Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
i5400_edac.c
Go to the documentation of this file.
1 /*
2  * Intel 5400 class Memory Controllers kernel module (Seaburg)
3  *
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Copyright (c) 2008 by:
8  * Ben Woodard <[email protected]>
9  * Mauro Carvalho Chehab <[email protected]>
10  *
11  * Red Hat Inc. http://www.redhat.com
12  *
13  * Forked and adapted from the i5000_edac driver which was
14  * written by Douglas Thompson Linux Networx <[email protected]>
15  *
16  * This module is based on the following document:
17  *
18  * Intel 5400 Chipset Memory Controller Hub (MCH) - Datasheet
19  * http://developer.intel.com/design/chipsets/datashts/313070.htm
20  *
21  * This Memory Controller manages DDR2 FB-DIMMs. It has 2 branches, each with
22  * 2 channels operating in lockstep no-mirror mode. Each channel can have up to
23  * 4 dimm's, each with up to 8GB.
24  *
25  */
26 
27 #include <linux/module.h>
28 #include <linux/init.h>
29 #include <linux/pci.h>
30 #include <linux/pci_ids.h>
31 #include <linux/slab.h>
32 #include <linux/edac.h>
33 #include <linux/mmzone.h>
34 
35 #include "edac_core.h"
36 
37 /*
38  * Alter this version for the I5400 module when modifications are made
39  */
40 #define I5400_REVISION " Ver: 1.0.0"
41 
42 #define EDAC_MOD_STR "i5400_edac"
43 
44 #define i5400_printk(level, fmt, arg...) \
45  edac_printk(level, "i5400", fmt, ##arg)
46 
47 #define i5400_mc_printk(mci, level, fmt, arg...) \
48  edac_mc_chipset_printk(mci, level, "i5400", fmt, ##arg)
49 
50 /* Limits for i5400 */
51 #define MAX_BRANCHES 2
52 #define CHANNELS_PER_BRANCH 2
53 #define DIMMS_PER_CHANNEL 4
54 #define MAX_CHANNELS (MAX_BRANCHES * CHANNELS_PER_BRANCH)
55 
56 /* Device 16,
57  * Function 0: System Address
58  * Function 1: Memory Branch Map, Control, Errors Register
59  * Function 2: FSB Error Registers
60  *
61  * All 3 functions of Device 16 (0,1,2) share the SAME DID and
62  * uses PCI_DEVICE_ID_INTEL_5400_ERR for device 16 (0,1,2),
63  * PCI_DEVICE_ID_INTEL_5400_FBD0 and PCI_DEVICE_ID_INTEL_5400_FBD1
64  * for device 21 (0,1).
65  */
66 
67  /* OFFSETS for Function 0 */
68 #define AMBASE 0x48 /* AMB Mem Mapped Reg Region Base */
69 #define MAXCH 0x56 /* Max Channel Number */
70 #define MAXDIMMPERCH 0x57 /* Max DIMM PER Channel Number */
71 
72  /* OFFSETS for Function 1 */
73 #define TOLM 0x6C
74 #define REDMEMB 0x7C
75 #define REC_ECC_LOCATOR_ODD(x) ((x) & 0x3fe00) /* bits [17:9] indicate ODD, [8:0] indicate EVEN */
76 #define MIR0 0x80
77 #define MIR1 0x84
78 #define AMIR0 0x8c
79 #define AMIR1 0x90
80 
81  /* Fatal error registers */
82 #define FERR_FAT_FBD 0x98 /* also called as FERR_FAT_FB_DIMM at datasheet */
83 #define FERR_FAT_FBDCHAN (3<<28) /* channel index where the highest-order error occurred */
84 
85 #define NERR_FAT_FBD 0x9c
86 #define FERR_NF_FBD 0xa0 /* also called as FERR_NFAT_FB_DIMM at datasheet */
87 
88  /* Non-fatal error register */
89 #define NERR_NF_FBD 0xa4
90 
91  /* Enable error mask */
92 #define EMASK_FBD 0xa8
93 
94 #define ERR0_FBD 0xac
95 #define ERR1_FBD 0xb0
96 #define ERR2_FBD 0xb4
97 #define MCERR_FBD 0xb8
98 
99  /* No OFFSETS for Device 16 Function 2 */
100 
101 /*
102  * Device 21,
103  * Function 0: Memory Map Branch 0
104  *
105  * Device 22,
106  * Function 0: Memory Map Branch 1
107  */
108 
109  /* OFFSETS for Function 0 */
110 #define AMBPRESENT_0 0x64
111 #define AMBPRESENT_1 0x66
112 #define MTR0 0x80
113 #define MTR1 0x82
114 #define MTR2 0x84
115 #define MTR3 0x86
116 
117  /* OFFSETS for Function 1 */
118 #define NRECFGLOG 0x74
119 #define RECFGLOG 0x78
120 #define NRECMEMA 0xbe
121 #define NRECMEMB 0xc0
122 #define NRECFB_DIMMA 0xc4
123 #define NRECFB_DIMMB 0xc8
124 #define NRECFB_DIMMC 0xcc
125 #define NRECFB_DIMMD 0xd0
126 #define NRECFB_DIMME 0xd4
127 #define NRECFB_DIMMF 0xd8
128 #define REDMEMA 0xdC
129 #define RECMEMA 0xf0
130 #define RECMEMB 0xf4
131 #define RECFB_DIMMA 0xf8
132 #define RECFB_DIMMB 0xec
133 #define RECFB_DIMMC 0xf0
134 #define RECFB_DIMMD 0xf4
135 #define RECFB_DIMME 0xf8
136 #define RECFB_DIMMF 0xfC
137 
138 /*
139  * Error indicator bits and masks
140  * Error masks are according with Table 5-17 of i5400 datasheet
141  */
142 
144  EMASK_M1 = 1<<0, /* Memory Write error on non-redundant retry */
145  EMASK_M2 = 1<<1, /* Memory or FB-DIMM configuration CRC read error */
146  EMASK_M3 = 1<<2, /* Reserved */
147  EMASK_M4 = 1<<3, /* Uncorrectable Data ECC on Replay */
148  EMASK_M5 = 1<<4, /* Aliased Uncorrectable Non-Mirrored Demand Data ECC */
149  EMASK_M6 = 1<<5, /* Unsupported on i5400 */
150  EMASK_M7 = 1<<6, /* Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
151  EMASK_M8 = 1<<7, /* Aliased Uncorrectable Patrol Data ECC */
152  EMASK_M9 = 1<<8, /* Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC */
153  EMASK_M10 = 1<<9, /* Unsupported on i5400 */
154  EMASK_M11 = 1<<10, /* Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC */
155  EMASK_M12 = 1<<11, /* Non-Aliased Uncorrectable Patrol Data ECC */
156  EMASK_M13 = 1<<12, /* Memory Write error on first attempt */
157  EMASK_M14 = 1<<13, /* FB-DIMM Configuration Write error on first attempt */
158  EMASK_M15 = 1<<14, /* Memory or FB-DIMM configuration CRC read error */
159  EMASK_M16 = 1<<15, /* Channel Failed-Over Occurred */
160  EMASK_M17 = 1<<16, /* Correctable Non-Mirrored Demand Data ECC */
161  EMASK_M18 = 1<<17, /* Unsupported on i5400 */
162  EMASK_M19 = 1<<18, /* Correctable Resilver- or Spare-Copy Data ECC */
163  EMASK_M20 = 1<<19, /* Correctable Patrol Data ECC */
