel *bch = container_of(ch, struct bchannel, ch);
1674  struct hfc_pci *hc = bch->hw;
1675  int ret = -EINVAL;
1676  struct mISDNhead *hh = mISDN_HEAD_P(skb);
1677  unsigned long flags;
1678 
1679  switch (hh->prim) {
1680  case PH_DATA_REQ:
1681  spin_lock_irqsave(&hc->lock, flags);
1682  ret = bchannel_senddata(bch, skb);
1683  if (ret > 0) { /* direct TX */
1684  hfcpci_fill_fifo(bch);
1685  ret = 0;
1686  }
1687  spin_unlock_irqrestore(&hc->lock, flags);
1688  return ret;
1689  case PH_ACTIVATE_REQ:
1690  spin_lock_irqsave(&hc->lock, flags);
1691  if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags))
1692  ret = mode_hfcpci(bch, bch->nr, ch->protocol);
1693  else
1694  ret = 0;
1695  spin_unlock_irqrestore(&hc->lock, flags);
1696  if (!ret)
1697  _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
1698  NULL, GFP_KERNEL);
1699  break;
1700  case PH_DEACTIVATE_REQ:
1701  deactivate_bchannel(bch);
1702  _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0,
1703  NULL, GFP_KERNEL);
1704  ret = 0;
1705  break;
1706  }
1707  if (!ret)
1708  dev_kfree_skb(skb);
1709  return ret;
1710 }
1711 
1712 /*
1713  * called for card init message
1714  */
1715 
1716 static void
1717 inithfcpci(struct hfc_pci *hc)
1718 {
1719  printk(KERN_DEBUG "inithfcpci: entered\n");
1720  hc->dch.timer.function = (void *) hfcpci_dbusy_timer;
1721  hc->dch.timer.data = (long) &hc->dch;
1722  init_timer(&hc->dch.timer);
1723  hc->chanlimit = 2;
1724  mode_hfcpci(&hc->bch[0], 1, -1);
1725  mode_hfcpci(&hc->bch[1], 2, -1);
1726 }
1727 
1728 
1729 static int
1730 init_card(struct hfc_pci *hc)
1731 {
1732  int cnt = 3;
1733  u_long flags;
1734 
1735  printk(KERN_DEBUG "init_card: entered\n");
1736 
1737 
1738  spin_lock_irqsave(&hc->lock, flags);
1739  disable_hwirq(hc);
1740  spin_unlock_irqrestore(&hc->lock, flags);
1741  if (request_irq(hc->irq, hfcpci_int, IRQF_SHARED, "HFC PCI", hc)) {
1743  "mISDN: couldn't get interrupt %d\n", hc->irq);
1744  return -EIO;
1745  }
1746  spin_lock_irqsave(&hc->lock, flags);
1747  reset_hfcpci(hc);
1748  while (cnt) {
1749  inithfcpci(hc);
1750  /*
1751  * Finally enable IRQ output
1752  * this is only allowed, if an IRQ routine is already
1753  * established for this HFC, so don't do that earlier
1754  */
1755  enable_hwirq(hc);
1756  spin_unlock_irqrestore(&hc->lock, flags);
1757  /* Timeout 80ms */
1758  current->state = TASK_UNINTERRUPTIBLE;
1759  schedule_timeout((80 * HZ) / 1000);
1760  printk(KERN_INFO "HFC PCI: IRQ %d count %d\n",
1761  hc->irq, hc->irqcnt);
1762  /* now switch timer interrupt off */
1763  spin_lock_irqsave(&hc->lock, flags);
1764  hc->hw.int_m1 &= ~HFCPCI_INTS_TIMER;
1765  Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
1766  /* reinit mode reg */
1767  Write_hfc(hc, HFCPCI_MST_MODE, hc->hw.mst_m);
1768  if (!hc->irqcnt) {
