Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
horizon.c
Go to the documentation of this file.
1 /*
2  Madge Horizon ATM Adapter driver.
3  Copyright (C) 1995-1999 Madge Networks Ltd.
4 
5  This program is free software; you can redistribute it and/or modify
6  it under the terms of the GNU General Public License as published by
7  the Free Software Foundation; either version 2 of the License, or
8  (at your option) any later version.
9 
10  This program is distributed in the hope that it will be useful,
11  but WITHOUT ANY WARRANTY; without even the implied warranty of
12  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  GNU General Public License for more details.
14 
15  You should have received a copy of the GNU General Public License
16  along with this program; if not, write to the Free Software
17  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 
19  The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20  system and in the file COPYING in the Linux kernel source.
21 */
22 
23 /*
24  IMPORTANT NOTE: Madge Networks no longer makes the adapters
25  supported by this driver and makes no commitment to maintain it.
26 */
27 
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/errno.h>
33 #include <linux/atm.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/skbuff.h>
37 #include <linux/time.h>
38 #include <linux/delay.h>
39 #include <linux/uio.h>
40 #include <linux/init.h>
41 #include <linux/interrupt.h>
42 #include <linux/ioport.h>
43 #include <linux/wait.h>
44 #include <linux/slab.h>
45 
46 #include <asm/io.h>
47 #include <linux/atomic.h>
48 #include <asm/uaccess.h>
49 #include <asm/string.h>
50 #include <asm/byteorder.h>
51 
52 #include "horizon.h"
53 
54 #define maintainer_string "Giuliano Procida at Madge Networks <[email protected]>"
55 #define description_string "Madge ATM Horizon [Ultra] driver"
56 #define version_string "1.2.1"
57 
58 static inline void __init show_version (void) {
59  printk ("%s version %s\n", description_string, version_string);
60 }
61 
62 /*
63 
64  CREDITS
65 
66  Driver and documentation by:
67 
68  Chris Aston Madge Networks
69  Giuliano Procida Madge Networks
70  Simon Benham Madge Networks
71  Simon Johnson Madge Networks
72  Various Others Madge Networks
73 
74  Some inspiration taken from other drivers by:
75 
76  Alexandru Cucos UTBv
77  Kari Mettinen University of Helsinki
78  Werner Almesberger EPFL LRC
79 
80  Theory of Operation
81 
82  I Hardware, detection, initialisation and shutdown.
83 
84  1. Supported Hardware
85 
86  This driver should handle all variants of the PCI Madge ATM adapters
87  with the Horizon chipset. These are all PCI cards supporting PIO, BM
88  DMA and a form of MMIO (registers only, not internal RAM).
89 
90  The driver is only known to work with SONET and UTP Horizon Ultra
91  cards at 155Mb/s. However, code is in place to deal with both the
92  original Horizon and 25Mb/s operation.
93 
94  There are two revisions of the Horizon ASIC: the original and the
95  Ultra. Details of hardware bugs are in section III.
96 
97  The ASIC version can be distinguished by chip markings but is NOT
98  indicated by the PCI revision (all adapters seem to have PCI rev 1).
99 
100  I believe that:
101 
102  Horizon => Collage 25 PCI Adapter (UTP and STP)
103  Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
104  Ambassador x => Collage 155 PCI Server (completely different)
105 
106  Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
107  have a Madge B154 plus glue logic serializer. I have also found a
108  really ancient version of this with slightly different glue. It
109  comes with the revision 0 (140-025-01) ASIC.
110 
111  Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
112  output (UTP) or an HP HFBR 5205 output (SONET). It has either
113  Madge's SAMBA framer or a SUNI-lite device (early versions). It
114  comes with the revision 1 (140-027-01) ASIC.
115 
116  2. Detection
117 
118  All Horizon-based cards present with the same PCI Vendor and Device
119  IDs. The standard Linux 2.2 PCI API is used to locate any cards and
120  to enable bus-mastering (with appropriate latency).
121 
122  ATM_LAYER_STATUS in the control register distinguishes between the
123  two possible physical layers (25 and 155). It is not clear whether
124  the 155 cards can also operate at 25Mbps. We rely on the fact that a
125  card operates at 155 if and only if it has the newer Horizon Ultra
126  ASIC.
127 
128  For 155 cards the two possible framers are probed for and then set
129  up for loop-timing.
130 
131  3. Initialisation
132 
133  The card is reset and then put into a known state. The physical
134  layer is configured for normal operation at the appropriate speed;
135  in the case of the 155 cards, the framer is initialised with
136  line-based timing; the internal RAM is zeroed and the allocation of
137  buffers for RX and TX is made; the Burnt In Address is read and
138  copied to the ATM ESI; various policy settings for RX (VPI bits,
139  unknown VCs, oam cells) are made. Ideally all policy items should be
140  configurable at module load (if not actually on-demand), however,
141  only the vpi vs vci bit allocation can be specified at insmod.
142 
143  4. Shutdown
144 
145  This is in response to module_cleaup. No VCs are in use and the card
146  should be idle; it is reset.
147 
148  II Driver software (as it should be)
149 
150  0. Traffic Parameters
151 
152  The traffic classes (not an enumeration) are currently: ATM_NONE (no
153  traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
154  (compatible with everything). Together with (perhaps only some of)
155  the following items they make up the traffic specification.
156 
157  struct atm_trafprm {
158  unsigned char traffic_class; traffic class (ATM_UBR, ...)
159  int max_pcr; maximum PCR in cells per second
160  int pcr; desired PCR in cells per second
161  int min_pcr; minimum PCR in cells per second
162  int max_cdv; maximum CDV in microseconds
163  int max_sdu; maximum SDU in bytes
164  };
165 
166  Note that these denote bandwidth available not bandwidth used; the
167  possibilities according to ATMF are:
168 
169  Real Time (cdv and max CDT given)
170 
171  CBR(pcr) pcr bandwidth always available
172  rtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
173 
174  Non Real Time
175 
176  nrtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
177  UBR()
178  ABR(mcr,pcr) mcr bandwidth always available, up to pcr (depending) too
179 
180  mbs is max burst size (bucket)
181  pcr and scr have associated cdvt values
182  mcr is like scr but has no cdtv
183  cdtv may differ at each hop
184 
185  Some of the above items are qos items (as opposed to traffic
186  parameters). We have nothing to do with qos. All except ABR can have
187  their traffic parameters converted to GCRA parameters. The GCRA may
188  be implemented as a (real-number) leaky bucket. The GCRA can be used
189  in complicated ways by switches and in simpler ways by end-stations.
190  It can be used both to filter incoming cells and shape out-going
191  cells.
192 
193  ATM Linux actually supports:
194 
195  ATM_NONE() (no traffic in this direction)
196  ATM_UBR(max_frame_size)
197  ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
198 
199  0 or ATM_MAX_PCR are used to indicate maximum available PCR
200 
201  A traffic specification consists of the AAL type and separate
202  traffic specifications for either direction. In ATM Linux it is:
203 
204  struct atm_qos {
205  struct atm_trafprm txtp;
206  struct atm_trafprm rxtp;
207  unsigned char aal;
208  };
209 
210  AAL types are:
211 
212  ATM_NO_AAL AAL not specified
213  ATM_AAL0 "raw" ATM cells
214  ATM_AAL1 AAL1 (CBR)
215  ATM_AAL2 AAL2 (VBR)
216  ATM_AAL34 AAL3/4 (data)
217  ATM_AAL5 AAL5 (data)
218  ATM_SAAL signaling AAL
219 
220  The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
221  it does not implement AAL 3/4 SAR and it has a different notion of
222  "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
223  supported by this driver.
224 
225  The Horizon has limited support for ABR (including UBR), VBR and
226  CBR. Each TX channel has a bucket (containing up to 31 cell units)
227  and two timers (PCR and SCR) associated with it that can be used to
228  govern cell emissions and host notification (in the case of ABR this
229  is presumably so that RM cells may be emitted at appropriate times).
230  The timers may either be disabled or may be set to any of 240 values
231  (determined by the clock crystal, a fixed (?) per-device divider, a
232  configurable divider and a configurable timer preload value).
233 
234  At the moment only UBR and CBR are supported by the driver. VBR will
235  be supported as soon as ATM for Linux supports it. ABR support is
236  very unlikely as RM cell handling is completely up to the driver.
237 
238  1. TX (TX channel setup and TX transfer)
239 
240  The TX half of the driver owns the TX Horizon registers. The TX
241  component in the IRQ handler is the BM completion handler. This can
242  only be entered when tx_busy is true (enforced by hardware). The
243  other TX component can only be entered when tx_busy is false
244  (enforced by driver). So TX is single-threaded.
245 
246  Apart from a minor optimisation to not re-select the last channel,
247  the TX send component works as follows:
248 
249  Atomic test and set tx_busy until we succeed; we should implement
250  some sort of timeout so that tx_busy will never be stuck at true.
251 
252  If no TX channel is set up for this VC we wait for an idle one (if
253  necessary) and set it up.
254 
255  At this point we have a TX channel ready for use. We wait for enough
256  buffers to become available then start a TX transmit (set the TX
257  descriptor, schedule transfer, exit).
258 
259  The IRQ component handles TX completion (stats, free buffer, tx_busy
260  unset, exit). We also re-schedule further transfers for the same
261  frame if needed.
262 
263  TX setup in more detail:
264 
265  TX open is a nop, the relevant information is held in the hrz_vcc
266  (vcc->dev_data) structure and is "cached" on the card.
267 
268  TX close gets the TX lock and clears the channel from the "cache".
269 
270  2. RX (Data Available and RX transfer)
271 
272  The RX half of the driver owns the RX registers. There are two RX
273  components in the IRQ handler: the data available handler deals with
274  fresh data that has arrived on the card, the BM completion handler
275  is very similar to the TX completion handler. The data available
276  handler grabs the rx_lock and it is only released once the data has
277  been discarded or completely transferred to the host. The BM
278  completion handler only runs when the lock is held; the data
279  available handler is locked out over the same period.
280 
281  Data available on the card triggers an interrupt. If the data is not
282  suitable for our existing RX channels or we cannot allocate a buffer
283  it is flushed. Otherwise an RX receive is scheduled. Multiple RX
284  transfers may be scheduled for the same frame.
285 
286  RX setup in more detail:
287 
288  RX open...
289  RX close...
290 
291  III Hardware Bugs
292 
293  0. Byte vs Word addressing of adapter RAM.
294 
295  A design feature; see the .h file (especially the memory map).
296 
297  1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
298 
299  The host must not start a transmit direction transfer at a
300  non-four-byte boundary in host memory. Instead the host should
301  perform a byte, or a two byte, or one byte followed by two byte
302  transfer in order to start the rest of the transfer on a four byte
303  boundary. RX is OK.
304 
305  Simultaneous transmit and receive direction bus master transfers are
306  not allowed.