164  EMASK_M21 = 1<<20, /* FB-DIMM Northbound parity error on FB-DIMM Sync Status */
165  EMASK_M22 = 1<<21, /* SPD protocol Error */
166  EMASK_M23 = 1<<22, /* Non-Redundant Fast Reset Timeout */
167  EMASK_M24 = 1<<23, /* Refresh error */
168  EMASK_M25 = 1<<24, /* Memory Write error on redundant retry */
169  EMASK_M26 = 1<<25, /* Redundant Fast Reset Timeout */
170  EMASK_M27 = 1<<26, /* Correctable Counter Threshold Exceeded */
171  EMASK_M28 = 1<<27, /* DIMM-Spare Copy Completed */
172  EMASK_M29 = 1<<28, /* DIMM-Isolation Completed */
173 };
174 
175 /*
176  * Names to translate bit error into something useful
177  */
178 static const char *error_name[] = {
179  [0] = "Memory Write error on non-redundant retry",
180  [1] = "Memory or FB-DIMM configuration CRC read error",
181  /* Reserved */
182  [3] = "Uncorrectable Data ECC on Replay",
183  [4] = "Aliased Uncorrectable Non-Mirrored Demand Data ECC",
184  /* M6 Unsupported on i5400 */
185  [6] = "Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
186  [7] = "Aliased Uncorrectable Patrol Data ECC",
187  [8] = "Non-Aliased Uncorrectable Non-Mirrored Demand Data ECC",
188  /* M10 Unsupported on i5400 */
189  [10] = "Non-Aliased Uncorrectable Resilver- or Spare-Copy Data ECC",
190  [11] = "Non-Aliased Uncorrectable Patrol Data ECC",
191  [12] = "Memory Write error on first attempt",
192  [13] = "FB-DIMM Configuration Write error on first attempt",
193  [14] = "Memory or FB-DIMM configuration CRC read error",
194  [15] = "Channel Failed-Over Occurred",
195  [16] = "Correctable Non-Mirrored Demand Data ECC",
196  /* M18 Unsupported on i5400 */
197  [18] = "Correctable Resilver- or Spare-Copy Data ECC",
198  [19] = "Correctable Patrol Data ECC",
199  [20] = "FB-DIMM Northbound parity error on FB-DIMM Sync Status",
200  [21] = "SPD protocol Error",
201  [22] = "Non-Redundant Fast Reset Timeout",
202  [23] = "Refresh error",
203  [24] = "Memory Write error on redundant retry",
204  [25] = "Redundant Fast Reset Timeout",
205  [26] = "Correctable Counter Threshold Exceeded",
206  [27] = "DIMM-Spare Copy Completed",
207  [28] = "DIMM-Isolation Completed",
208 };
209 
210 /* Fatal errors */
211 #define ERROR_FAT_MASK (EMASK_M1 | \
212  EMASK_M2 | \
213  EMASK_M23)
214 
215 /* Correctable errors */
216 #define ERROR_NF_CORRECTABLE (EMASK_M27 | \
217  EMASK_M20 | \
218  EMASK_M19 | \
219  EMASK_M18 | \
220  EMASK_M17 | \
221  EMASK_M16)
222 #define ERROR_NF_DIMM_SPARE (EMASK_M29 | \
223  EMASK_M28)
224 #define ERROR_NF_SPD_PROTOCOL (EMASK_M22)
225 #define ERROR_NF_NORTH_CRC (EMASK_M21)
226 
227 /* Recoverable errors */
228 #define ERROR_NF_RECOVERABLE (EMASK_M26 | \
229  EMASK_M25 | \
230  EMASK_M24 | \
231  EMASK_M15 | \
232  EMASK_M14 | \
233  EMASK_M13 | \
234  EMASK_M12 | \
235  EMASK_M11 | \
236  EMASK_M9 | \
237  EMASK_M8 | \
238  EMASK_M7 | \
239  EMASK_M5)
240 
241 /* uncorrectable errors */
242 #define ERROR_NF_UNCORRECTABLE (EMASK_M4)
243 
244 /* mask to all non-fatal errors */
245 #define ERROR_NF_MASK (ERROR_NF_CORRECTABLE | \
246  ERROR_NF_UNCORRECTABLE | \
247  ERROR_NF_RECOVERABLE | \
248  ERROR_NF_DIMM_SPARE | \
249  ERROR_NF_SPD_PROTOCOL | \
250  ERROR_NF_NORTH_CRC)
251 
252 /*
253  * Define error masks for the several registers
254  */
255 
256 /* Enable all fatal and non fatal errors */
257 #define ENABLE_EMASK_ALL (ERROR_FAT_MASK | ERROR_NF_MASK)
258 
259 /* mask for fatal error registers */
260 #define FERR_FAT_MASK ERROR_FAT_MASK
261 
262 /* masks for non-fatal error register */
263 static inline int to_nf_mask(unsigned int mask)
264 {
265  return (mask & EMASK_M29) | (mask >> 3);
266 };
267 
268 static inline int from_nf_ferr(unsigned int mask)
269 {
270  return (mask & EMASK_M29) | /* Bit 28 */
271  (mask & ((1 << 28) - 1) << 3); /* Bits 0 to 27 */
272 };
273 
274 #define FERR_NF_MASK to_nf_mask(ERROR_NF_MASK)
275 #define FERR_NF_CORRECTABLE to_nf_mask(ERROR_NF_CORRECTABLE)
276 #define FERR_NF_DIMM_SPARE to_nf_mask(ERROR_NF_DIMM_SPARE)
277 #define FERR_NF_SPD_PROTOCOL to_nf_mask(ERROR_NF_SPD_PROTOCOL)
278 #define FERR_NF_NORTH_CRC to_nf_mask(ERROR_NF_NORTH_CRC)
279 #define FERR_NF_RECOVERABLE to_nf_mask(ERROR_NF_RECOVERABLE)
280 #define FERR_NF_UNCORRECTABLE to_nf_mask(ERROR_NF_UNCORRECTABLE)
281 
282 /* Defines to extract the vaious fields from the
283  * MTRx - Memory Technology Registers
284  */
285 #define MTR_DIMMS_PRESENT(mtr) ((mtr) & (1 << 10))
286 #define MTR_DIMMS_ETHROTTLE(mtr) ((mtr) & (1 << 9))
287 #define MTR_DRAM_WIDTH(mtr) (((mtr) & (1 << 8)) ? 8 : 4)
288 #define MTR_DRAM_BANKS(mtr) (((mtr) & (1 << 6)) ? 8 : 4)
289 #define MTR_DRAM_BANKS_ADDR_BITS(mtr) ((MTR_DRAM_BANKS(mtr) == 8) ? 3 : 2)
290 #define MTR_DIMM_RANK(mtr) (((mtr) >> 5) & 0x1)
291 #define MTR_DIMM_RANK_ADDR_BITS(mtr) (MTR_DIMM_RANK(mtr) ? 2 : 1)
292 #define MTR_DIMM_ROWS(mtr) (((mtr) >> 2) & 0x3)
293 #define MTR_DIMM_ROWS_ADDR_BITS(mtr) (MTR_DIMM_ROWS(mtr) + 13)
294 #define MTR_DIMM_COLS(mtr) ((mtr) & 0x3)
295 #define MTR_DIMM_COLS_ADDR_BITS(mtr) (MTR_DIMM_COLS(mtr) + 10)
296 
297 /* This applies to FERR_NF_FB-DIMM as well as FERR_FAT_FB-DIMM */
298 static inline int extract_fbdchan_indx(u32 x)
299 {
300  return (x>>28) & 0x3;
301 }
302 
303 /* Device name and register DID (Device ID) */
305  const char *ctl_name; /* name for this device */
306  u16 fsb_mapping_errors; /* DID for the branchmap,control */
307 };
308 
309 /* Table of devices attributes supported by this driver */
310 static const struct i5400_dev_info i5400_devs[] = {
311  {
312  .ctl_name = "I5400",
313  .fsb_mapping_errors = PCI_DEVICE_ID_INTEL_5400_ERR,
314  },
315 };
316 