1770  "HFC PCI: IRQ(%d) getting no interrupts "
1771  "during init %d\n", hc->irq, 4 - cnt);
1772  if (cnt == 1)
1773  break;
1774  else {
1775  reset_hfcpci(hc);
1776  cnt--;
1777  }
1778  } else {
1779  spin_unlock_irqrestore(&hc->lock, flags);
1780  hc->initdone = 1;
1781  return 0;
1782  }
1783  }
1784  disable_hwirq(hc);
1785  spin_unlock_irqrestore(&hc->lock, flags);
1786  free_irq(hc->irq, hc);
1787  return -EIO;
1788 }
1789 
1790 static int
1791 channel_ctrl(struct hfc_pci *hc, struct mISDN_ctrl_req *cq)
1792 {
1793  int ret = 0;
1794  u_char slot;
1795 
1796  switch (cq->op) {
1797  case MISDN_CTRL_GETOP:
1800  break;
1801  case MISDN_CTRL_LOOP:
1802  /* channel 0 disabled loop */
1803  if (cq->channel < 0 || cq->channel > 2) {
1804  ret = -EINVAL;
1805  break;
1806  }
1807  if (cq->channel & 1) {
1808  if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1809  slot = 0xC0;
1810  else
1811  slot = 0x80;
1812  printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1813  __func__, slot);
1814  Write_hfc(hc, HFCPCI_B1_SSL, slot);
1815  Write_hfc(hc, HFCPCI_B1_RSL, slot);
1816  hc->hw.conn = (hc->hw.conn & ~7) | 6;
1817  Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1818  }
1819  if (cq->channel & 2) {
1820  if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1821  slot = 0xC1;
1822  else
1823  slot = 0x81;
1824  printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1825  __func__, slot);
1826  Write_hfc(hc, HFCPCI_B2_SSL, slot);
1827  Write_hfc(hc, HFCPCI_B2_RSL, slot);
1828  hc->hw.conn = (hc->hw.conn & ~0x38) | 0x30;
1829  Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1830  }
1831  if (cq->channel & 3)
1832  hc->hw.trm |= 0x80; /* enable IOM-loop */
1833  else {
1834  hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1835  Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1836  hc->hw.trm &= 0x7f; /* disable IOM-loop */
1837  }
1838  Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1839  break;
1840  case MISDN_CTRL_CONNECT:
1841  if (cq->channel == cq->p1) {
1842  ret = -EINVAL;
1843  break;
1844  }
1845  if (cq->channel < 1 || cq->channel > 2 ||
1846  cq->p1 < 1 || cq->p1 > 2) {
1847  ret = -EINVAL;
1848  break;
1849  }
1850  if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1851  slot = 0xC0;
1852  else
1853  slot = 0x80;
1854  printk(KERN_DEBUG "%s: Write_hfc: B1_SSL/RSL 0x%x\n",
1855  __func__, slot);
1856  Write_hfc(hc, HFCPCI_B1_SSL, slot);
1857  Write_hfc(hc, HFCPCI_B2_RSL, slot);
1858  if (test_bit(HFC_CFG_SW_DD_DU, &hc->cfg))
1859  slot = 0xC1;
1860  else
1861  slot = 0x81;
1862  printk(KERN_DEBUG "%s: Write_hfc: B2_SSL/RSL 0x%x\n",
1863  __func__, slot);
1864  Write_hfc(hc, HFCPCI_B2_SSL, slot);
1865  Write_hfc(hc, HFCPCI_B1_RSL, slot);
1866  hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x36;