307 
308  The simplest solution to these two is to always do PIO (never DMA)
309  in the TX direction on the original Horizon. More complicated
310  solutions are likely to hurt my brain.
311 
312  2. Loss of buffer on close VC
313 
314  When a VC is being closed, the buffer associated with it is not
315  returned to the pool. The host must store the reference to this
316  buffer and when opening a new VC then give it to that new VC.
317 
318  The host intervention currently consists of stacking such a buffer
319  pointer at VC close and checking the stack at VC open.
320 
321  3. Failure to close a VC
322 
323  If a VC is currently receiving a frame then closing the VC may fail
324  and the frame continues to be received.
325 
326  The solution is to make sure any received frames are flushed when
327  ready. This is currently done just before the solution to 2.
328 
329  4. PCI bus (original Horizon only, fixed in Ultra)
330 
331  Reading from the data port prior to initialisation will hang the PCI
332  bus. Just don't do that then! We don't.
333 
334  IV To Do List
335 
336  . Timer code may be broken.
337 
338  . Allow users to specify buffer allocation split for TX and RX.
339 
340  . Deal once and for all with buggy VC close.
341 
342  . Handle interrupted and/or non-blocking operations.
343 
344  . Change some macros to functions and move from .h to .c.
345 
346  . Try to limit the number of TX frames each VC may have queued, in
347  order to reduce the chances of TX buffer exhaustion.
348 
349  . Implement VBR (bucket and timers not understood) and ABR (need to
350  do RM cells manually); also no Linux support for either.
351 
352  . Implement QoS changes on open VCs (involves extracting parts of VC open
353  and close into separate functions and using them to make changes).
354 
355 */
356 
357 /********** globals **********/
358 
359 static void do_housekeeping (unsigned long arg);
360 
361 static unsigned short debug = 0;
362 static unsigned short vpi_bits = 0;
363 static int max_tx_size = 9000;
364 static int max_rx_size = 9000;
365 static unsigned char pci_lat = 0;
366 
367 /********** access functions **********/
368 
369 /* Read / Write Horizon registers */
370 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
371  outl (cpu_to_le32 (data), dev->iobase + reg);
372 }
373 
374 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
375  return le32_to_cpu (inl (dev->iobase + reg));
376 }
377 
378 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
379  outw (cpu_to_le16 (data), dev->iobase + reg);
380 }
381 
382 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
383  return le16_to_cpu (inw (dev->iobase + reg));
384 }
385 
386 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
387  outsb (dev->iobase + reg, addr, len);
388 }
389 
390 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
391  insb (dev->iobase + reg, addr, len);
392 }
393 
394 /* Read / Write to a given address in Horizon buffer memory.
395  Interrupts must be disabled between the address register and data
396  port accesses as these must form an atomic operation. */
397 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
398  // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
399  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
400  wr_regl (dev, MEMORY_PORT_OFF, data);
401 }
402 
403 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
404  // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
405  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
406  return rd_regl (dev, MEMORY_PORT_OFF);
407 }
408 
409 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
410  wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
411  wr_regl (dev, MEMORY_PORT_OFF, data);
412 }
413 
414 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
415  wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
416  return rd_regl (dev, MEMORY_PORT_OFF);
417 }
418 
419 /********** specialised access functions **********/
420 
421 /* RX */
422 
423 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
424  wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
425  return;
426 }
427 
428 static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
429  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
430  ;
431  return;
432 }
433 
434 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
435  wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
436  return;
437 }
438 
439 static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
440  while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
441  ;
442  return;
443 }
444 
445 /* TX */
446 
447 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
448  wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
449  return;
450 }
451 
452 /* Update or query one configuration parameter of a particular channel. */
453 
454 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
455  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
456  chan * TX_CHANNEL_CONFIG_MULT | mode);
457  wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
458  return;
459 }
460 
461 static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
462  wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
463  chan * TX_CHANNEL_CONFIG_MULT | mode);
464  return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
465 }
466 
467 /********** dump functions **********/
468 
469 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
470 #ifdef DEBUG_HORIZON
471  unsigned int i;
472  unsigned char * data = skb->data;
473  PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
474  for (i=0; i<skb->len && i < 256;i++)
475  PRINTDM (DBG_DATA, "%02x ", data[i]);
476  PRINTDE (DBG_DATA,"");
477 #else
478  (void) prefix;
479  (void) vc;
480  (void) skb;
481 #endif
482  return;
483 }
484 
485 static inline void dump_regs (hrz_dev * dev) {
486 #ifdef DEBUG_HORIZON
487  PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
488  PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
489  PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
490  PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
491  PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
492  PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
493 #else
494  (void) dev;
495 #endif
496  return;
497 }
498 
499 static inline void dump_framer (hrz_dev * dev) {
500 #ifdef DEBUG_HORIZON
501  unsigned int i;
502  PRINTDB (DBG_REGS, "framer registers:");
503  for (i = 0; i < 0x10; ++i)
504  PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
505  PRINTDE (DBG_REGS,"");
506 #else
507  (void) dev;
508 #endif
509  return;
510 }
511 
512 /********** VPI/VCI <-> (RX) channel conversions **********/
513 
514 /* RX channels are 10 bit integers, these fns are quite paranoid */
515 
516 static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
517  unsigned short vci_bits = 10 - vpi_bits;
518  if ((channel & RX_CHANNEL_MASK) == channel) {
519  *vci = channel & ((~0)<<vci_bits);
520  *vpi = channel >> vci_bits;
521  return channel ? 0 : -EINVAL;
522  }
523  return -EINVAL;
524 }
525 
526 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
527  unsigned short vci_bits = 10 - vpi_bits;
528  if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
529  *channel = vpi<<vci_bits | vci;
530  return *channel ? 0 : -EINVAL;
531  }
532  return -EINVAL;
533 }
534 
535 /********** decode RX queue entries **********/
536 
537 static inline u16 rx_q_entry_to_length (u32 x) {
538  return x & RX_Q_ENTRY_LENGTH_MASK;
539 }
540 
541 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
543 }
544 
545 /* Cell Transmit Rate Values
546  *
547  * the cell transmit rate (cells per sec) can be set to a variety of
548  * different values by specifying two parameters: a timer preload from
549  * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
550  * an exponent from 0 to 14; the special value 15 disables the timer).
551  *
552  * cellrate = baserate / (preload * 2^divider)
553  *
554  * The maximum cell rate that can be specified is therefore just the
555  * base rate. Halving the preload is equivalent to adding 1 to the
556  * divider and so values 1 to 8 of the preload are redundant except
557  * in the case of a maximal divider (14).
558  *
559  * Given a desired cell rate, an algorithm to determine the preload
560  * and divider is:
561  *
562  * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
563  * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
564  * if x <= 16 then set p = x, d = 0 (high rates), done
565  * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
566  * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
567  * we find the range (n will be between 1 and 14), set d = n
568  * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
569  *
570  * The algorithm used below is a minor variant of the above.
571  *
572  * The base rate is derived from the oscillator frequency (Hz) using a
573  * fixed divider:
574  *
575  * baserate = freq / 32 in the case of some Unknown Card
576  * baserate = freq / 8 in the case of the Horizon 25
577  * baserate = freq / 8 in the case of the Horizon Ultra 155
578  *
579  * The Horizon cards have oscillators and base rates as follows:
580  *
581  * Card Oscillator Base Rate
582  * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
583  * Horizon 25 32 MHz 4 MHz
584  * Horizon Ultra 155 40 MHz 5 MHz
585  *
586  * The following defines give the base rates in Hz. These were
587  * previously a factor of 100 larger, no doubt someone was using
588  * cps*100.
589  */
590 
591 #define BR_UKN 1031250l
592 #define BR_HRZ 4000000l
593 #define BR_ULT 5000000l
594 
595 // d is an exponent
596 #define CR_MIND 0
597 #define CR_MAXD 14
598 
599 // p ranges from 1 to a power of 2
600 #define CR_MAXPEXP 4
601 
602 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
603  u16 * bits, unsigned int * actual)
604 {
605  // note: rounding the rate down means rounding 'p' up
606  const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
607 
608  u32 div = CR_MIND;
609  u32 pre;
610 
611  // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
612  // the tests below. We could think harder about exact possibilities
613  // of failure...
614 
615  unsigned long br_man = br;
616  unsigned int br_exp = 0;
617 
618  PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
619  r == round_up ? "up" : r == round_down ? "down" : "nearest");
620 
621  // avoid div by zero
622  if (!c) {
623  PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
624  return -EINVAL;
625  }
626 
627  while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
628  br_man = br_man >> 1;
629  ++br_exp;
630  }
631  // (br >>br_exp) <<br_exp == br and
632  // br_exp <= CR_MAXPEXP+CR_MIND
633 
634  if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
635  // Equivalent to: B <= (c << (MAXPEXP+MIND))
636  // take care of rounding
637  switch (r) {
638  case round_down:
639  pre = DIV_ROUND_UP(br, c<<div);
640  // but p must be non-zero
641  if (!pre)
642  pre = 1;
643  break;
644  case round_nearest:
645  pre = DIV_ROUND_CLOSEST(br, c<<div);
646  // but p must be non-zero
647  if (!pre)
648  pre = 1;
649  break;
650  default: /* round_up */
651  pre = br/(c<<div);
652  // but p must be non-zero
653  if (!pre)
654  return -EINVAL;
655  }
656  PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
657  goto got_it;
658  }
659 
660  // at this point we have
661  // d == MIND and (c << (MAXPEXP+MIND)) < B
662  while (div < CR_MAXD) {
663  div++;
664  if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
665  // Equivalent to: B <= (c << (MAXPEXP+d))
666  // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
667  // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
668  // MAXP/2 < B/c2^d <= MAXP
669  // take care of rounding
670  switch (r) {
671  case round_down:
672  pre = DIV_ROUND_UP(br, c<<div);
673  break;
674  case round_nearest:
675  pre = DIV_ROUND_CLOSEST(br, c<<div);
676  break;
677  default: /* round_up */
678  pre = br/(c<<div);
679  }
680  PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
681  goto got_it;
682  }
683  }
684  // at this point we have
685  // d == MAXD and (c << (MAXPEXP+MAXD)) < B
686  // but we cannot go any higher
687  // take care of rounding
688  if (r == round_down)
689  return -EINVAL;
690  pre = 1 << CR_MAXPEXP;
691  PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
692 got_it:
693  // paranoia
694  if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
695  PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
696  div, pre);
697  return -EINVAL;
698  } else {
699  if (bits)
700  *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
701  if (actual) {
702  *actual = DIV_ROUND_UP(br, pre<<div);
703  PRINTD (DBG_QOS, "actual rate: %u", *actual);
704  }
705  return 0;
706  }
707 }
708 
709 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
710  u16 * bit_pattern, unsigned int * actual) {
711  unsigned int my_actual;
712 
713  PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
714  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
715 
716  if (!actual)
717  // actual rate is not returned
718  actual = &my_actual;
719 
720  if (make_rate (dev, c, round_nearest, bit_pattern, actual))
721  // should never happen as round_nearest always succeeds
722  return -1;
723 
724  if (c - tol <= *actual && *actual <= c + tol)
725  // within tolerance
726  return 0;
727  else
728  // intolerant, try rounding instead
729  return make_rate (dev, c, r, bit_pattern, actual);
730 }
731 
732 /********** Listen on a VC **********/
733 
734 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
735  // is there any guarantee that we don't get two simulataneous
736  // identical calls of this function from different processes? yes
737  // rate_lock
738  unsigned long flags;
739  u32 channel_type; // u16?