318  int megabytes; /* size, 0 means not present */
319 };
320 
321 /* driver private data structure */
322 struct i5400_pvt {
323  struct pci_dev *system_address; /* 16.0 */
324  struct pci_dev *branchmap_werrors; /* 16.1 */
325  struct pci_dev *fsb_error_regs; /* 16.2 */
326  struct pci_dev *branch_0; /* 21.0 */
327  struct pci_dev *branch_1; /* 22.0 */
328 
329  u16 tolm; /* top of low memory */
330  union {
331  u64 ambase; /* AMB BAR */
332  struct {
335  } u __packed;
336  };
337 
339 
340  u16 b0_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */
341  u16 b0_ambpresent0; /* Branch 0, Channel 0 */
342  u16 b0_ambpresent1; /* Brnach 0, Channel 1 */
343 
344  u16 b1_mtr[DIMMS_PER_CHANNEL]; /* Memory Technlogy Reg */
345  u16 b1_ambpresent0; /* Branch 1, Channel 8 */
346  u16 b1_ambpresent1; /* Branch 1, Channel 1 */
347 
348  /* DIMM information matrix, allocating architecture maximums */
350 
351  /* Actual values for this controller */
352  int maxch; /* Max channels */
353  int maxdimmperch; /* Max DIMMs per channel */
354 };
355 
356 /* I5400 MCH error information retrieved from Hardware */
358  /* These registers are always read from the MC */
359  u32 ferr_fat_fbd; /* First Errors Fatal */
360  u32 nerr_fat_fbd; /* Next Errors Fatal */
361  u32 ferr_nf_fbd; /* First Errors Non-Fatal */
362  u32 nerr_nf_fbd; /* Next Errors Non-Fatal */
363 
364  /* These registers are input ONLY if there was a Recoverable Error */
365  u32 redmemb; /* Recoverable Mem Data Error log B */
366  u16 recmema; /* Recoverable Mem Error log A */
367  u32 recmemb; /* Recoverable Mem Error log B */
368 
369  /* These registers are input ONLY if there was a Non-Rec Error */
370  u16 nrecmema; /* Non-Recoverable Mem log A */
371  u16 nrecmemb; /* Non-Recoverable Mem log B */
372 
373 };
374 
375 /* note that nrec_rdwr changed from NRECMEMA to NRECMEMB between the 5000 and
376  5400 better to use an inline function than a macro in this case */
377 static inline int nrec_bank(struct i5400_error_info *info)
378 {
379  return ((info->nrecmema) >> 12) & 0x7;
380 }
381 static inline int nrec_rank(struct i5400_error_info *info)
382 {
383  return ((info->nrecmema) >> 8) & 0xf;
384 }
385 static inline int nrec_buf_id(struct i5400_error_info *info)
386 {
387  return ((info->nrecmema)) & 0xff;
388 }
389 static inline int nrec_rdwr(struct i5400_error_info *info)
390 {
391  return (info->nrecmemb) >> 31;
392 }
393 /* This applies to both NREC and REC string so it can be used with nrec_rdwr
394  and rec_rdwr */
395 static inline const char *rdwr_str(int rdwr)
396 {
397  return rdwr ? "Write" : "Read";
398 }
399 static inline int nrec_cas(struct i5400_error_info *info)
400 {
401  return ((info->nrecmemb) >> 16) & 0x1fff;
402 }
403 static inline int nrec_ras(struct i5400_error_info *info)
404 {
405  return (info->nrecmemb) & 0xffff;
406 }
407 static inline int rec_bank(struct i5400_error_info *info)
408 {
409  return ((info->recmema) >> 12) & 0x7;
410 }
411 static inline int rec_rank(struct i5400_error_info *info)
412 {
413  return ((info->recmema) >> 8) & 0xf;
414 }
415 static inline int rec_rdwr(struct i5400_error_info *info)
416 {
417  return (info->recmemb) >> 31;
418 }
419 static inline int rec_cas(struct i5400_error_info *info)
420 {
421  return ((info->recmemb) >> 16) & 0x1fff;
422 }
423 static inline int rec_ras(struct i5400_error_info *info)
424 {
425  return (info->recmemb) & 0xffff;
426 }
427 
428 static struct edac_pci_ctl_info *i5400_pci;
429 
430 /*
431  * i5400_get_error_info Retrieve the hardware error information from
432  * the hardware and cache it in the 'info'
433  * structure
434  */
435 static void i5400_get_error_info(struct mem_ctl_info *mci,
436  struct i5400_error_info *info)
437 {
438  struct i5400_pvt *pvt;
439  u32 value;
440 
441  pvt = mci->pvt_info;
442 
443  /* read in the 1st FATAL error register */
444  pci_read_config_dword(pvt->branchmap_werrors, FERR_FAT_FBD, &value);
445 
446  /* Mask only the bits that the doc says are valid
447  */
448  value &= (FERR_FAT_FBDCHAN | FERR_FAT_MASK);
449 
450  /* If there is an error, then read in the
451  NEXT FATAL error register and the Memory Error Log Register A
452  */
453  if (value & FERR_FAT_MASK) {
454  info->ferr_fat_fbd = value;
455 
456  /* harvest the various error data we need */
457  pci_read_config_dword(pvt->branchmap_werrors,
458  NERR_FAT_FBD, &info->nerr_fat_fbd);
459  pci_read_config_word(pvt->branchmap_werrors,
460  NRECMEMA, &info->nrecmema);
461  pci_read_config_word(pvt->branchmap_werrors,
462  NRECMEMB, &info->nrecmemb);
463 
464  /* Clear the error bits, by writing them back */
465  pci_write_config_dword(pvt->branchmap_werrors,
466  FERR_FAT_FBD, value);
467  } else {
468  info->ferr_fat_fbd = 0;
469  info->nerr_fat_fbd = 0;
470  info->nrecmema = 0;
471  info->nrecmemb = 0;
472  }
473 
474  /* read in the 1st NON-FATAL error register */
475  pci_read_config_dword(pvt->branchmap_werrors, FERR_NF_FBD, &value);
476 
477  /* If there is an error, then read in the 1st NON-FATAL error
478  * register as well */
479  if (value & FERR_NF_MASK) {
480  info->ferr_nf_fbd = value;
481 
482  /* harvest the various error data we need */
483  pci_read_config_dword(pvt->branchmap_werrors,
484  NERR_NF_FBD, &info->nerr_nf_fbd);
485  pci_read_config_word(pvt->branchmap_werrors,
486  RECMEMA, &info->recmema);
487  pci_read_config_dword(pvt->branchmap_werrors,
488  RECMEMB, &info->recmemb);
489  pci_read_config_dword(pvt->branchmap_werrors,
490  REDMEMB, &info->redmemb);
491 
492  /* Clear the error bits, by writing them back */
493  pci_write_config_dword(pvt->branchmap_werrors,