1867  Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1868  hc->hw.trm |= 0x80;
1869  Write_hfc(hc, HFCPCI_TRM, hc->hw.trm);
1870  break;
1871  case MISDN_CTRL_DISCONNECT:
1872  hc->hw.conn = (hc->hw.conn & ~0x3f) | 0x09;
1873  Write_hfc(hc, HFCPCI_CONNECT, hc->hw.conn);
1874  hc->hw.trm &= 0x7f; /* disable IOM-loop */
1875  break;
1876  case MISDN_CTRL_L1_TIMER3:
1877  ret = l1_event(hc->dch.l1, HW_TIMER3_VALUE | (cq->p1 & 0xff));
1878  break;
1879  default:
1880  printk(KERN_WARNING "%s: unknown Op %x\n",
1881  __func__, cq->op);
1882  ret = -EINVAL;
1883  break;
1884  }
1885  return ret;
1886 }
1887 
1888 static int
1889 open_dchannel(struct hfc_pci *hc, struct mISDNchannel *ch,
1890  struct channel_req *rq)
1891 {
1892  int err = 0;
1893 
1894  if (debug & DEBUG_HW_OPEN)
1895  printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
1896  hc->dch.dev.id, __builtin_return_address(0));
1897  if (rq->protocol == ISDN_P_NONE)
1898  return -EINVAL;
1899  if (rq->adr.channel == 1) {
1900  /* TODO: E-Channel */
1901  return -EINVAL;
1902  }
1903  if (!hc->initdone) {
1904  if (rq->protocol == ISDN_P_TE_S0) {
1905  err = create_l1(&hc->dch, hfc_l1callback);
1906  if (err)
1907  return err;
1908  }
1909  hc->hw.protocol = rq->protocol;
1910  ch->protocol = rq->protocol;
1911  err = init_card(hc);
1912  if (err)
1913  return err;
1914  } else {
1915  if (rq->protocol != ch->protocol) {
1916  if (hc->hw.protocol == ISDN_P_TE_S0)
1917  l1_event(hc->dch.l1, CLOSE_CHANNEL);
1918  if (rq->protocol == ISDN_P_TE_S0) {
1919  err = create_l1(&hc->dch, hfc_l1callback);
1920  if (err)
1921  return err;
1922  }
1923  hc->hw.protocol = rq->protocol;
1924  ch->protocol = rq->protocol;
1925  hfcpci_setmode(hc);
1926  }
1927  }
1928 
1929  if (((ch->protocol == ISDN_P_NT_S0) && (hc->dch.state == 3)) ||
1930  ((ch->protocol == ISDN_P_TE_S0) && (hc->dch.state == 7))) {
1931  _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
1932  0, NULL, GFP_KERNEL);
1933  }
1934  rq->ch = ch;
1935  if (!try_module_get(THIS_MODULE))
1936  printk(KERN_WARNING "%s:cannot get module\n", __func__);
1937  return 0;
1938 }
1939 
1940 static int
1941 open_bchannel(struct hfc_pci *hc, struct channel_req *rq)
1942 {
1943  struct bchannel *bch;
1944 
1945  if (rq->adr.channel == 0 || rq->adr.channel > 2)
1946  return -EINVAL;
1947  if (rq->protocol == ISDN_P_NONE)
1948  return -EINVAL;
1949  bch = &hc->bch[rq->adr.channel - 1];
1950  if (test_and_set_bit(FLG_OPEN, &bch->Flags))
1951  return -EBUSY; /* b-channel can be only open once */
1952  bch->ch.protocol = rq->protocol;
1953  rq->ch = &bch->ch; /* TODO: E-channel */
1954  if (!try_module_get(THIS_MODULE))
1955  printk(KERN_WARNING "%s:cannot get module\n", __func__);
1956  return 0;
1957 }
1958 
1959 /*
1960  * device control function
1961  */
1962 static int
1963 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1964 {