740 
742 
743  rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
744 
745  PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
746 
747  spin_lock_irqsave (&dev->mem_lock, flags);
748  channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
749  spin_unlock_irqrestore (&dev->mem_lock, flags);
750 
751  // very serious error, should never occur
752  if (channel_type != RX_CHANNEL_DISABLED) {
753  PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
754  return -EBUSY; // clean up?
755  }
756 
757  // Give back spare buffer
758  if (dev->noof_spare_buffers) {
759  buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
760  PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
761  // should never occur
762  if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
763  // but easy to recover from
764  PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
765  buf_ptr = RX_CHANNEL_IDLE;
766  }
767  } else {
768  PRINTD (DBG_VCC, "using IDLE buffer pointer");
769  }
770 
771  // Channel is currently disabled so change its status to idle
772 
773  // do we really need to save the flags again?
774  spin_lock_irqsave (&dev->mem_lock, flags);
775 
776  wr_mem (dev, &rx_desc->wr_buf_type,
778  if (buf_ptr != RX_CHANNEL_IDLE)
779  wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
780 
781  spin_unlock_irqrestore (&dev->mem_lock, flags);
782 
783  // rxer->rate = make_rate (qos->peak_cells);
784 
785  PRINTD (DBG_FLOW, "hrz_open_rx ok");
786 
787  return 0;
788 }
789 
790 #if 0
791 /********** change vc rate for a given vc **********/
792 
793 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
794  rxer->rate = make_rate (qos->peak_cells);
795 }
796 #endif
797 
798 /********** free an skb (as per ATM device driver documentation) **********/
799 
800 static void hrz_kfree_skb (struct sk_buff * skb) {
801  if (ATM_SKB(skb)->vcc->pop) {
802  ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
803  } else {
804  dev_kfree_skb_any (skb);
805  }
806 }
807 
808 /********** cancel listen on a VC **********/
809 
810 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
811  unsigned long flags;
812 
813  u32 value;
814 
815  u32 r1, r2;
816 
817  rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
818 
819  int was_idle = 0;
820 
821  spin_lock_irqsave (&dev->mem_lock, flags);
822  value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
823  spin_unlock_irqrestore (&dev->mem_lock, flags);
824 
825  if (value == RX_CHANNEL_DISABLED) {
826  // I suppose this could happen once we deal with _NONE traffic properly
827  PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
828  return;
829  }
830  if (value == RX_CHANNEL_IDLE)
831  was_idle = 1;
832 
833  spin_lock_irqsave (&dev->mem_lock, flags);
834 
835  for (;;) {
836  wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
837 
838  if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
839  break;
840 
841  was_idle = 0;
842  }
843 
844  if (was_idle) {
845  spin_unlock_irqrestore (&dev->mem_lock, flags);
846  return;
847  }
848 
849  WAIT_FLUSH_RX_COMPLETE(dev);
850 
851  // XXX Is this all really necessary? We can rely on the rx_data_av
852  // handler to discard frames that remain queued for delivery. If the
853  // worry is that immediately reopening the channel (perhaps by a
854  // different process) may cause some data to be mis-delivered then
855  // there may still be a simpler solution (such as busy-waiting on
856  // rx_busy once the channel is disabled or before a new one is
857  // opened - does this leave any holes?). Arguably setting up and
858  // tearing down the TX and RX halves of each virtual circuit could
859  // most safely be done within ?x_busy protected regions.
860 
861  // OK, current changes are that Simon's marker is disabled and we DO
862  // look for NULL rxer elsewhere. The code here seems flush frames
863  // and then remember the last dead cell belonging to the channel
864  // just disabled - the cell gets relinked at the next vc_open.
865  // However, when all VCs are closed or only a few opened there are a
866  // handful of buffers that are unusable.
867 
868  // Does anyone feel like documenting spare_buffers properly?
869  // Does anyone feel like fixing this in a nicer way?
870 
871  // Flush any data which is left in the channel
872  for (;;) {
873  // Change the rx channel port to something different to the RX
874  // channel we are trying to close to force Horizon to flush the rx
875  // channel read and write pointers.
876 
877  u16 other = vc^(RX_CHANS/2);
878 
879  SELECT_RX_CHANNEL (dev, other);
880  WAIT_UPDATE_COMPLETE (dev);
881 
882  r1 = rd_mem (dev, &rx_desc->rd_buf_type);
883 
884  // Select this RX channel. Flush doesn't seem to work unless we
885  // select an RX channel before hand
886 
887  SELECT_RX_CHANNEL (dev, vc);
888  WAIT_UPDATE_COMPLETE (dev);
889 
890  // Attempt to flush a frame on this RX channel
891 
892  FLUSH_RX_CHANNEL (dev, vc);
893  WAIT_FLUSH_RX_COMPLETE (dev);
894 
895  // Force Horizon to flush rx channel read and write pointers as before
896 
897  SELECT_RX_CHANNEL (dev, other);
898  WAIT_UPDATE_COMPLETE (dev);
899 
900  r2 = rd_mem (dev, &rx_desc->rd_buf_type);
901 
902  PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
903 
904  if (r1 == r2) {
905  dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
906  break;
907  }
908  }
909 
910 #if 0
911  {
912  rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
913  rx_q_entry * rd_ptr = dev->rx_q_entry;
914 
915  PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
916 
917  while (rd_ptr != wr_ptr) {
918  u32 x = rd_mem (dev, (HDW *) rd_ptr);
919 
920  if (vc == rx_q_entry_to_rx_channel (x)) {
922 
923  PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
924 
925  wr_mem (dev, (HDW *) rd_ptr, x);
926  }
927 
928  if (rd_ptr == dev->rx_q_wrap)
929  rd_ptr = dev->rx_q_reset;
930  else
931  rd_ptr++;
932  }
933  }
934 #endif
935 
936  spin_unlock_irqrestore (&dev->mem_lock, flags);
937 
938  return;
939 }
940 
941 /********** schedule RX transfers **********/
942 
943 // Note on tail recursion: a GCC developer said that it is not likely
944 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
945 // are sure it does as you may otherwise overflow the kernel stack.
946 
947 // giving this fn a return value would help GCC, allegedly
948 
949 static void rx_schedule (hrz_dev * dev, int irq) {
950  unsigned int rx_bytes;
951 
952  int pio_instead = 0;
953 #ifndef TAILRECURSIONWORKS
954  pio_instead = 1;
955  while (pio_instead) {
956 #endif
957  // bytes waiting for RX transfer
958  rx_bytes = dev->rx_bytes;
959 
960 #if 0
961  spin_count = 0;
962  while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
963  PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
964  if (++spin_count > 10) {
965  PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
967  clear_bit (rx_busy, &dev->flags);
968  hrz_kfree_skb (dev->rx_skb);
969  return;
970  }
971  }
972 #endif
973 
974  // this code follows the TX code but (at the moment) there is only
975  // one region - the skb itself. I don't know if this will change,
976  // but it doesn't hurt to have the code here, disabled.
977 
978  if (rx_bytes) {
979  // start next transfer within same region
980  if (rx_bytes <= MAX_PIO_COUNT) {
981  PRINTD (DBG_RX|DBG_BUS, "(pio)");
982  pio_instead = 1;
983  }
984  if (rx_bytes <= MAX_TRANSFER_COUNT) {
985  PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
986  dev->rx_bytes = 0;
987  } else {
988  PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
989  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
990  rx_bytes = MAX_TRANSFER_COUNT;
991  }
992  } else {
993  // rx_bytes == 0 -- we're between regions
994  // regions remaining to transfer
995 #if 0
996  unsigned int rx_regions = dev->rx_regions;
997 #else
998  unsigned int rx_regions = 0;
999 #endif
1000 
1001  if (rx_regions) {
1002 #if 0
1003  // start a new region
1004  dev->rx_addr = dev->rx_iovec->iov_base;
1005  rx_bytes = dev->rx_iovec->iov_len;
1006  ++dev->rx_iovec;
1007  dev->rx_regions = rx_regions - 1;
1008 
1009  if (rx_bytes <= MAX_PIO_COUNT) {
1010  PRINTD (DBG_RX|DBG_BUS, "(pio)");
1011  pio_instead = 1;
1012  }
1013  if (rx_bytes <= MAX_TRANSFER_COUNT) {
1014  PRINTD (DBG_RX|DBG_BUS, "(full region)");
1015  dev->rx_bytes = 0;
1016  } else {
1017  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1018  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1019  rx_bytes = MAX_TRANSFER_COUNT;
1020  }
1021 #endif
1022  } else {
1023  // rx_regions == 0
1024  // that's all folks - end of frame
1025  struct sk_buff * skb = dev->rx_skb;
1026  // dev->rx_iovec = 0;
1027 
1028  FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1029 
1030  dump_skb ("<<<", dev->rx_channel, skb);
1031 
1032  PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1033 
1034  {
1035  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1036  // VC layer stats
1037  atomic_inc(&vcc->stats->rx);
1038  __net_timestamp(skb);
1039  // end of our responsibility
1040  vcc->push (vcc, skb);
1041  }
1042  }
1043  }
1044 
1045  // note: writing RX_COUNT clears any interrupt condition
1046  if (rx_bytes) {
1047  if (pio_instead) {
1048  if (irq)
1049  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1050  rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1051  } else {
1053  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1054  }
1055  dev->rx_addr += rx_bytes;
1056  } else {
1057  if (irq)
1058  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1059  // allow another RX thread to start
1060  YELLOW_LED_ON(dev);
1061  clear_bit (rx_busy, &dev->flags);
1062  PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1063  }
1064 
1065 #ifdef TAILRECURSIONWORKS
1066  // and we all bless optimised tail calls
1067  if (pio_instead)
1068  return rx_schedule (dev, 0);
1069  return;
1070 #else
1071  // grrrrrrr!