494  FERR_NF_FBD, value);
495  } else {
496  info->ferr_nf_fbd = 0;
497  info->nerr_nf_fbd = 0;
498  info->recmema = 0;
499  info->recmemb = 0;
500  info->redmemb = 0;
501  }
502 }
503 
504 /*
505  * i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
506  * struct i5400_error_info *info,
507  * int handle_errors);
508  *
509  * handle the Intel FATAL and unrecoverable errors, if any
510  */
511 static void i5400_proccess_non_recoverable_info(struct mem_ctl_info *mci,
512  struct i5400_error_info *info,
513  unsigned long allErrors)
514 {
515  char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
516  int branch;
517  int channel;
518  int bank;
519  int buf_id;
520  int rank;
521  int rdwr;
522  int ras, cas;
523  int errnum;
524  char *type = NULL;
526 
527  if (!allErrors)
528  return; /* if no error, return now */
529 
530  if (allErrors & ERROR_FAT_MASK) {
531  type = "FATAL";
532  tp_event = HW_EVENT_ERR_FATAL;
533  } else if (allErrors & FERR_NF_UNCORRECTABLE)
534  type = "NON-FATAL uncorrected";
535  else
536  type = "NON-FATAL recoverable";
537 
538  /* ONLY ONE of the possible error bits will be set, as per the docs */
539 
540  branch = extract_fbdchan_indx(info->ferr_fat_fbd);
541  channel = branch;
542 
543  /* Use the NON-Recoverable macros to extract data */
544  bank = nrec_bank(info);
545  rank = nrec_rank(info);
546  buf_id = nrec_buf_id(info);
547  rdwr = nrec_rdwr(info);
548  ras = nrec_ras(info);
549  cas = nrec_cas(info);
550 
551  edac_dbg(0, "\t\tDIMM= %d Channels= %d,%d (Branch= %d DRAM Bank= %d Buffer ID = %d rdwr= %s ras= %d cas= %d)\n",
552  rank, channel, channel + 1, branch >> 1, bank,
553  buf_id, rdwr_str(rdwr), ras, cas);
554 
555  /* Only 1 bit will be on */
556  errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
557 
558  /* Form out message */
559  snprintf(msg, sizeof(msg),
560  "Bank=%d Buffer ID = %d RAS=%d CAS=%d Err=0x%lx (%s)",
561  bank, buf_id, ras, cas, allErrors, error_name[errnum]);
562 
563  edac_mc_handle_error(tp_event, mci, 1, 0, 0, 0,
564  branch >> 1, -1, rank,
565  rdwr ? "Write error" : "Read error",
566  msg);
567 }
568 
569 /*
570  * i5400_process_fatal_error_info(struct mem_ctl_info *mci,
571  * struct i5400_error_info *info,
572  * int handle_errors);
573  *
574  * handle the Intel NON-FATAL errors, if any
575  */
576 static void i5400_process_nonfatal_error_info(struct mem_ctl_info *mci,
577  struct i5400_error_info *info)
578 {
579  char msg[EDAC_MC_LABEL_LEN + 1 + 90 + 80];
580  unsigned long allErrors;
581  int branch;
582  int channel;
583  int bank;
584  int rank;
585  int rdwr;
586  int ras, cas;
587  int errnum;
588 
589  /* mask off the Error bits that are possible */
590  allErrors = from_nf_ferr(info->ferr_nf_fbd & FERR_NF_MASK);
591  if (!allErrors)
592  return; /* if no error, return now */
593 
594  /* ONLY ONE of the possible error bits will be set, as per the docs */
595 
596  if (allErrors & (ERROR_NF_UNCORRECTABLE | ERROR_NF_RECOVERABLE)) {
597  i5400_proccess_non_recoverable_info(mci, info, allErrors);
598  return;
599  }
600 
601  /* Correctable errors */
602  if (allErrors & ERROR_NF_CORRECTABLE) {
603  edac_dbg(0, "\tCorrected bits= 0x%lx\n", allErrors);
604 
605  branch = extract_fbdchan_indx(info->ferr_nf_fbd);
606 
607  channel = 0;
608  if (REC_ECC_LOCATOR_ODD(info->redmemb))
609  channel = 1;
610 
611  /* Convert channel to be based from zero, instead of
612  * from branch base of 0 */
613  channel += branch;
614 
615  bank = rec_bank(info);
616  rank = rec_rank(info);
617  rdwr = rec_rdwr(info);
618  ras = rec_ras(info);
619  cas = rec_cas(info);
620 
621  /* Only 1 bit will be on */
622  errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
623 
624  edac_dbg(0, "\t\tDIMM= %d Channel= %d (Branch %d DRAM Bank= %d rdwr= %s ras= %d cas= %d)\n",
625  rank, channel, branch >> 1, bank,
626  rdwr_str(rdwr), ras, cas);
627 
628  /* Form out message */
629  snprintf(msg, sizeof(msg),
630  "Corrected error (Branch=%d DRAM-Bank=%d RDWR=%s "
631  "RAS=%d CAS=%d, CE Err=0x%lx (%s))",
632  branch >> 1, bank, rdwr_str(rdwr), ras, cas,
633  allErrors, error_name[errnum]);
634 
636  branch >> 1, channel % 2, rank,
637  rdwr ? "Write error" : "Read error",
638  msg);
639 
640  return;
641  }
642 
643  /* Miscellaneous errors */
644  errnum = find_first_bit(&allErrors, ARRAY_SIZE(error_name));
645 
646  branch = extract_fbdchan_indx(info->ferr_nf_fbd);
647 
649  "Non-Fatal misc error (Branch=%d Err=%#lx (%s))",
650  branch >> 1, allErrors, error_name[errnum]);
651 }
652 
653 /*
654  * i5400_process_error_info Process the error info that is
655  * in the 'info' structure, previously retrieved from hardware
656  */
657 static void i5400_process_error_info(struct mem_ctl_info *mci,
658  struct i5400_error_info *info)
659 { u32 allErrors;
660 
661  /* First handle any fatal errors that occurred */
662  allErrors = (info->ferr_fat_fbd & FERR_FAT_MASK);
663  i5400_proccess_non_recoverable_info(mci, info, allErrors);
664 
665  /* now handle any non-fatal errors that occurred */
666  i5400_process_nonfatal_error_info(mci, info);
667 }
668 
669 /*
670  * i5400_clear_error Retrieve any error from the hardware
671  * but do NOT process that error.
672  * Used for 'clearing' out of previous errors
673  * Called by the Core module.
674  */
675 static void i5400_clear_error(struct mem_ctl_info *mci)
676 {
677  struct i5400_error_info info;
678 
679  i5400_get_error_info(mci, &info);
680 }
681 
682 /*
683  * i5400_check_error Retrieve and process errors reported by the
684  * hardware. Called by the Core module.