1965  struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
1966  struct dchannel *dch = container_of(dev, struct dchannel, dev);
1967  struct hfc_pci *hc = dch->hw;
1968  struct channel_req *rq;
1969  int err = 0;
1970 
1971  if (dch->debug & DEBUG_HW)
1972  printk(KERN_DEBUG "%s: cmd:%x %p\n",
1973  __func__, cmd, arg);
1974  switch (cmd) {
1975  case OPEN_CHANNEL:
1976  rq = arg;
1977  if ((rq->protocol == ISDN_P_TE_S0) ||
1978  (rq->protocol == ISDN_P_NT_S0))
1979  err = open_dchannel(hc, ch, rq);
1980  else
1981  err = open_bchannel(hc, rq);
1982  break;
1983  case CLOSE_CHANNEL:
1984  if (debug & DEBUG_HW_OPEN)
1985  printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
1986  __func__, hc->dch.dev.id,
1987  __builtin_return_address(0));
1988  module_put(THIS_MODULE);
1989  break;
1990  case CONTROL_CHANNEL:
1991  err = channel_ctrl(hc, arg);
1992  break;
1993  default:
1994  if (dch->debug & DEBUG_HW)
1995  printk(KERN_DEBUG "%s: unknown command %x\n",
1996  __func__, cmd);
1997  return -EINVAL;
1998  }
1999  return err;
2000 }
2001 
2002 static int
2003 setup_hw(struct hfc_pci *hc)
2004 {
2005  void *buffer;
2006 
2007  printk(KERN_INFO "mISDN: HFC-PCI driver %s\n", hfcpci_revision);
2008  hc->hw.cirm = 0;
2009  hc->dch.state = 0;
2010  pci_set_master(hc->pdev);
2011  if (!hc->irq) {
2012  printk(KERN_WARNING "HFC-PCI: No IRQ for PCI card found\n");
2013  return 1;
2014  }
2015  hc->hw.pci_io =
2016  (char __iomem *)(unsigned long)hc->pdev->resource[1].start;
2017 
2018  if (!hc->hw.pci_io) {
2019  printk(KERN_WARNING "HFC-PCI: No IO-Mem for PCI card found\n");
2020  return 1;
2021  }
2022  /* Allocate memory for FIFOS */
2023  /* the memory needs to be on a 32k boundary within the first 4G */
2024  pci_set_dma_mask(hc->pdev, 0xFFFF8000);
2025  buffer = pci_alloc_consistent(hc->pdev, 0x8000, &hc->hw.dmahandle);
2026  /* We silently assume the address is okay if nonzero */
2027  if (!buffer) {
2029  "HFC-PCI: Error allocating memory for FIFO!\n");
2030  return 1;
2031  }
2032  hc->hw.fifos = buffer;
2033  pci_write_config_dword(hc->pdev, 0x80, hc->hw.dmahandle);
2034  hc->hw.pci_io = ioremap((ulong) hc->hw.pci_io, 256);
2036  "HFC-PCI: defined at mem %#lx fifo %#lx(%#lx) IRQ %d HZ %d\n",
2037  (u_long) hc->hw.pci_io, (u_long) hc->hw.fifos,
2038  (u_long) hc->hw.dmahandle, hc->irq, HZ);
2039  /* enable memory mapped ports, disable busmaster */
2040  pci_write_config_word(hc->pdev, PCI_COMMAND, PCI_ENA_MEMIO);
2041  hc->hw.int_m2 = 0;
2042  disable_hwirq(hc);
2043  hc->hw.int_m1 = 0;
2044  Write_hfc(hc, HFCPCI_INT_M1, hc->hw.int_m1);
2045  /* At this point the needed PCI config is done */
2046  /* fifos are still not enabled */
2047  hc->hw.timer.function = (void *) hfcpci_Timer;
2048  hc->hw.timer.data = (long) hc;
2049  init_timer(&hc->hw.timer);