1072  irq = 0;
1073  }
1074  return;
1075 #endif
1076 }
1077 
1078 /********** handle RX bus master complete events **********/
1079 
1080 static void rx_bus_master_complete_handler (hrz_dev * dev) {
1081  if (test_bit (rx_busy, &dev->flags)) {
1082  rx_schedule (dev, 1);
1083  } else {
1084  PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1085  // clear interrupt condition on adapter
1086  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1087  }
1088  return;
1089 }
1090 
1091 /********** (queue to) become the next TX thread **********/
1092 
1093 static int tx_hold (hrz_dev * dev) {
1094  PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1096  PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1097  if (signal_pending (current))
1098  return -1;
1099  PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1100  return 0;
1101 }
1102 
1103 /********** allow another TX thread to start **********/
1104 
1105 static inline void tx_release (hrz_dev * dev) {
1106  clear_bit (tx_busy, &dev->flags);
1107  PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1109 }
1110 
1111 /********** schedule TX transfers **********/
1112 
1113 static void tx_schedule (hrz_dev * const dev, int irq) {
1114  unsigned int tx_bytes;
1115 
1116  int append_desc = 0;
1117 
1118  int pio_instead = 0;
1119 #ifndef TAILRECURSIONWORKS
1120  pio_instead = 1;
1121  while (pio_instead) {
1122 #endif
1123  // bytes in current region waiting for TX transfer
1124  tx_bytes = dev->tx_bytes;
1125 
1126 #if 0
1127  spin_count = 0;
1128  while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1129  PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1130  if (++spin_count > 10) {
1131  PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1132  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1133  tx_release (dev);
1134  hrz_kfree_skb (dev->tx_skb);
1135  return;
1136  }
1137  }
1138 #endif
1139 
1140  if (tx_bytes) {
1141  // start next transfer within same region
1142  if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1143  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1144  pio_instead = 1;
1145  }
1146  if (tx_bytes <= MAX_TRANSFER_COUNT) {
1147  PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1148  if (!dev->tx_iovec) {
1149  // end of last region
1150  append_desc = 1;
1151  }
1152  dev->tx_bytes = 0;
1153  } else {
1154  PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1155  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1156  tx_bytes = MAX_TRANSFER_COUNT;
1157  }
1158  } else {
1159  // tx_bytes == 0 -- we're between regions
1160  // regions remaining to transfer
1161  unsigned int tx_regions = dev->tx_regions;
1162 
1163  if (tx_regions) {
1164  // start a new region
1165  dev->tx_addr = dev->tx_iovec->iov_base;
1166  tx_bytes = dev->tx_iovec->iov_len;
1167  ++dev->tx_iovec;
1168  dev->tx_regions = tx_regions - 1;
1169 
1170  if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1171  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1172  pio_instead = 1;
1173  }
1174  if (tx_bytes <= MAX_TRANSFER_COUNT) {
1175  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1176  dev->tx_bytes = 0;
1177  } else {
1178  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1179  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1180  tx_bytes = MAX_TRANSFER_COUNT;
1181  }
1182  } else {
1183  // tx_regions == 0
1184  // that's all folks - end of frame
1185  struct sk_buff * skb = dev->tx_skb;
1186  dev->tx_iovec = NULL;
1187 
1188  // VC layer stats
1189  atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1190 
1191  // free the skb
1192  hrz_kfree_skb (skb);
1193  }
1194  }
1195 
1196  // note: writing TX_COUNT clears any interrupt condition
1197  if (tx_bytes) {
1198  if (pio_instead) {
1199  if (irq)
1200  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1201  wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1202  if (append_desc)
1203  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1204  } else {
1206  if (append_desc)
1207  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1209  append_desc
1210  ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1211  : tx_bytes);
1212  }
1213  dev->tx_addr += tx_bytes;
1214  } else {
1215  if (irq)
1216  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1217  YELLOW_LED_ON(dev);
1218  tx_release (dev);
1219  }
1220 
1221 #ifdef TAILRECURSIONWORKS
1222  // and we all bless optimised tail calls
1223  if (pio_instead)
1224  return tx_schedule (dev, 0);
1225  return;
1226 #else
1227  // grrrrrrr!
1228  irq = 0;
1229  }
1230  return;
1231 #endif
1232 }
1233 
1234 /********** handle TX bus master complete events **********/
1235 
1236 static void tx_bus_master_complete_handler (hrz_dev * dev) {
1237  if (test_bit (tx_busy, &dev->flags)) {
1238  tx_schedule (dev, 1);
1239  } else {
1240  PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1241  // clear interrupt condition on adapter
1242  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1243  }
1244  return;
1245 }
1246 
1247 /********** move RX Q pointer to next item in circular buffer **********/
1248 
1249 // called only from IRQ sub-handler
1250 static u32 rx_queue_entry_next (hrz_dev * dev) {
1251  u32 rx_queue_entry;
1252  spin_lock (&dev->mem_lock);
1253  rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1254  if (dev->rx_q_entry == dev->rx_q_wrap)
1255  dev->rx_q_entry = dev->rx_q_reset;
1256  else
1257  dev->rx_q_entry++;
1258  wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1259  spin_unlock (&dev->mem_lock);
1260  return rx_queue_entry;
1261 }
1262 
1263 /********** handle RX disabled by device **********/
1264 
1265 static inline void rx_disabled_handler (hrz_dev * dev) {
1266  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1267  // count me please
1268  PRINTK (KERN_WARNING, "RX was disabled!");
1269 }
1270 
1271 /********** handle RX data received by device **********/
1272 
1273 // called from IRQ handler
1274 static void rx_data_av_handler (hrz_dev * dev) {
1275  u32 rx_queue_entry;
1276  u32 rx_queue_entry_flags;
1277  u16 rx_len;
1278  u16 rx_channel;
1279 
1280  PRINTD (DBG_FLOW, "hrz_data_av_handler");
1281 
1282  // try to grab rx lock (not possible during RX bus mastering)
1283  if (test_and_set_bit (rx_busy, &dev->flags)) {
1284  PRINTD (DBG_RX, "locked out of rx lock");
1285  return;
1286  }
1287  PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1288  // lock is cleared if we fail now, o/w after bus master completion
1289 
1290  YELLOW_LED_OFF(dev);
1291 
1292  rx_queue_entry = rx_queue_entry_next (dev);
1293 
1294  rx_len = rx_q_entry_to_length (rx_queue_entry);
1295  rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1296 
1297  WAIT_FLUSH_RX_COMPLETE (dev);
1298 
1299  SELECT_RX_CHANNEL (dev, rx_channel);
1300 
1301  PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1302  rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1303 
1304  if (!rx_len) {
1305  // (at least) bus-mastering breaks if we try to handle a
1306  // zero-length frame, besides AAL5 does not support them
1307  PRINTK (KERN_ERR, "zero-length frame!");
1308  rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1309  }
1310 
1311  if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1312  PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1313  }
1314  if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1315  struct atm_vcc * atm_vcc;
1316 
1317  PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1318 
1319  atm_vcc = dev->rxer[rx_channel];
1320  // if no vcc is assigned to this channel, we should drop the frame
1321  // (is this what SIMONS etc. was trying to achieve?)
1322 
1323  if (atm_vcc) {
1324 
1325  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1326 
1327  if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1328 
1329  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1330  if (skb) {
1331  // remember this so we can push it later
1332  dev->rx_skb = skb;
1333  // remember this so we can flush it later
1334  dev->rx_channel = rx_channel;
1335 
1336  // prepare socket buffer
1337  skb_put (skb, rx_len);
1338  ATM_SKB(skb)->vcc = atm_vcc;
1339 
1340  // simple transfer
1341  // dev->rx_regions = 0;
1342  // dev->rx_iovec = 0;
1343  dev->rx_bytes = rx_len;
1344  dev->rx_addr = skb->data;
1345  PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1346  skb->data, rx_len);
1347 
1348  // do the business
1349  rx_schedule (dev, 0);
1350  return;
1351 
1352  } else {
1353  PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1354  }
1355 
1356  } else {
1357  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1358  // do we count this?
1359  }
1360 
1361  } else {
1362  PRINTK (KERN_WARNING, "dropped over-size frame");
1363  // do we count this?
1364  }
1365 
1366  } else {
1367  PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1368  // do we count this?
1369  }
1370 
1371  } else {
1372  // Wait update complete ? SPONG
1373  }
1374 
1375  // RX was aborted
1376  YELLOW_LED_ON(dev);
1377 
1378  FLUSH_RX_CHANNEL (dev,rx_channel);
1379  clear_bit (rx_busy, &dev->flags);
1380 
1381  return;
1382 }
1383 
1384 /********** interrupt handler **********/
1385 
1386 static irqreturn_t interrupt_handler(int irq, void *dev_id)
1387 {
1388  hrz_dev *dev = dev_id;
1389  u32 int_source;
1390  unsigned int irq_ok;
1391 
1392  PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1393 
1394  // definitely for us
1395  irq_ok = 0;
1396  while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1398  // In the interests of fairness, the handlers below are
1399  // called in sequence and without immediate return to the head of
1400  // the while loop. This is only of issue for slow hosts (or when
1401  // debugging messages are on). Really slow hosts may find a fast
1402  // sender keeps them permanently in the IRQ handler. :(
1403 
1404  // (only an issue for slow hosts) RX completion goes before
1405  // rx_data_av as the former implies rx_busy and so the latter
1406  // would just abort. If it reschedules another transfer
1407  // (continuing the same frame) then it will not clear rx_busy.
1408 
1409  // (only an issue for slow hosts) TX completion goes before RX
1410  // data available as it is a much shorter routine - there is the
1411  // chance that any further transfers it schedules will be complete
1412  // by the time of the return to the head of the while loop
1413 
1414  if (int_source & RX_BUS_MASTER_COMPLETE) {
1415  ++irq_ok;
1416  PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1417  rx_bus_master_complete_handler (dev);
1418  }
1419  if (int_source & TX_BUS_MASTER_COMPLETE) {
1420  ++irq_ok;
1421  PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1422  tx_bus_master_complete_handler (dev);
1423  }
1424  if (int_source & RX_DATA_AV) {
1425  ++irq_ok;
1426  PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1427  rx_data_av_handler (dev);
1428  }
1429  }
1430  if (irq_ok) {
1431  PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1432  } else {
1433  PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1434  }
1435 
1436  PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1437  if (irq_ok)
1438  return IRQ_HANDLED;
1439  return IRQ_NONE;
1440 }
1441 
1442 /********** housekeeping **********/
1443 
1444 static void do_housekeeping (unsigned long arg) {
1445  // just stats at the moment
1446  hrz_dev * dev = (hrz_dev *) arg;
1447 
1448  // collect device-specific (not driver/atm-linux) stats here
1449  dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1450  dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1451  dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1452  dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1453 
1454  mod_timer (&dev->housekeeping, jiffies + HZ/10);
1455 
1456  return;
1457 }
1458 
1459 /********** find an idle channel for TX and set it up **********/
1460 
1461 // called with tx_busy set
1462 static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1463  unsigned short idle_channels;
1464  short tx_channel = -1;
1465  unsigned int spin_count;
1466  PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1467 
1468  // better would be to fail immediately, the caller can then decide whether
1469  // to wait or drop (depending on whether this is UBR etc.)