685  */
686 static void i5400_check_error(struct mem_ctl_info *mci)
687 {
688  struct i5400_error_info info;
689  edac_dbg(4, "MC%d\n", mci->mc_idx);
690  i5400_get_error_info(mci, &info);
691  i5400_process_error_info(mci, &info);
692 }
693 
694 /*
695  * i5400_put_devices 'put' all the devices that we have
696  * reserved via 'get'
697  */
698 static void i5400_put_devices(struct mem_ctl_info *mci)
699 {
700  struct i5400_pvt *pvt;
701 
702  pvt = mci->pvt_info;
703 
704  /* Decrement usage count for devices */
705  pci_dev_put(pvt->branch_1);
706  pci_dev_put(pvt->branch_0);
709 }
710 
711 /*
712  * i5400_get_devices Find and perform 'get' operation on the MCH's
713  * device/functions we want to reference for this driver
714  *
715  * Need to 'get' device 16 func 1 and func 2
716  */
717 static int i5400_get_devices(struct mem_ctl_info *mci, int dev_idx)
718 {
719  struct i5400_pvt *pvt;
720  struct pci_dev *pdev;
721 
722  pvt = mci->pvt_info;
723  pvt->branchmap_werrors = NULL;
724  pvt->fsb_error_regs = NULL;
725  pvt->branch_0 = NULL;
726  pvt->branch_1 = NULL;
727 
728  /* Attempt to 'get' the MCH register we want */
729  pdev = NULL;
730  while (1) {
733  if (!pdev) {
734  /* End of list, leave */
736  "'system address,Process Bus' "
737  "device not found:"
738  "vendor 0x%x device 0x%x ERR func 1 "
739  "(broken BIOS?)\n",
742  return -ENODEV;
743  }
744 
745  /* Store device 16 func 1 */
746  if (PCI_FUNC(pdev->devfn) == 1)
747  break;
748  }
749  pvt->branchmap_werrors = pdev;
750 
751  pdev = NULL;
752  while (1) {
755  if (!pdev) {
756  /* End of list, leave */
758  "'system address,Process Bus' "
759  "device not found:"
760  "vendor 0x%x device 0x%x ERR func 2 "
761  "(broken BIOS?)\n",
764 
766  return -ENODEV;
767  }
768 
769  /* Store device 16 func 2 */
770  if (PCI_FUNC(pdev->devfn) == 2)
771  break;
772  }
773  pvt->fsb_error_regs = pdev;
774 
775  edac_dbg(1, "System Address, processor bus- PCI Bus ID: %s %x:%x\n",
776  pci_name(pvt->system_address),
777  pvt->system_address->vendor, pvt->system_address->device);
778  edac_dbg(1, "Branchmap, control and errors - PCI Bus ID: %s %x:%x\n",
779  pci_name(pvt->branchmap_werrors),
780  pvt->branchmap_werrors->vendor,
781  pvt->branchmap_werrors->device);
782  edac_dbg(1, "FSB Error Regs - PCI Bus ID: %s %x:%x\n",
783  pci_name(pvt->fsb_error_regs),
784  pvt->fsb_error_regs->vendor, pvt->fsb_error_regs->device);
785 
788  if (!pvt->branch_0) {
790  "MC: 'BRANCH 0' device not found:"
791  "vendor 0x%x device 0x%x Func 0 (broken BIOS?)\n",
793 
796  return -ENODEV;
797  }
798 
799  /* If this device claims to have more than 2 channels then
800  * fetch Branch 1's information
801  */
802  if (pvt->maxch < CHANNELS_PER_BRANCH)
803  return 0;
804 
807  if (!pvt->branch_1) {
809  "MC: 'BRANCH 1' device not found:"
810  "vendor 0x%x device 0x%x Func 0 "
811  "(broken BIOS?)\n",
814 
815  pci_dev_put(pvt->branch_0);
818  return -ENODEV;
819  }
820 
821  return 0;
822 }
823 
824 /*
825  * determine_amb_present
826  *
827  * the information is contained in DIMMS_PER_CHANNEL different
828  * registers determining which of the DIMMS_PER_CHANNEL requires
829  * knowing which channel is in question
830  *
831  * 2 branches, each with 2 channels
832  * b0_ambpresent0 for channel '0'
833  * b0_ambpresent1 for channel '1'
834  * b1_ambpresent0 for channel '2'
835  * b1_ambpresent1 for channel '3'
836  */
837 static int determine_amb_present_reg(struct i5400_pvt *pvt, int channel)
838 {
839  int amb_present;
840 
841  if (channel < CHANNELS_PER_BRANCH) {
842  if (channel & 0x1)
843  amb_present = pvt->b0_ambpresent1;
844  else
845  amb_present = pvt->b0_ambpresent0;
846  } else {
847  if (channel & 0x1)
848  amb_present = pvt->b1_ambpresent1;
849  else
850  amb_present = pvt->b1_ambpresent0;
851  }
852 
853  return amb_present;
854 }
855 
856 /*
857  * determine_mtr(pvt, dimm, channel)
858  *
859  * return the proper MTR register as determine by the dimm and desired channel
860  */
861 static int determine_mtr(struct i5400_pvt *pvt, int dimm, int channel)
862 {
863  int mtr;
864  int n;