2050  /* default PCM master */
2052  return 0;
2053 }
2054 
2055 static void
2056 release_card(struct hfc_pci *hc) {
2057  u_long flags;
2058 
2059  spin_lock_irqsave(&hc->lock, flags);
2060  hc->hw.int_m2 = 0; /* interrupt output off ! */
2061  disable_hwirq(hc);
2062  mode_hfcpci(&hc->bch[0], 1, ISDN_P_NONE);
2063  mode_hfcpci(&hc->bch[1], 2, ISDN_P_NONE);
2064  if (hc->dch.timer.function != NULL) {
2065  del_timer(&hc->dch.timer);
2066  hc->dch.timer.function = NULL;
2067  }
2068  spin_unlock_irqrestore(&hc->lock, flags);
2069  if (hc->hw.protocol == ISDN_P_TE_S0)
2070  l1_event(hc->dch.l1, CLOSE_CHANNEL);
2071  if (hc->initdone)
2072  free_irq(hc->irq, hc);
2073  release_io_hfcpci(hc); /* must release after free_irq! */
2074  mISDN_unregister_device(&hc->dch.dev);
2075  mISDN_freebchannel(&hc->bch[1]);
2076  mISDN_freebchannel(&hc->bch[0]);
2077  mISDN_freedchannel(&hc->dch);
2078  pci_set_drvdata(hc->pdev, NULL);
2079  kfree(hc);
2080 }
2081 
2082 static int
2083 setup_card(struct hfc_pci *card)
2084 {
2085  int err = -EINVAL;
2086  u_int i;
2087  char name[MISDN_MAX_IDLEN];
2088 
2089  card->dch.debug = debug;
2090  spin_lock_init(&card->lock);
2091  mISDN_initdchannel(&card->dch, MAX_DFRAME_LEN_L1, ph_state);
2092  card->dch.hw = card;
2093  card->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
2094  card->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
2095  (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
2096  card->dch.dev.D.send = hfcpci_l2l1D;
2097  card->dch.dev.D.ctrl = hfc_dctrl;
2098  card->dch.dev.nrbchan = 2;
2099  for (i = 0; i < 2; i++) {
2100  card->bch[i].nr = i + 1;
2101  set_channelmap(i + 1, card->dch.dev.channelmap);
2102  card->bch[i].debug = debug;
2103  mISDN_initbchannel(&card->bch[i], MAX_DATA_MEM, poll >> 1);
2104  card->bch[i].hw = card;
2105  card->bch[i].ch.send = hfcpci_l2l1B;
2106  card->bch[i].ch.ctrl = hfc_bctrl;
2107  card->bch[i].ch.nr = i + 1;
2108  list_add(&card->bch[i].ch.list, &card->dch.dev.bchannels);
2109  }
2110  err = setup_hw(card);
2111  if (err)
2112  goto error;
2113  snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-pci.%d", HFC_cnt + 1);
2114  err = mISDN_register_device(&card->dch.dev, &card->pdev->dev, name);
2115  if (err)
2116  goto error;
2117  HFC_cnt++;
2118  printk(KERN_INFO "HFC %d cards installed\n", HFC_cnt);
2119  return 0;
2120 error:
2121  mISDN_freebchannel(&card->bch[1]);
2122  mISDN_freebchannel(&card->bch[0]);
2123  mISDN_freedchannel(&card->dch);
2124  kfree(card);
2125  return err;
2126 }
2127 
2128 /* private data in the PCI devices list */
2129 struct _hfc_map {
2132  char *name;
2133 };
2134 
2135 static const struct _hfc_map hfc_map[] =
2136 {
2137  {HFC_CCD_2BD0, 0, "CCD/Billion/Asuscom 2BD0"},
2138  {HFC_CCD_B000, 0, "Billion B000"},
2139  {HFC_CCD_B006, 0, "Billion B006"},