1470  spin_count = 0;
1471  while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1472  PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1473  // delay a bit here
1474  if (++spin_count > 100) {
1475  PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1476  return -EBUSY;
1477  }
1478  }
1479 
1480  // got an idle channel
1481  {
1482  // tx_idle ensures we look for idle channels in RR order
1483  int chan = dev->tx_idle;
1484 
1485  int keep_going = 1;
1486  while (keep_going) {
1487  if (idle_channels & (1<<chan)) {
1488  tx_channel = chan;
1489  keep_going = 0;
1490  }
1491  ++chan;
1492  if (chan == TX_CHANS)
1493  chan = 0;
1494  }
1495 
1496  dev->tx_idle = chan;
1497  }
1498 
1499  // set up the channel we found
1500  {
1501  // Initialise the cell header in the transmit channel descriptor
1502  // a.k.a. prepare the channel and remember that we have done so.
1503 
1504  tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1505  u32 rd_ptr;
1506  u32 wr_ptr;
1507  u16 channel = vcc->channel;
1508 
1509  unsigned long flags;
1510  spin_lock_irqsave (&dev->mem_lock, flags);
1511 
1512  // Update the transmit channel record.
1513  dev->tx_channel_record[tx_channel] = channel;
1514 
1515  // xBR channel
1516  update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1517  vcc->tx_xbr_bits);
1518 
1519  // Update the PCR counter preload value etc.
1520  update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1521  vcc->tx_pcr_bits);
1522 
1523 #if 0
1524  if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1525  // SCR timer
1526  update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1527  vcc->tx_scr_bits);
1528 
1529  // Bucket size...
1530  update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1531  vcc->tx_bucket_bits);
1532 
1533  // ... and fullness
1534  update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1535  vcc->tx_bucket_bits);
1536  }
1537 #endif
1538 
1539  // Initialise the read and write buffer pointers
1540  rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1541  wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1542 
1543  // idle TX channels should have identical pointers
1544  if (rd_ptr != wr_ptr) {
1545  PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1546  // spin_unlock... return -E...
1547  // I wonder if gcc would get rid of one of the pointer aliases
1548  }
1549  PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1550  rd_ptr, wr_ptr);
1551 
1552  switch (vcc->aal) {
1553  case aal0:
1554  PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1555  rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1556  wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1557  break;
1558  case aal34:
1559  PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1560  rd_ptr |= CHANNEL_TYPE_AAL3_4;
1561  wr_ptr |= CHANNEL_TYPE_AAL3_4;
1562  break;
1563  case aal5:
1564  rd_ptr |= CHANNEL_TYPE_AAL5;
1565  wr_ptr |= CHANNEL_TYPE_AAL5;
1566  // Initialise the CRC
1567  wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1568  break;
1569  }
1570 
1571  wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1572  wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1573 
1574  // Write the Cell Header
1575  // Payload Type, CLP and GFC would go here if non-zero
1576  wr_mem (dev, &tx_desc->cell_header, channel);
1577 
1578  spin_unlock_irqrestore (&dev->mem_lock, flags);
1579  }
1580 
1581  return tx_channel;
1582 }
1583 
1584 /********** send a frame **********/
1585 
1586 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1587  unsigned int spin_count;
1588  int free_buffers;
1589  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1590  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1591  u16 channel = vcc->channel;
1592 
1593  u32 buffers_required;
1594 
1595  /* signed for error return */
1596  short tx_channel;
1597 
1598  PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1599  channel, skb->data, skb->len);
1600 
1601  dump_skb (">>>", channel, skb);
1602 
1603  if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1604  PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1605  hrz_kfree_skb (skb);
1606  return -EIO;
1607  }
1608 
1609  // don't understand this
1610  ATM_SKB(skb)->vcc = atm_vcc;
1611 
1612  if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1613  PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1614  hrz_kfree_skb (skb);
1615  return -EIO;
1616  }
1617 
1618  if (!channel) {
1619  PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1620  hrz_kfree_skb (skb);
1621  return -EIO;
1622  }
1623 
1624 #if 0
1625  {
1626  // where would be a better place for this? housekeeping?
1627  u16 status;
1628  pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1629  if (status & PCI_STATUS_REC_MASTER_ABORT) {
1630  PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1631  status &= ~PCI_STATUS_REC_MASTER_ABORT;
1632  pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1633  if (test_bit (tx_busy, &dev->flags)) {
1634  hrz_kfree_skb (dev->tx_skb);
1635  tx_release (dev);
1636  }
1637  }
1638  }
1639 #endif
1640 
1641 #ifdef DEBUG_HORIZON
1642  /* wey-hey! */
1643  if (channel == 1023) {
1644  unsigned int i;
1645  unsigned short d = 0;
1646  char * s = skb->data;
1647  if (*s++ == 'D') {
1648  for (i = 0; i < 4; ++i)
1649  d = (d << 4) | hex_to_bin(*s++);
1650  PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1651  }
1652  }
1653 #endif
1654 
1655  // wait until TX is free and grab lock
1656  if (tx_hold (dev)) {
1657  hrz_kfree_skb (skb);
1658  return -ERESTARTSYS;
1659  }
1660 
1661  // Wait for enough space to be available in transmit buffer memory.
1662 
1663  // should be number of cells needed + 2 (according to hardware docs)
1664  // = ((framelen+8)+47) / 48 + 2
1665  // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1666  buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1667 
1668  // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1669  spin_count = 0;
1670  while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1671  PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1672  free_buffers, buffers_required);
1673  // what is the appropriate delay? implement a timeout? (depending on line speed?)
1674  // mdelay (1);
1675  // what happens if we kill (current_pid, SIGKILL) ?
1676  schedule();
1677  if (++spin_count > 1000) {
1678  PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1679  free_buffers, buffers_required);
1680  tx_release (dev);
1681  hrz_kfree_skb (skb);
1682  return -ERESTARTSYS;
1683  }
1684  }
1685 
1686  // Select a channel to transmit the frame on.
1687  if (channel == dev->last_vc) {
1688  PRINTD (DBG_TX, "last vc hack: hit");
1689  tx_channel = dev->tx_last;
1690  } else {
1691  PRINTD (DBG_TX, "last vc hack: miss");
1692  // Are we currently transmitting this VC on one of the channels?
1693  for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1694  if (dev->tx_channel_record[tx_channel] == channel) {
1695  PRINTD (DBG_TX, "vc already on channel: hit");
1696  break;
1697  }
1698  if (tx_channel == TX_CHANS) {
1699  PRINTD (DBG_TX, "vc already on channel: miss");
1700  // Find and set up an idle channel.
1701  tx_channel = setup_idle_tx_channel (dev, vcc);
1702  if (tx_channel < 0) {
1703  PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1704  tx_release (dev);
1705  return tx_channel;
1706  }
1707  }
1708 
1709  PRINTD (DBG_TX, "got channel");
1710  SELECT_TX_CHANNEL(dev, tx_channel);
1711 
1712  dev->last_vc = channel;
1713  dev->tx_last = tx_channel;
1714  }
1715 
1716  PRINTD (DBG_TX, "using channel %u", tx_channel);
1717 
1718  YELLOW_LED_OFF(dev);
1719 
1720  // TX start transfer
1721 
1722  {
1723  unsigned int tx_len = skb->len;
1724  unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1725  // remember this so we can free it later
1726  dev->tx_skb = skb;
1727 
1728  if (tx_iovcnt) {
1729  // scatter gather transfer
1730  dev->tx_regions = tx_iovcnt;
1731  dev->tx_iovec = NULL; /* @@@ needs rewritten */
1732  dev->tx_bytes = 0;
1733  PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1734  skb->data, tx_len);
1735  tx_release (dev);
1736  hrz_kfree_skb (skb);
1737  return -EIO;
1738  } else {
1739  // simple transfer
1740  dev->tx_regions = 0;
1741  dev->tx_iovec = NULL;
1742  dev->tx_bytes = tx_len;
1743  dev->tx_addr = skb->data;
1744  PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1745  skb->data, tx_len);
1746  }
1747 
1748  // and do the business
1749  tx_schedule (dev, 0);
1750 
1751  }
1752 
1753  return 0;
1754 }
1755 
1756 /********** reset a card **********/
1757 
1758 static void hrz_reset (const hrz_dev * dev) {
1759  u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1760 
1761  // why not set RESET_HORIZON to one and wait for the card to
1762  // reassert that bit as zero? Like so:
1763  control_0_reg = control_0_reg & RESET_HORIZON;
1764  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1765  while (control_0_reg & RESET_HORIZON)
1766  control_0_reg = rd_regl (dev, CONTROL_0_REG);
1767 
1768  // old reset code retained:
1769  wr_regl (dev, CONTROL_0_REG, control_0_reg |
1771  // just guessing here
1772  udelay (1000);
1773 
1774  wr_regl (dev, CONTROL_0_REG, control_0_reg);
1775 }
1776 
1777 /********** read the burnt in address **********/
1778 
1779 static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1780 {
1781  wr_regl (dev, CONTROL_0_REG, ctrl);
1782  udelay (5);
1783 }
1784 
1785 static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1786 {
1787  // DI must be valid around rising SK edge
1788  WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1789  WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1790 }
1791 
1792 static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
1793 {
1794  u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1795 
1796  const unsigned int addr_bits = 6;
1797  const unsigned int data_bits = 16;
1798 
1799  unsigned int i;
1800 
1801  u16 res;
1802 
1803  ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1804  WRITE_IT_WAIT(dev, ctrl);
1805 
1806  // wake Serial EEPROM and send 110 (READ) command
1807  ctrl |= (SEEPROM_CS | SEEPROM_DI);
1808  CLOCK_IT(dev, ctrl);
1809 
1810  ctrl |= SEEPROM_DI;
1811  CLOCK_IT(dev, ctrl);
1812 
1813  ctrl &= ~SEEPROM_DI;
1814  CLOCK_IT(dev, ctrl);
1815 
1816  for (i=0; i<addr_bits; i++) {
1817  if (addr & (1 << (addr_bits-1)))
1818  ctrl |= SEEPROM_DI;
1819  else
1820  ctrl &= ~SEEPROM_DI;
1821 
1822  CLOCK_IT(dev, ctrl);
1823 
1824  addr = addr << 1;
1825  }
1826 
1827  // we could check that we have DO = 0 here
1828  ctrl &= ~SEEPROM_DI;
1829 
1830  res = 0;
1831  for (i=0;i<data_bits;i++) {
1832  res = res >> 1;
1833 
1834  CLOCK_IT(dev, ctrl);
1835 
1836  if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1837  res |= (1 << (data_bits-1));
1838  }
1839 
1840  ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1841  WRITE_IT_WAIT(dev, ctrl);
1842 
1843  return res;
1844 }
1845 
1846 /********** initialise a card **********/
1847 
1848 static int __devinit hrz_init (hrz_dev * dev) {
1849  int onefivefive;
1850 
1851  u16 chan;
1852 
1853  int buff_count;
1854 
1855  HDW * mem;
1856 
1857  cell_buf * tx_desc;
1858  cell_buf * rx_desc;
1859 
1860  u32 ctrl;
1861 
1862  ctrl = rd_regl (dev, CONTROL_0_REG);
1863  PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1864  onefivefive = ctrl & ATM_LAYER_STATUS;
1865 
1866  if (onefivefive)
1867  printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1868  else
1869  printk (DEV_LABEL ": Horizon (at 25 MBps)");
1870 
1871  printk (":");
1872  // Reset the card to get everything in a known state
1873 
1874  printk (" reset");
1875  hrz_reset (dev);
1876 
1877  // Clear all the buffer memory
1878 
1879  printk (" clearing memory");
1880 
1881  for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1882  wr_mem (dev, mem, 0);
1883 
1884  printk (" tx channels");
1885 
1886  // All transmit eight channels are set up as AAL5 ABR channels with
1887  // a 16us cell spacing. Why?