865 
866  /* There is one MTR for each slot pair of FB-DIMMs,
867  Each slot pair may be at branch 0 or branch 1.
868  */
869  n = dimm;
870 
871  if (n >= DIMMS_PER_CHANNEL) {
872  edac_dbg(0, "ERROR: trying to access an invalid dimm: %d\n",
873  dimm);
874  return 0;
875  }
876 
877  if (channel < CHANNELS_PER_BRANCH)
878  mtr = pvt->b0_mtr[n];
879  else
880  mtr = pvt->b1_mtr[n];
881 
882  return mtr;
883 }
884 
885 /*
886  */
887 static void decode_mtr(int slot_row, u16 mtr)
888 {
889  int ans;
890 
891  ans = MTR_DIMMS_PRESENT(mtr);
892 
893  edac_dbg(2, "\tMTR%d=0x%x: DIMMs are %sPresent\n",
894  slot_row, mtr, ans ? "" : "NOT ");
895  if (!ans)
896  return;
897 
898  edac_dbg(2, "\t\tWIDTH: x%d\n", MTR_DRAM_WIDTH(mtr));
899 
900  edac_dbg(2, "\t\tELECTRICAL THROTTLING is %s\n",
901  MTR_DIMMS_ETHROTTLE(mtr) ? "enabled" : "disabled");
902 
903  edac_dbg(2, "\t\tNUMBANK: %d bank(s)\n", MTR_DRAM_BANKS(mtr));
904  edac_dbg(2, "\t\tNUMRANK: %s\n",
905  MTR_DIMM_RANK(mtr) ? "double" : "single");
906  edac_dbg(2, "\t\tNUMROW: %s\n",
907  MTR_DIMM_ROWS(mtr) == 0 ? "8,192 - 13 rows" :
908  MTR_DIMM_ROWS(mtr) == 1 ? "16,384 - 14 rows" :
909  MTR_DIMM_ROWS(mtr) == 2 ? "32,768 - 15 rows" :
910  "65,536 - 16 rows");
911  edac_dbg(2, "\t\tNUMCOL: %s\n",
912  MTR_DIMM_COLS(mtr) == 0 ? "1,024 - 10 columns" :
913  MTR_DIMM_COLS(mtr) == 1 ? "2,048 - 11 columns" :
914  MTR_DIMM_COLS(mtr) == 2 ? "4,096 - 12 columns" :
915  "reserved");
916 }
917 
918 static void handle_channel(struct i5400_pvt *pvt, int dimm, int channel,
919  struct i5400_dimm_info *dinfo)
920 {
921  int mtr;
922  int amb_present_reg;
923  int addrBits;
924 
925  mtr = determine_mtr(pvt, dimm, channel);
926  if (MTR_DIMMS_PRESENT(mtr)) {
927  amb_present_reg = determine_amb_present_reg(pvt, channel);
928 
929  /* Determine if there is a DIMM present in this DIMM slot */
930  if (amb_present_reg & (1 << dimm)) {
931  /* Start with the number of bits for a Bank
932  * on the DRAM */
933  addrBits = MTR_DRAM_BANKS_ADDR_BITS(mtr);
934  /* Add thenumber of ROW bits */
935  addrBits += MTR_DIMM_ROWS_ADDR_BITS(mtr);
936  /* add the number of COLUMN bits */
937  addrBits += MTR_DIMM_COLS_ADDR_BITS(mtr);
938  /* add the number of RANK bits */
939  addrBits += MTR_DIMM_RANK(mtr);
940 
941  addrBits += 6; /* add 64 bits per DIMM */
942  addrBits -= 20; /* divide by 2^^20 */
943  addrBits -= 3; /* 8 bits per bytes */
944 
945  dinfo->megabytes = 1 << addrBits;
946  }
947  }
948 }
949 
950 /*
951  * calculate_dimm_size
952  *
953  * also will output a DIMM matrix map, if debug is enabled, for viewing
954  * how the DIMMs are populated
955  */
956 static void calculate_dimm_size(struct i5400_pvt *pvt)
957 {
958  struct i5400_dimm_info *dinfo;
959  int dimm, max_dimms;
960  char *p, *mem_buffer;
961  int space, n;
962  int channel, branch;
963 
964  /* ================= Generate some debug output ================= */
965  space = PAGE_SIZE;
966  mem_buffer = p = kmalloc(space, GFP_KERNEL);
967  if (p == NULL) {
968  i5400_printk(KERN_ERR, "MC: %s:%s() kmalloc() failed\n",
969  __FILE__, __func__);
970  return;
971  }
972 
973  /* Scan all the actual DIMMS
974  * and calculate the information for each DIMM
975  * Start with the highest dimm first, to display it first
976  * and work toward the 0th dimm
977  */
978  max_dimms = pvt->maxdimmperch;
979  for (dimm = max_dimms - 1; dimm >= 0; dimm--) {
980 
981  /* on an odd dimm, first output a 'boundary' marker,
982  * then reset the message buffer */
983  if (dimm & 0x1) {
984  n = snprintf(p, space, "---------------------------"
985  "-------------------------------");
986  p += n;
987  space -= n;
988  edac_dbg(2, "%s\n", mem_buffer);
989  p = mem_buffer;
990  space = PAGE_SIZE;
991  }
992  n = snprintf(p, space, "dimm %2d ", dimm);
993  p += n;
994  space -= n;
995 
996  for (channel = 0; channel < pvt->maxch; channel++) {
997  dinfo = &pvt->dimm_info[dimm][channel];
998  handle_channel(pvt, dimm, channel, dinfo);
999  n = snprintf(p, space, "%4d MB | ", dinfo->megabytes);
1000  p += n;
1001  space -= n;
1002  }
1003  edac_dbg(2, "%s\n", mem_buffer);
1004  p = mem_buffer;
1005  space = PAGE_SIZE;
1006  }
1007 
1008  /* Output the last bottom 'boundary' marker */
1009  n = snprintf(p, space, "---------------------------"
1010  "-------------------------------");
1011  p += n;
1012  space -= n;
1013  edac_dbg(2, "%s\n", mem_buffer);
1014  p = mem_buffer;
1015  space = PAGE_SIZE;
1016 
1017  /* now output the 'channel' labels */
1018  n = snprintf(p, space, " ");
1019  p += n;
1020  space -= n;
1021  for (channel = 0; channel < pvt->maxch; channel++) {
1022  n = snprintf(p, space, "channel %d | ", channel);
1023  p += n;
1024  space -= n;
1025  }
1026 
1027  space -= n;
1028  edac_dbg(2, "%s\n", mem_buffer);
1029  p = mem_buffer;
1030  space = PAGE_SIZE;
1031 
1032  n = snprintf(p, space, " ");
1033  p += n;
1034  for (branch = 0; branch < MAX_BRANCHES; branch++) {
1035  n = snprintf(p, space, " branch %d | ", branch);
1036  p += n;
1037  space -= n;
1038  }
1039 
1040  /* output the last message and free buffer */
1041  edac_dbg(2, "%s\n", mem_buffer);
1042  kfree(mem_buffer);
1043 }
1044 
1045 /*
1046  * i5400_get_mc_regs read in the necessary registers and
1047  * cache locally
1048  *
1049  * Fills in the private data members
1050  */
1051 static void i5400_get_mc_regs(struct mem_ctl_info *mci)
1052 {
1053  struct i5400_pvt *pvt;
1054  u32 actual_tolm;
1055  u16 limit;
1056  int slot_row;
1057  int maxch;
1058  int maxdimmperch;
1059  int way0, way1;
1060 
1061  pvt = mci->pvt_info;
1062 
1063  pci_read_config_dword(pvt->system_address, AMBASE,
1064  &pvt->u.ambase_bottom);
1065  pci_read_config_dword(pvt->system_address, AMBASE + sizeof(u32),
1066  &pvt->u.ambase_top);
1067 
1068  maxdimmperch = pvt->maxdimmperch;
1069  maxch = pvt->maxch;
1070 
1071  edac_dbg(2, "AMBASE= 0x%lx MAXCH= %d MAX-DIMM-Per-CH= %d\n",