2140  {HFC_CCD_B007, 0, "Billion B007"},
2141  {HFC_CCD_B008, 0, "Billion B008"},
2142  {HFC_CCD_B009, 0, "Billion B009"},
2143  {HFC_CCD_B00A, 0, "Billion B00A"},
2144  {HFC_CCD_B00B, 0, "Billion B00B"},
2145  {HFC_CCD_B00C, 0, "Billion B00C"},
2146  {HFC_CCD_B100, 0, "Seyeon B100"},
2147  {HFC_CCD_B700, 0, "Primux II S0 B700"},
2148  {HFC_CCD_B701, 0, "Primux II S0 NT B701"},
2149  {HFC_ABOCOM_2BD1, 0, "Abocom/Magitek 2BD1"},
2150  {HFC_ASUS_0675, 0, "Asuscom/Askey 675"},
2151  {HFC_BERKOM_TCONCEPT, 0, "German telekom T-Concept"},
2152  {HFC_BERKOM_A1T, 0, "German telekom A1T"},
2153  {HFC_ANIGMA_MC145575, 0, "Motorola MC145575"},
2154  {HFC_ZOLTRIX_2BD0, 0, "Zoltrix 2BD0"},
2156  "Digi International DataFire Micro V IOM2 (Europe)"},
2157  {HFC_DIGI_DF_M_E, 0,
2158  "Digi International DataFire Micro V (Europe)"},
2160  "Digi International DataFire Micro V IOM2 (North America)"},
2161  {HFC_DIGI_DF_M_A, 0,
2162  "Digi International DataFire Micro V (North America)"},
2163  {HFC_SITECOM_DC105V2, 0, "Sitecom Connectivity DC-105 ISDN TA"},
2164  {},
2165 };
2166 
2167 static struct pci_device_id hfc_ids[] =
2168 {
2170  (unsigned long) &hfc_map[0] },
2172  (unsigned long) &hfc_map[1] },
2174  (unsigned long) &hfc_map[2] },
2176  (unsigned long) &hfc_map[3] },
2178  (unsigned long) &hfc_map[4] },
2180  (unsigned long) &hfc_map[5] },
2182  (unsigned long) &hfc_map[6] },
2184  (unsigned long) &hfc_map[7] },
2186  (unsigned long) &hfc_map[8] },
2188  (unsigned long) &hfc_map[9] },
2190  (unsigned long) &hfc_map[10] },
2192  (unsigned long) &hfc_map[11] },
2194  (unsigned long) &hfc_map[12] },
2196  (unsigned long) &hfc_map[13] },
2198  (unsigned long) &hfc_map[14] },
2200  (unsigned long) &hfc_map[15] },
2202  (unsigned long) &hfc_map[16] },
2204  (unsigned long) &hfc_map[17] },
2206  (unsigned long) &hfc_map[18] },
2208  (unsigned long) &hfc_map[19] },
2210  (unsigned long) &hfc_map[20] },
2212  (unsigned long) &hfc_map[21] },
2214  (unsigned long) &hfc_map[22] },
2215  {},
2216 };
2217 
2218 static int __devinit
2219 hfc_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2220 {
2221  int err = -ENOMEM;
2222  struct hfc_pci *card;
2223  struct _hfc_map *m = (struct _hfc_map *)ent->driver_data;
2224 
2225  card = kzalloc(sizeof(struct hfc_pci), GFP_ATOMIC);
2226  if (!card) {
2227  printk(KERN_ERR "No kmem for HFC card\n");
2228  return err;
2229  }
2230  card->pdev = pdev;
2231  card->subtype = m->subtype;
2232  err = pci_enable_device(pdev);
2233  if (err) {
2234  kfree(card);
2235  return err;
2236  }
2237 
2238  printk(KERN_INFO "mISDN_hfcpci: found adapter %s at %s\n",
2239  m->name, pci_name(pdev));
2240 
2241  card->irq = pdev->irq;
2242  pci_set_drvdata(pdev, card);
2243  err = setup_card(card);
2244  if (err)
2245  pci_set_drvdata(pdev, NULL);
2246  return err;
2247 }
2248 