1888 
1889  // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1890  // buffer at 110h etc.
1891 
1892  for (chan = 0; chan < TX_CHANS; ++chan) {
1893  tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1894  cell_buf * buf = &memmap->inittxbufs[chan];
1895 
1896  // initialise the read and write buffer pointers
1897  wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1898  wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1899 
1900  // set the status of the initial buffers to empty
1901  wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1902  }
1903 
1904  // Use space bufn3 at the moment for tx buffers
1905 
1906  printk (" tx buffers");
1907 
1908  tx_desc = memmap->bufn3;
1909 
1910  wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1911 
1912  for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1913  wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1914  tx_desc++;
1915  }
1916 
1917  wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1918 
1919  // Initialise the transmit free buffer count
1920  wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1921 
1922  printk (" rx channels");
1923 
1924  // Initialise all of the receive channels to be AAL5 disabled with
1925  // an interrupt threshold of 0
1926 
1927  for (chan = 0; chan < RX_CHANS; ++chan) {
1928  rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1929 
1930  wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1931  }
1932 
1933  printk (" rx buffers");
1934 
1935  // Use space bufn4 at the moment for rx buffers
1936 
1937  rx_desc = memmap->bufn4;
1938 
1939  wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1940 
1941  for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1942  wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1943 
1944  rx_desc++;
1945  }
1946 
1947  wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1948 
1949  // Initialise the receive free buffer count
1950  wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1951 
1952  // Initialize Horizons registers
1953 
1954  // TX config
1955  wr_regw (dev, TX_CONFIG_OFF,
1957 
1958  // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1959  wr_regw (dev, RX_CONFIG_OFF,
1961 
1962  // RX line config
1963  wr_regw (dev, RX_LINE_CONFIG_OFF,
1965 
1966  // Set the max AAL5 cell count to be just enough to contain the
1967  // largest AAL5 frame that the user wants to receive
1968  wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1970 
1971  // Enable receive
1972  wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1973 
1974  printk (" control");
1975 
1976  // Drive the OE of the LEDs then turn the green LED on
1978  wr_regl (dev, CONTROL_0_REG, ctrl);
1979 
1980  // Test for a 155-capable card
1981 
1982  if (onefivefive) {
1983  // Select 155 mode... make this a choice (or: how do we detect
1984  // external line speed and switch?)
1985  ctrl |= ATM_LAYER_SELECT;
1986  wr_regl (dev, CONTROL_0_REG, ctrl);
1987 
1988  // test SUNI-lite vs SAMBA
1989 
1990  // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1991  // they will always be zero for the SAMBA. Ha! Bloody hardware
1992  // engineers. It'll never work.
1993 
1994  if (rd_framer (dev, 0) & 0x00f0) {
1995  // SUNI
1996  printk (" SUNI");
1997 
1998  // Reset, just in case
1999  wr_framer (dev, 0x00, 0x0080);
2000  wr_framer (dev, 0x00, 0x0000);
2001 
2002  // Configure transmit FIFO
2003  wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2004 
2005  // Set line timed mode
2006  wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2007  } else {
2008  // SAMBA
2009  printk (" SAMBA");
2010 
2011  // Reset, just in case
2012  wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2013  wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2014 
2015  // Turn off diagnostic loopback and enable line-timed mode
2016  wr_framer (dev, 0, 0x0002);
2017 
2018  // Turn on transmit outputs
2019  wr_framer (dev, 2, 0x0B80);
2020  }
2021  } else {
2022  // Select 25 mode
2023  ctrl &= ~ATM_LAYER_SELECT;
2024 
2025  // Madge B154 setup
2026  // none required?
2027  }
2028 
2029  printk (" LEDs");
2030 
2031  GREEN_LED_ON(dev);
2032  YELLOW_LED_ON(dev);
2033 
2034  printk (" ESI=");
2035 
2036  {
2037  u16 b = 0;
2038  int i;
2039  u8 * esi = dev->atm_dev->esi;
2040 
2041  // in the card I have, EEPROM
2042  // addresses 0, 1, 2 contain 0
2043  // addresess 5, 6 etc. contain ffff
2044  // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2045  // the read_bia routine gets the BIA in Ethernet bit order
2046 
2047  for (i=0; i < ESI_LEN; ++i) {
2048  if (i % 2 == 0)
2049  b = read_bia (dev, i/2 + 2);
2050  else
2051  b = b >> 8;
2052  esi[i] = b & 0xFF;
2053  printk ("%02x", esi[i]);
2054  }
2055  }
2056 
2057  // Enable RX_Q and ?X_COMPLETE interrupts only
2058  wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2059  printk (" IRQ on");
2060 
2061  printk (".\n");
2062 
2063  return onefivefive;
2064 }
2065 
2066 /********** check max_sdu **********/
2067 
2068 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2069  PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2070 
2071  switch (aal) {
2072  case aal0:
2073  if (!(tp->max_sdu)) {
2074  PRINTD (DBG_QOS, "defaulting max_sdu");
2075  tp->max_sdu = ATM_AAL0_SDU;
2076  } else if (tp->max_sdu != ATM_AAL0_SDU) {
2077  PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2078  return -EINVAL;
2079  }
2080  break;
2081  case aal34:
2082  if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2083  PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2084  tp->max_sdu = ATM_MAX_AAL34_PDU;
2085  }
2086  break;
2087  case aal5:
2088  if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2089  PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2090  tp->max_sdu = max_frame_size;
2091  }
2092  break;
2093  }
2094  return 0;
2095 }
2096 
2097 /********** check pcr **********/
2098 
2099 // something like this should be part of ATM Linux
2100 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2101  // we are assuming non-UBR, and non-special values of pcr
2102  if (tp->min_pcr == ATM_MAX_PCR)
2103  PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2104  else if (tp->min_pcr < 0)
2105  PRINTD (DBG_QOS, "luser gave negative min_pcr");
2106  else if (tp->min_pcr && tp->min_pcr > pcr)
2107  PRINTD (DBG_QOS, "pcr less than min_pcr");
2108  else
2109  // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2110  // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2111  // [this would get rid of next two conditionals]
2112  if ((0) && tp->max_pcr == ATM_MAX_PCR)
2113  PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2114  else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2115  PRINTD (DBG_QOS, "luser gave negative max_pcr");
2116  else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2117  PRINTD (DBG_QOS, "pcr greater than max_pcr");
2118  else {
2119  // each limit unspecified or not violated
2120  PRINTD (DBG_QOS, "xBR(pcr) OK");
2121  return 0;
2122  }
2123  PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2124  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2125  return -EINVAL;
2126 }
2127 
2128 /********** open VC **********/
2129 
2130 static int hrz_open (struct atm_vcc *atm_vcc)
2131 {
2132  int error;
2133  u16 channel;
2134 
2135  struct atm_qos * qos;
2136  struct atm_trafprm * txtp;
2137  struct atm_trafprm * rxtp;
2138 
2139  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2140  hrz_vcc vcc;
2141  hrz_vcc * vccp; // allocated late
2142  short vpi = atm_vcc->vpi;
2143  int vci = atm_vcc->vci;
2144  PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2145 
2146 #ifdef ATM_VPI_UNSPEC
2147  // UNSPEC is deprecated, remove this code eventually
2148  if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2149  PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2150  return -EINVAL;
2151  }
2152 #endif
2153 
2154  error = vpivci_to_channel (&channel, vpi, vci);
2155  if (error) {
2156  PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2157  return error;
2158  }
2159 
2160  vcc.channel = channel;
2161  // max speed for the moment
2162  vcc.tx_rate = 0x0;
2163 
2164  qos = &atm_vcc->qos;
2165 
2166  // check AAL and remember it
2167  switch (qos->aal) {
2168  case ATM_AAL0:
2169  // we would if it were 48 bytes and not 52!
2170  PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2171  vcc.aal = aal0;
2172  break;
2173  case ATM_AAL34:
2174  // we would if I knew how do the SAR!
2175  PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2176  vcc.aal = aal34;
2177  break;
2178  case ATM_AAL5:
2179  PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2180  vcc.aal = aal5;
2181  break;
2182  default:
2183  PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2184  return -EINVAL;
2185  }
2186 
2187  // TX traffic parameters
2188 
2189  // there are two, interrelated problems here: 1. the reservation of
2190  // PCR is not a binary choice, we are given bounds and/or a
2191  // desirable value; 2. the device is only capable of certain values,
2192  // most of which are not integers. It is almost certainly acceptable
2193  // to be off by a maximum of 1 to 10 cps.
2194 
2195  // Pragmatic choice: always store an integral PCR as that which has
2196  // been allocated, even if we allocate a little (or a lot) less,
2197  // after rounding. The actual allocation depends on what we can
2198  // manage with our rate selection algorithm. The rate selection
2199  // algorithm is given an integral PCR and a tolerance and told
2200  // whether it should round the value up or down if the tolerance is
2201  // exceeded; it returns: a) the actual rate selected (rounded up to
2202  // the nearest integer), b) a bit pattern to feed to the timer
2203  // register, and c) a failure value if no applicable rate exists.
2204 
2205  // Part of the job is done by atm_pcr_goal which gives us a PCR
2206  // specification which says: EITHER grab the maximum available PCR
2207  // (and perhaps a lower bound which we musn't pass), OR grab this
2208  // amount, rounding down if you have to (and perhaps a lower bound
2209  // which we musn't pass) OR grab this amount, rounding up if you
2210  // have to (and perhaps an upper bound which we musn't pass). If any
2211  // bounds ARE passed we fail. Note that rounding is only rounding to
2212  // match device limitations, we do not round down to satisfy
2213  // bandwidth availability even if this would not violate any given
2214  // lower bound.
2215 
2216  // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2217  // (say) so this is not even a binary fixpoint cell rate (but this
2218  // device can do it). To avoid this sort of hassle we use a
2219  // tolerance parameter (currently fixed at 10 cps).