1072  (long unsigned int)pvt->ambase, pvt->maxch, pvt->maxdimmperch);
1073 
1074  /* Get the Branch Map regs */
1075  pci_read_config_word(pvt->branchmap_werrors, TOLM, &pvt->tolm);
1076  pvt->tolm >>= 12;
1077  edac_dbg(2, "\nTOLM (number of 256M regions) =%u (0x%x)\n",
1078  pvt->tolm, pvt->tolm);
1079 
1080  actual_tolm = (u32) ((1000l * pvt->tolm) >> (30 - 28));
1081  edac_dbg(2, "Actual TOLM byte addr=%u.%03u GB (0x%x)\n",
1082  actual_tolm/1000, actual_tolm % 1000, pvt->tolm << 28);
1083 
1084  pci_read_config_word(pvt->branchmap_werrors, MIR0, &pvt->mir0);
1085  pci_read_config_word(pvt->branchmap_werrors, MIR1, &pvt->mir1);
1086 
1087  /* Get the MIR[0-1] regs */
1088  limit = (pvt->mir0 >> 4) & 0x0fff;
1089  way0 = pvt->mir0 & 0x1;
1090  way1 = pvt->mir0 & 0x2;
1091  edac_dbg(2, "MIR0: limit= 0x%x WAY1= %u WAY0= %x\n",
1092  limit, way1, way0);
1093  limit = (pvt->mir1 >> 4) & 0xfff;
1094  way0 = pvt->mir1 & 0x1;
1095  way1 = pvt->mir1 & 0x2;
1096  edac_dbg(2, "MIR1: limit= 0x%x WAY1= %u WAY0= %x\n",
1097  limit, way1, way0);
1098 
1099  /* Get the set of MTR[0-3] regs by each branch */
1100  for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++) {
1101  int where = MTR0 + (slot_row * sizeof(u16));
1102 
1103  /* Branch 0 set of MTR registers */
1104  pci_read_config_word(pvt->branch_0, where,
1105  &pvt->b0_mtr[slot_row]);
1106 
1107  edac_dbg(2, "MTR%d where=0x%x B0 value=0x%x\n",
1108  slot_row, where, pvt->b0_mtr[slot_row]);
1109 
1110  if (pvt->maxch < CHANNELS_PER_BRANCH) {
1111  pvt->b1_mtr[slot_row] = 0;
1112  continue;
1113  }
1114 
1115  /* Branch 1 set of MTR registers */
1116  pci_read_config_word(pvt->branch_1, where,
1117  &pvt->b1_mtr[slot_row]);
1118  edac_dbg(2, "MTR%d where=0x%x B1 value=0x%x\n",
1119  slot_row, where, pvt->b1_mtr[slot_row]);
1120  }
1121 
1122  /* Read and dump branch 0's MTRs */
1123  edac_dbg(2, "Memory Technology Registers:\n");
1124  edac_dbg(2, " Branch 0:\n");
1125  for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1126  decode_mtr(slot_row, pvt->b0_mtr[slot_row]);
1127 
1128  pci_read_config_word(pvt->branch_0, AMBPRESENT_0,
1129  &pvt->b0_ambpresent0);
1130  edac_dbg(2, "\t\tAMB-Branch 0-present0 0x%x:\n", pvt->b0_ambpresent0);
1131  pci_read_config_word(pvt->branch_0, AMBPRESENT_1,
1132  &pvt->b0_ambpresent1);
1133  edac_dbg(2, "\t\tAMB-Branch 0-present1 0x%x:\n", pvt->b0_ambpresent1);
1134 
1135  /* Only if we have 2 branchs (4 channels) */
1136  if (pvt->maxch < CHANNELS_PER_BRANCH) {
1137  pvt->b1_ambpresent0 = 0;
1138  pvt->b1_ambpresent1 = 0;
1139  } else {
1140  /* Read and dump branch 1's MTRs */
1141  edac_dbg(2, " Branch 1:\n");
1142  for (slot_row = 0; slot_row < DIMMS_PER_CHANNEL; slot_row++)
1143  decode_mtr(slot_row, pvt->b1_mtr[slot_row]);
1144 
1145  pci_read_config_word(pvt->branch_1, AMBPRESENT_0,
1146  &pvt->b1_ambpresent0);
1147  edac_dbg(2, "\t\tAMB-Branch 1-present0 0x%x:\n",
1148  pvt->b1_ambpresent0);
1149  pci_read_config_word(pvt->branch_1, AMBPRESENT_1,
1150  &pvt->b1_ambpresent1);
1151  edac_dbg(2, "\t\tAMB-Branch 1-present1 0x%x:\n",
1152  pvt->b1_ambpresent1);
1153  }
1154 
1155  /* Go and determine the size of each DIMM and place in an
1156  * orderly matrix */
1157  calculate_dimm_size(pvt);
1158 }
1159 
1160 /*
1161  * i5400_init_dimms Initialize the 'dimms' table within
1162  * the mci control structure with the
1163  * addressing of memory.
1164  *
1165  * return:
1166  * 0 success
1167  * 1 no actual memory found on this MC
1168  */
1169 static int i5400_init_dimms(struct mem_ctl_info *mci)
1170 {
1171  struct i5400_pvt *pvt;
1172  struct dimm_info *dimm;
1173  int ndimms, channel_count;
1174  int max_dimms;
1175  int mtr;
1176  int size_mb;
1177  int channel, slot;
1178 
1179  pvt = mci->pvt_info;
1180 
1181  channel_count = pvt->maxch;
1182  max_dimms = pvt->maxdimmperch;
1183 
1184  ndimms = 0;
1185 
1186  /*
1187  * FIXME: remove pvt->dimm_info[slot][channel] and use the 3
1188  * layers here.
1189  */
1190  for (channel = 0; channel < mci->layers[0].size * mci->layers[1].size;
1191  channel++) {
1192  for (slot = 0; slot < mci->layers[2].size; slot++) {
1193  mtr = determine_mtr(pvt, slot, channel);
1194 
1195  /* if no DIMMS on this slot, continue */
1196  if (!MTR_DIMMS_PRESENT(mtr))
1197  continue;
1198 
1199  dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
1200  channel / 2, channel % 2, slot);
1201 
1202  size_mb = pvt->dimm_info[slot][channel].megabytes;
1203 
1204  edac_dbg(2, "dimm (branch %d channel %d slot %d): %d.%03d GB\n",
1205  channel / 2, channel % 2, slot,
1206  size_mb / 1000, size_mb % 1000);
1207 
1208  dimm->nr_pages = size_mb << 8;
1209  dimm->grain = 8;
1210  dimm->dtype = MTR_DRAM_WIDTH(mtr) ? DEV_X8 : DEV_X4;
1211  dimm->mtype = MEM_FB_DDR2;
1212  /*
1213  * The eccc mechanism is SDDC (aka SECC), with
1214  * is similar to Chipkill.
1215  */
1216  dimm->edac_mode = MTR_DRAM_WIDTH(mtr) ?
1218  ndimms++;
1219  }
1220  }
1221 
1222  /*
1223  * When just one memory is provided, it should be at location (0,0,0).
1224  * With such single-DIMM mode, the SDCC algorithm degrades to SECDEC+.
1225  */
1226  if (ndimms == 1)
1227  mci->dimms[0]->edac_mode = EDAC_SECDED;
1228 
1229  return (ndimms == 0);
1230 }
1231 
1232 /*
1233  * i5400_enable_error_reporting
1234  * Turn on the memory reporting features of the hardware
1235  */
1236 static void i5400_enable_error_reporting(struct mem_ctl_info *mci)
1237 {
1238  struct i5400_pvt *pvt;
1239  u32 fbd_error_mask;
1240 
1241  pvt = mci->pvt_info;
1242 
1243  /* Read the FBD Error Mask Register */
1244  pci_read_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1245  &fbd_error_mask);
1246 
1247  /* Enable with a '0' */
1248  fbd_error_mask &= ~(ENABLE_EMASK_ALL);
1249 
1250  pci_write_config_dword(pvt->branchmap_werrors, EMASK_FBD,
1251  fbd_error_mask);
1252 }
1253 
1254 /*
1255  * i5400_probe1 Probe for ONE instance of device to see if it is
1256  * present.