2249 static void __devexit
2250 hfc_remove_pci(struct pci_dev *pdev)
2251 {
2252  struct hfc_pci *card = pci_get_drvdata(pdev);
2253 
2254  if (card)
2255  release_card(card);
2256  else
2257  if (debug)
2258  printk(KERN_DEBUG "%s: drvdata already removed\n",
2259  __func__);
2260 }
2261 
2262 
2263 static struct pci_driver hfc_driver = {
2264  .name = "hfcpci",
2265  .probe = hfc_probe,
2266  .remove = __devexit_p(hfc_remove_pci),
2267  .id_table = hfc_ids,
2268 };
2269 
2270 static int
2271 _hfcpci_softirq(struct device *dev, void *arg)
2272 {
2273  struct hfc_pci *hc = dev_get_drvdata(dev);
2274  struct bchannel *bch;
2275  if (hc == NULL)
2276  return 0;
2277 
2278  if (hc->hw.int_m2 & HFCPCI_IRQ_ENABLE) {
2279  spin_lock(&hc->lock);
2280  bch = Sel_BCS(hc, hc->hw.bswapped ? 2 : 1);
2281  if (bch && bch->state == ISDN_P_B_RAW) { /* B1 rx&tx */
2282  main_rec_hfcpci(bch);
2283  tx_birq(bch);
2284  }
2285  bch = Sel_BCS(hc, hc->hw.bswapped ? 1 : 2);
2286  if (bch && bch->state == ISDN_P_B_RAW) { /* B2 rx&tx */
2287  main_rec_hfcpci(bch);
2288  tx_birq(bch);
2289  }
2290  spin_unlock(&hc->lock);
2291  }
2292  return 0;
2293 }
2294 
2295 static void
2296 hfcpci_softirq(void *arg)
2297 {
2298  (void) driver_for_each_device(&hfc_driver.driver, NULL, arg,
2299  _hfcpci_softirq);
2300 
2301  /* if next event would be in the past ... */
2302  if ((s32)(hfc_jiffies + tics - jiffies) <= 0)
2303  hfc_jiffies = jiffies + 1;
2304  else
2305  hfc_jiffies += tics;
2306  hfc_tl.expires = hfc_jiffies;
2307  add_timer(&hfc_tl);
2308 }
2309 
2310 static int __init
2311 HFC_init(void)
2312 {
2313  int err;
2314 
2315  if (!poll)
2317 
2318  if (poll != HFCPCI_BTRANS_THRESHOLD) {
2319  tics = (poll * HZ) / 8000;
2320  if (tics < 1)
2321  tics = 1;
2322  poll = (tics * 8000) / HZ;
2323  if (poll > 256 || poll < 8) {
2324  printk(KERN_ERR "%s: Wrong poll value %d not in range "
2325  "of 8..256.\n", __func__, poll);
2326  err = -EINVAL;
2327  return err;
2328  }
2329  }
2330  if (poll != HFCPCI_BTRANS_THRESHOLD) {
2331  printk(KERN_INFO "%s: Using alternative poll value of %d\n",
2332  __func__, poll);
2333  hfc_tl.function = (void *)hfcpci_softirq;
2334  hfc_tl.data = 0;
2335  init_timer(&hfc_tl);
2336  hfc_tl.expires = jiffies + tics;
2337  hfc_jiffies = hfc_tl.expires;
2338  add_timer(&hfc_tl);
2339  } else
2340  tics = 0; /* indicate the use of controller's timer */
2341 
2342  err = pci_register_driver(&hfc_driver);
2343  if (err) {
2344  if (timer_pending(&hfc_tl))
2345  del_timer(&hfc_tl);
2346  }
2347 
2348  return err;
2349 }
2350 
2351 static void __exit
2352 HFC_cleanup(void)
2353 {
2354  if (timer_pending(&hfc_tl))
2355  del_timer(&hfc_tl);
2356 
2357  pci_unregister_driver(&hfc_driver);
2358 }
2359 
2360 module_init(HFC_init);
2361 module_exit(HFC_cleanup);
2362 
2363 MODULE_DEVICE_TABLE(pci, hfc_ids);