2220 
2221  PRINTD (DBG_QOS, "TX:");
2222 
2223  txtp = &qos->txtp;
2224 
2225  // set up defaults for no traffic
2226  vcc.tx_rate = 0;
2227  // who knows what would actually happen if you try and send on this?
2229  vcc.tx_pcr_bits = CLOCK_DISABLE;
2230 #if 0
2231  vcc.tx_scr_bits = CLOCK_DISABLE;
2232  vcc.tx_bucket_bits = 0;
2233 #endif
2234 
2235  if (txtp->traffic_class != ATM_NONE) {
2236  error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2237  if (error) {
2238  PRINTD (DBG_QOS, "TX max_sdu check failed");
2239  return error;
2240  }
2241 
2242  switch (txtp->traffic_class) {
2243  case ATM_UBR: {
2244  // we take "the PCR" as a rate-cap
2245  // not reserved
2246  vcc.tx_rate = 0;
2247  make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2248  vcc.tx_xbr_bits = ABR_RATE_TYPE;
2249  break;
2250  }
2251 #if 0
2252  case ATM_ABR: {
2253  // reserve min, allow up to max
2254  vcc.tx_rate = 0; // ?
2255  make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2256  vcc.tx_xbr_bits = ABR_RATE_TYPE;
2257  break;
2258  }
2259 #endif
2260  case ATM_CBR: {
2261  int pcr = atm_pcr_goal (txtp);
2262  rounding r;
2263  if (!pcr) {
2264  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2265  // should really have: once someone gets unlimited bandwidth
2266  // that no more non-UBR channels can be opened until the
2267  // unlimited one closes?? For the moment, round_down means
2268  // greedy people actually get something and not nothing
2269  r = round_down;
2270  // slight race (no locking) here so we may get -EAGAIN
2271  // later; the greedy bastards would deserve it :)
2272  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2273  pcr = dev->tx_avail;
2274  } else if (pcr < 0) {
2275  r = round_down;
2276  pcr = -pcr;
2277  } else {
2278  r = round_up;
2279  }
2280  error = make_rate_with_tolerance (dev, pcr, r, 10,
2281  &vcc.tx_pcr_bits, &vcc.tx_rate);
2282  if (error) {
2283  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2284  return error;
2285  }
2286  // not really clear what further checking is needed
2287  error = atm_pcr_check (txtp, vcc.tx_rate);
2288  if (error) {
2289  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2290  return error;
2291  }
2292  vcc.tx_xbr_bits = CBR_RATE_TYPE;
2293  break;
2294  }
2295 #if 0
2296  case ATM_VBR: {
2297  int pcr = atm_pcr_goal (txtp);
2298  // int scr = atm_scr_goal (txtp);
2299  int scr = pcr/2; // just for fun
2300  unsigned int mbs = 60; // just for fun
2301  rounding pr;
2302  rounding sr;
2303  unsigned int bucket;
2304  if (!pcr) {
2305  pr = round_nearest;
2306  pcr = 1<<30;
2307  } else if (pcr < 0) {
2308  pr = round_down;
2309  pcr = -pcr;
2310  } else {
2311  pr = round_up;
2312  }
2313  error = make_rate_with_tolerance (dev, pcr, pr, 10,
2314  &vcc.tx_pcr_bits, 0);
2315  if (!scr) {
2316  // see comments for PCR with CBR above
2317  sr = round_down;
2318  // slight race (no locking) here so we may get -EAGAIN
2319  // later; the greedy bastards would deserve it :)
2320  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2321  scr = dev->tx_avail;
2322  } else if (scr < 0) {
2323  sr = round_down;
2324  scr = -scr;
2325  } else {
2326  sr = round_up;
2327  }
2328  error = make_rate_with_tolerance (dev, scr, sr, 10,
2329  &vcc.tx_scr_bits, &vcc.tx_rate);
2330  if (error) {
2331  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2332  return error;
2333  }
2334  // not really clear what further checking is needed
2335  // error = atm_scr_check (txtp, vcc.tx_rate);
2336  if (error) {
2337  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2338  return error;
2339  }
2340  // bucket calculations (from a piece of paper...) cell bucket
2341  // capacity must be largest integer smaller than m(p-s)/p + 1
2342  // where m = max burst size, p = pcr, s = scr
2343  bucket = mbs*(pcr-scr)/pcr;
2344  if (bucket*pcr != mbs*(pcr-scr))
2345  bucket += 1;
2346  if (bucket > BUCKET_MAX_SIZE) {
2347  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2348  bucket, BUCKET_MAX_SIZE);
2349  bucket = BUCKET_MAX_SIZE;
2350  }
2351  vcc.tx_xbr_bits = VBR_RATE_TYPE;
2352  vcc.tx_bucket_bits = bucket;
2353  break;
2354  }
2355 #endif
2356  default: {
2357  PRINTD (DBG_QOS, "unsupported TX traffic class");
2358  return -EINVAL;
2359  }
2360  }
2361  }
2362 
2363  // RX traffic parameters
2364 
2365  PRINTD (DBG_QOS, "RX:");
2366 
2367  rxtp = &qos->rxtp;
2368 
2369  // set up defaults for no traffic
2370  vcc.rx_rate = 0;
2371 
2372  if (rxtp->traffic_class != ATM_NONE) {
2373  error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2374  if (error) {
2375  PRINTD (DBG_QOS, "RX max_sdu check failed");
2376  return error;
2377  }
2378  switch (rxtp->traffic_class) {
2379  case ATM_UBR: {
2380  // not reserved
2381  break;
2382  }
2383 #if 0
2384  case ATM_ABR: {
2385  // reserve min
2386  vcc.rx_rate = 0; // ?
2387  break;
2388  }
2389 #endif
2390  case ATM_CBR: {
2391  int pcr = atm_pcr_goal (rxtp);
2392  if (!pcr) {
2393  // slight race (no locking) here so we may get -EAGAIN
2394  // later; the greedy bastards would deserve it :)
2395  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2396  pcr = dev->rx_avail;
2397  } else if (pcr < 0) {
2398  pcr = -pcr;
2399  }
2400  vcc.rx_rate = pcr;
2401  // not really clear what further checking is needed
2402  error = atm_pcr_check (rxtp, vcc.rx_rate);
2403  if (error) {
2404  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2405  return error;
2406  }
2407  break;
2408  }
2409 #if 0
2410  case ATM_VBR: {
2411  // int scr = atm_scr_goal (rxtp);
2412  int scr = 1<<16; // just for fun
2413  if (!scr) {
2414  // slight race (no locking) here so we may get -EAGAIN
2415  // later; the greedy bastards would deserve it :)
2416  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2417  scr = dev->rx_avail;
2418  } else if (scr < 0) {
2419  scr = -scr;
2420  }
2421  vcc.rx_rate = scr;
2422  // not really clear what further checking is needed
2423  // error = atm_scr_check (rxtp, vcc.rx_rate);
2424  if (error) {
2425  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2426  return error;
2427  }
2428  break;
2429  }
2430 #endif
2431  default: {
2432  PRINTD (DBG_QOS, "unsupported RX traffic class");
2433  return -EINVAL;
2434  }
2435  }
2436  }
2437 
2438 
2439  // late abort useful for diagnostics
2440  if (vcc.aal != aal5) {
2441  PRINTD (DBG_QOS, "AAL not supported");
2442  return -EINVAL;
2443  }
2444 
2445  // get space for our vcc stuff and copy parameters into it
2446  vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2447  if (!vccp) {
2448  PRINTK (KERN_ERR, "out of memory!");
2449  return -ENOMEM;
2450  }
2451  *vccp = vcc;
2452 
2453  // clear error and grab cell rate resource lock
2454  error = 0;
2455  spin_lock (&dev->rate_lock);
2456 
2457  if (vcc.tx_rate > dev->tx_avail) {
2458  PRINTD (DBG_QOS, "not enough TX PCR left");
2459  error = -EAGAIN;
2460  }
2461 
2462  if (vcc.rx_rate > dev->rx_avail) {
2463  PRINTD (DBG_QOS, "not enough RX PCR left");
2464  error = -EAGAIN;
2465  }
2466 
2467  if (!error) {
2468  // really consume cell rates
2469  dev->tx_avail -= vcc.tx_rate;
2470  dev->rx_avail -= vcc.rx_rate;
2471  PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2472  vcc.tx_rate, vcc.rx_rate);
2473  }
2474 
2475  // release lock and exit on error
2476  spin_unlock (&dev->rate_lock);
2477  if (error) {
2478  PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2479  kfree (vccp);
2480  return error;
2481  }
2482 
2483  // this is "immediately before allocating the connection identifier
2484  // in hardware" - so long as the next call does not fail :)
2485  set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2486 
2487  // any errors here are very serious and should never occur
2488 
2489  if (rxtp->traffic_class != ATM_NONE) {
2490  if (dev->rxer[channel]) {
2491  PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2492  error = -EBUSY;
2493  }
2494  if (!error)
2495  error = hrz_open_rx (dev, channel);
2496  if (error) {
2497  kfree (vccp);
2498  return error;
2499  }
2500  // this link allows RX frames through
2501  dev->rxer[channel] = atm_vcc;
2502  }
2503 
2504  // success, set elements of atm_vcc
2505  atm_vcc->dev_data = (void *) vccp;
2506 
2507  // indicate readiness
2508  set_bit(ATM_VF_READY,&atm_vcc->flags);
2509 
2510  return 0;
2511 }
2512 
2513 /********** close VC **********/
2514 
2515 static void hrz_close (struct atm_vcc * atm_vcc) {
2516  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2517  hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2518  u16 channel = vcc->channel;
2519  PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2520 
2521  // indicate unreadiness
2522  clear_bit(ATM_VF_READY,&atm_vcc->flags);
2523 
2524  if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2525  unsigned int i;
2526 
2527  // let any TX on this channel that has started complete
2528  // no restart, just keep trying
2529  while (tx_hold (dev))
2530  ;
2531  // remove record of any tx_channel having been setup for this channel
2532  for (i = 0; i < TX_CHANS; ++i)
2533  if (dev->tx_channel_record[i] == channel) {
2534  dev->tx_channel_record[i] = -1;
2535  break;
2536  }
2537  if (dev->last_vc == channel)
2538  dev->tx_last = -1;
2539  tx_release (dev);
2540  }
2541 
2542  if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2543  // disable RXing - it tries quite hard
2544  hrz_close_rx (dev, channel);
2545  // forget the vcc - no more skbs will be pushed
2546  if (atm_vcc != dev->rxer[channel])
2547  PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2548  "arghhh! we're going to die!",
2549  atm_vcc, dev->rxer[channel]);
2550  dev->rxer[channel] = NULL;
2551  }
2552 
2553  // atomically release our rate reservation
2554  spin_lock (&dev->rate_lock);
2555  PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2556  vcc->tx_rate, vcc->rx_rate);
2557  dev->tx_avail += vcc->tx_rate;
2558  dev->rx_avail += vcc->rx_rate;
2559  spin_unlock (&dev->rate_lock);
2560 
2561  // free our structure
2562  kfree (vcc);
2563  // say the VPI/VCI is free again
2564  clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2565 }
2566 
2567 #if 0
2568 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2569  void *optval, int optlen) {