1257  * return:
1258  * 0 for FOUND a device
1259  * < 0 for error code
1260  */
1261 static int i5400_probe1(struct pci_dev *pdev, int dev_idx)
1262 {
1263  struct mem_ctl_info *mci;
1264  struct i5400_pvt *pvt;
1265  struct edac_mc_layer layers[3];
1266 
1267  if (dev_idx >= ARRAY_SIZE(i5400_devs))
1268  return -EINVAL;
1269 
1270  edac_dbg(0, "MC: pdev bus %u dev=0x%x fn=0x%x\n",
1271  pdev->bus->number,
1272  PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1273 
1274  /* We only are looking for func 0 of the set */
1275  if (PCI_FUNC(pdev->devfn) != 0)
1276  return -ENODEV;
1277 
1278  /*
1279  * allocate a new MC control structure
1280  *
1281  * This drivers uses the DIMM slot as "csrow" and the rest as "channel".
1282  */
1283  layers[0].type = EDAC_MC_LAYER_BRANCH;
1284  layers[0].size = MAX_BRANCHES;
1285  layers[0].is_virt_csrow = false;
1286  layers[1].type = EDAC_MC_LAYER_CHANNEL;
1287  layers[1].size = CHANNELS_PER_BRANCH;
1288  layers[1].is_virt_csrow = false;
1289  layers[2].type = EDAC_MC_LAYER_SLOT;
1290  layers[2].size = DIMMS_PER_CHANNEL;
1291  layers[2].is_virt_csrow = true;
1292  mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*pvt));
1293  if (mci == NULL)
1294  return -ENOMEM;
1295 
1296  edac_dbg(0, "MC: mci = %p\n", mci);
1297 
1298  mci->pdev = &pdev->dev; /* record ptr to the generic device */
1299 
1300  pvt = mci->pvt_info;
1301  pvt->system_address = pdev; /* Record this device in our private */
1302  pvt->maxch = MAX_CHANNELS;
1304 
1305  /* 'get' the pci devices we want to reserve for our use */
1306  if (i5400_get_devices(mci, dev_idx))
1307  goto fail0;
1308 
1309  /* Time to get serious */
1310  i5400_get_mc_regs(mci); /* retrieve the hardware registers */
1311 
1312  mci->mc_idx = 0;
1313  mci->mtype_cap = MEM_FLAG_FB_DDR2;
1315  mci->edac_cap = EDAC_FLAG_NONE;
1316  mci->mod_name = "i5400_edac.c";
1317  mci->mod_ver = I5400_REVISION;
1318  mci->ctl_name = i5400_devs[dev_idx].ctl_name;
1319  mci->dev_name = pci_name(pdev);
1320  mci->ctl_page_to_phys = NULL;
1321 
1322  /* Set the function pointer to an actual operation function */
1323  mci->edac_check = i5400_check_error;
1324 
1325  /* initialize the MC control structure 'dimms' table
1326  * with the mapping and control information */
1327  if (i5400_init_dimms(mci)) {
1328  edac_dbg(0, "MC: Setting mci->edac_cap to EDAC_FLAG_NONE because i5400_init_dimms() returned nonzero value\n");
1329  mci->edac_cap = EDAC_FLAG_NONE; /* no dimms found */
1330  } else {
1331  edac_dbg(1, "MC: Enable error reporting now\n");
1332  i5400_enable_error_reporting(mci);
1333  }
1334 
1335  /* add this new MC control structure to EDAC's list of MCs */
1336  if (edac_mc_add_mc(mci)) {
1337  edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
1338  /* FIXME: perhaps some code should go here that disables error
1339  * reporting if we just enabled it
1340  */
1341  goto fail1;
1342  }
1343 
1344  i5400_clear_error(mci);
1345 
1346  /* allocating generic PCI control info */
1347  i5400_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
1348  if (!i5400_pci) {
1350  "%s(): Unable to create PCI control\n",
1351  __func__);
1353  "%s(): PCI error report via EDAC not setup\n",
1354  __func__);
1355  }
1356 
1357  return 0;
1358 
1359  /* Error exit unwinding stack */
1360 fail1:
1361 
1362  i5400_put_devices(mci);
1363 
1364 fail0:
1365  edac_mc_free(mci);
1366  return -ENODEV;
1367 }
1368 
1369 /*
1370  * i5400_init_one constructor for one instance of device
1371  *
1372  * returns:
1373  * negative on error
1374  * count (>= 0)
1375  */
1376 static int __devinit i5400_init_one(struct pci_dev *pdev,
1377  const struct pci_device_id *id)
1378 {
1379  int rc;
1380 
1381  edac_dbg(0, "MC:\n");
1382 
1383  /* wake up device */
1384  rc = pci_enable_device(pdev);
1385  if (rc)
1386  return rc;
1387 
1388  /* now probe and enable the device */
1389  return i5400_probe1(pdev, id->driver_data);
1390 }
1391 
1392 /*
1393  * i5400_remove_one destructor for one instance of device
1394  *
1395  */
1396 static void __devexit i5400_remove_one(struct pci_dev *pdev)
1397 {
1398  struct mem_ctl_info *mci;
1399 
1400  edac_dbg(0, "\n");
1401 
1402  if (i5400_pci)
1403  edac_pci_release_generic_ctl(i5400_pci);
1404 
1405  mci = edac_mc_del_mc(&pdev->dev);
1406  if (!mci)
1407  return;
1408 
1409  /* retrieve references to resources, and free those resources */
1410  i5400_put_devices(mci);
1411 
1412  edac_mc_free(mci);
1413 }
1414 
1415 /*
1416  * pci_device_id table for which devices we are looking for
1417  *
1418  * The "E500P" device is the first device supported.
1419  */
1420 static DEFINE_PCI_DEVICE_TABLE(i5400_pci_tbl) = {
1422  {0,} /* 0 terminated list. */
1423 };
1424 
1425 MODULE_DEVICE_TABLE(pci, i5400_pci_tbl);
1426 
1427 /*
1428  * i5400_driver pci_driver structure for this module
1429  *
1430  */
1431 static struct pci_driver i5400_driver = {
1432  .name = "i5400_edac",
1433  .probe = i5400_init_one,
1434  .remove = __devexit_p(i5400_remove_one),
1435  .id_table = i5400_pci_tbl,
1436 };
1437 
1438 /*
1439  * i5400_init Module entry function
1440  * Try to initialize this module for its devices
1441  */
1442 static int __init i5400_init(void)
1443 {
1444  int pci_rc;
1445 
1446  edac_dbg(2, "MC:\n");
1447 
1448  /* Ensure that the OPSTATE is set correctly for POLL or NMI */
1449  opstate_init();
1450 
1451  pci_rc = pci_register_driver(&i5400_driver);
1452 
1453  return (pci_rc < 0) ? pci_rc : 0;
1454 }
1455 
1456 /*
1457  * i5400_exit() Module exit function
1458  * Unregister the driver
1459  */
1460 static void __exit i5400_exit(void)
1461 {
1462  edac_dbg(2, "MC:\n");
1463  pci_unregister_driver(&i5400_driver);
1464 }
1465 
1466 module_init(i5400_init);
1467 module_exit(i5400_exit);
1468 
1469 MODULE_LICENSE("GPL");
1470 MODULE_AUTHOR("Ben Woodard <[email protected]>");
1471 MODULE_AUTHOR("Mauro Carvalho Chehab <[email protected]>");
1472 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
1473 MODULE_DESCRIPTION("MC Driver for Intel I5400 memory controllers - "
1474  I5400_REVISION);
1475 
1476 module_param(edac_op_state, int, 0444);
1477 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");