2570  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2571  PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2572  switch (level) {
2573  case SOL_SOCKET:
2574  switch (optname) {
2575 // case SO_BCTXOPT:
2576 // break;
2577 // case SO_BCRXOPT:
2578 // break;
2579  default:
2580  return -ENOPROTOOPT;
2581  };
2582  break;
2583  }
2584  return -EINVAL;
2585 }
2586 
2587 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2588  void *optval, unsigned int optlen) {
2589  hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2590  PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2591  switch (level) {
2592  case SOL_SOCKET:
2593  switch (optname) {
2594 // case SO_BCTXOPT:
2595 // break;
2596 // case SO_BCRXOPT:
2597 // break;
2598  default:
2599  return -ENOPROTOOPT;
2600  };
2601  break;
2602  }
2603  return -EINVAL;
2604 }
2605 #endif
2606 
2607 #if 0
2608 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2609  hrz_dev * dev = HRZ_DEV(atm_dev);
2610  PRINTD (DBG_FLOW, "hrz_ioctl");
2611  return -1;
2612 }
2613 
2614 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2615  hrz_dev * dev = HRZ_DEV(atm_dev);
2616  PRINTD (DBG_FLOW, "hrz_phy_get");
2617  return 0;
2618 }
2619 
2620 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2621  unsigned long addr) {
2622  hrz_dev * dev = HRZ_DEV(atm_dev);
2623  PRINTD (DBG_FLOW, "hrz_phy_put");
2624 }
2625 
2626 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2627  hrz_dev * dev = HRZ_DEV(vcc->dev);
2628  PRINTD (DBG_FLOW, "hrz_change_qos");
2629  return -1;
2630 }
2631 #endif
2632 
2633 /********** proc file contents **********/
2634 
2635 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2636  hrz_dev * dev = HRZ_DEV(atm_dev);
2637  int left = *pos;
2638  PRINTD (DBG_FLOW, "hrz_proc_read");
2639 
2640  /* more diagnostics here? */
2641 
2642 #if 0
2643  if (!left--) {
2644  unsigned int count = sprintf (page, "vbr buckets:");
2645  unsigned int i;
2646  for (i = 0; i < TX_CHANS; ++i)
2647  count += sprintf (page, " %u/%u",
2648  query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2649  query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2650  count += sprintf (page+count, ".\n");
2651  return count;
2652  }
2653 #endif
2654 
2655  if (!left--)
2656  return sprintf (page,
2657  "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2658  dev->tx_cell_count, dev->rx_cell_count,
2660 
2661  if (!left--)
2662  return sprintf (page,
2663  "free cell buffers: TX %hu, RX %hu+%hu.\n",
2664  rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2665  rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2666  dev->noof_spare_buffers);
2667 
2668  if (!left--)
2669  return sprintf (page,
2670  "cps remaining: TX %u, RX %u\n",
2671  dev->tx_avail, dev->rx_avail);
2672 
2673  return 0;
2674 }
2675 
2676 static const struct atmdev_ops hrz_ops = {
2677  .open = hrz_open,
2678  .close = hrz_close,
2679  .send = hrz_send,
2680  .proc_read = hrz_proc_read,
2681  .owner = THIS_MODULE,
2682 };
2683 
2684 static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2685 {
2686  hrz_dev * dev;
2687  int err = 0;
2688 
2689  // adapter slot free, read resources from PCI configuration space
2690  u32 iobase = pci_resource_start (pci_dev, 0);
2691  u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2692  unsigned int irq;
2693  unsigned char lat;
2694 
2695  PRINTD (DBG_FLOW, "hrz_probe");
2696 
2697  if (pci_enable_device(pci_dev))
2698  return -EINVAL;
2699 
2700  /* XXX DEV_LABEL is a guess */
2701  if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2702  err = -EINVAL;
2703  goto out_disable;
2704  }
2705 
2706  dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2707  if (!dev) {
2708  // perhaps we should be nice: deregister all adapters and abort?
2709  PRINTD(DBG_ERR, "out of memory");
2710  err = -ENOMEM;
2711  goto out_release;
2712  }
2713 
2714  pci_set_drvdata(pci_dev, dev);
2715 
2716  // grab IRQ and install handler - move this someplace more sensible
2717  irq = pci_dev->irq;
2718  if (request_irq(irq,
2719  interrupt_handler,
2720  IRQF_SHARED, /* irqflags guess */
2721  DEV_LABEL, /* name guess */
2722  dev)) {
2723  PRINTD(DBG_WARN, "request IRQ failed!");
2724  err = -EINVAL;
2725  goto out_free;
2726  }
2727 
2728  PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2729  iobase, irq, membase);
2730 
2731  dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2732  NULL);
2733  if (!(dev->atm_dev)) {
2734  PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2735  err = -EINVAL;
2736  goto out_free_irq;
2737  }
2738 
2739  PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2740  dev->atm_dev->number, dev, dev->atm_dev);
2741  dev->atm_dev->dev_data = (void *) dev;
2742  dev->pci_dev = pci_dev;
2743 
2744  // enable bus master accesses
2745  pci_set_master(pci_dev);
2746 
2747  // frobnicate latency (upwards, usually)
2748  pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2749  if (pci_lat) {
2750  PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2751  "changing", lat, pci_lat);
2752  pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2753  } else if (lat < MIN_PCI_LATENCY) {
2754  PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2755  "increasing", lat, MIN_PCI_LATENCY);
2756  pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2757  }
2758 
2759  dev->iobase = iobase;
2760  dev->irq = irq;
2761  dev->membase = membase;
2762 
2763  dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2764  dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
2765 
2766  // these next three are performance hacks
2767  dev->last_vc = -1;
2768  dev->tx_last = -1;
2769  dev->tx_idle = 0;
2770 
2771  dev->tx_regions = 0;
2772  dev->tx_bytes = 0;
2773  dev->tx_skb = NULL;
2774  dev->tx_iovec = NULL;
2775 
2776  dev->tx_cell_count = 0;
2777  dev->rx_cell_count = 0;
2778  dev->hec_error_count = 0;
2779  dev->unassigned_cell_count = 0;
2780 
2781  dev->noof_spare_buffers = 0;
2782 
2783  {
2784  unsigned int i;
2785  for (i = 0; i < TX_CHANS; ++i)
2786  dev->tx_channel_record[i] = -1;
2787  }
2788 
2789  dev->flags = 0;
2790 
2791  // Allocate cell rates and remember ASIC version
2792  // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2793  // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2794  // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2795 
2796  if (hrz_init(dev)) {
2797  // to be really pedantic, this should be ATM_OC3c_PCR
2798  dev->tx_avail = ATM_OC3_PCR;
2799  dev->rx_avail = ATM_OC3_PCR;
2800  set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2801  } else {
2802  dev->tx_avail = ((25600000/8)*26)/(27*53);
2803  dev->rx_avail = ((25600000/8)*26)/(27*53);
2804  PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2805  }
2806 
2807  // rate changes spinlock
2808  spin_lock_init(&dev->rate_lock);
2809 
2810  // on-board memory access spinlock; we want atomic reads and
2811  // writes to adapter memory (handles IRQ and SMP)
2812  spin_lock_init(&dev->mem_lock);
2813 
2815 
2816  // vpi in 0..4, vci in 6..10
2817  dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2818  dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2819 
2820  init_timer(&dev->housekeeping);
2821  dev->housekeeping.function = do_housekeeping;
2822  dev->housekeeping.data = (unsigned long) dev;
2823  mod_timer(&dev->housekeeping, jiffies);
2824 
2825 out:
2826  return err;
2827 
2828 out_free_irq:
2829  free_irq(dev->irq, dev);
2830 out_free:
2831  kfree(dev);
2832 out_release:
2833  release_region(iobase, HRZ_IO_EXTENT);
2834 out_disable:
2835  pci_disable_device(pci_dev);
2836  goto out;
2837 }
2838 
2839 static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
2840 {
2841  hrz_dev *dev;
2842 
2843  dev = pci_get_drvdata(pci_dev);
2844 
2845  PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2847  hrz_reset(dev);
2849  free_irq(dev->irq, dev);
2851  kfree(dev);
2852 
2853  pci_disable_device(pci_dev);
2854 }
2855 
2856 static void __init hrz_check_args (void) {
2857 #ifdef DEBUG_HORIZON
2858  PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2859 #else
2860  if (debug)
2861  PRINTK (KERN_NOTICE, "no debug support in this image");
2862 #endif
2863 
2864  if (vpi_bits > HRZ_MAX_VPI)
2865  PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2866  vpi_bits = HRZ_MAX_VPI);
2867 
2868  if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2869  PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2870  max_tx_size = TX_AAL5_LIMIT);
2871 
2872  if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2873  PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2874  max_rx_size = RX_AAL5_LIMIT);
2875 
2876  return;
2877 }
2878 
2881 MODULE_LICENSE("GPL");
2882 module_param(debug, ushort, 0644);
2883 module_param(vpi_bits, ushort, 0);
2884 module_param(max_tx_size, int, 0);
2885 module_param(max_rx_size, int, 0);
2886 module_param(pci_lat, byte, 0);
2887 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2888 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2889 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2890 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2891 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2892 
2893 static struct pci_device_id hrz_pci_tbl[] = {
2895  0, 0, 0 },
2896  { 0, }
2897 };
2898 
2899 MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2900 
2901 static struct pci_driver hrz_driver = {
2902  .name = "horizon",
2903  .probe = hrz_probe,
2904  .remove = __devexit_p(hrz_remove_one),
2905  .id_table = hrz_pci_tbl,
2906 };
2907 
2908 /********** module entry **********/
2909 
2910 static int __init hrz_module_init (void) {
2911  // sanity check - cast is needed since printk does not support %Zu
2912  if (sizeof(struct MEMMAP) != 128*1024/4) {
2913  PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2914  (unsigned long) sizeof(struct MEMMAP));
2915  return -ENOMEM;
2916  }
2917 
2918  show_version();
2919 
2920  // check arguments
2921  hrz_check_args();
2922 
2923  // get the juice
2924  return pci_register_driver(&hrz_driver);
2925 }
2926 
2927 /********** module exit **********/
2928 
2929 static void __exit hrz_module_exit (void) {
2930  PRINTD (DBG_FLOW, "cleanup_module");
2931 
2932  pci_unregister_driver(&hrz_driver);
2933 }
2934 
2935 module_init(hrz_module_init);
2936 module_exit(hrz_module_exit);