Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mca.c
Go to the documentation of this file.
1 /*
2  * File: mca.c
3  * Purpose: Generic MCA handling layer
4  *
5  * Copyright (C) 2003 Hewlett-Packard Co
6  * David Mosberger-Tang <[email protected]>
7  *
8  * Copyright (C) 2002 Dell Inc.
9  * Copyright (C) Matt Domsch <[email protected]>
10  *
11  * Copyright (C) 2002 Intel
12  * Copyright (C) Jenna Hall <[email protected]>
13  *
14  * Copyright (C) 2001 Intel
15  * Copyright (C) Fred Lewis <[email protected]>
16  *
17  * Copyright (C) 2000 Intel
18  * Copyright (C) Chuck Fleckenstein <[email protected]>
19  *
20  * Copyright (C) 1999, 2004-2008 Silicon Graphics, Inc.
21  * Copyright (C) Vijay Chander <[email protected]>
22  *
23  * Copyright (C) 2006 FUJITSU LIMITED
24  * Copyright (C) Hidetoshi Seto <[email protected]>
25  *
26  * 2000-03-29 Chuck Fleckenstein <[email protected]>
27  * Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
28  * added min save state dump, added INIT handler.
29  *
30  * 2001-01-03 Fred Lewis <[email protected]>
31  * Added setup of CMCI and CPEI IRQs, logging of corrected platform
32  * errors, completed code for logging of corrected & uncorrected
33  * machine check errors, and updated for conformance with Nov. 2000
34  * revision of the SAL 3.0 spec.
35  *
36  * 2002-01-04 Jenna Hall <[email protected]>
37  * Aligned MCA stack to 16 bytes, added platform vs. CPU error flag,
38  * set SAL default return values, changed error record structure to
39  * linked list, added init call to sal_get_state_info_size().
40  *
41  * 2002-03-25 Matt Domsch <[email protected]>
42  * GUID cleanups.
43  *
44  * 2003-04-15 David Mosberger-Tang <[email protected]>
45  * Added INIT backtrace support.
46  *
47  * 2003-12-08 Keith Owens <[email protected]>
48  * smp_call_function() must not be called from interrupt context
49  * (can deadlock on tasklist_lock).
50  * Use keventd to call smp_call_function().
51  *
52  * 2004-02-01 Keith Owens <[email protected]>
53  * Avoid deadlock when using printk() for MCA and INIT records.
54  * Delete all record printing code, moved to salinfo_decode in user
55  * space. Mark variables and functions static where possible.
56  * Delete dead variables and functions. Reorder to remove the need
57  * for forward declarations and to consolidate related code.
58  *
59  * 2005-08-12 Keith Owens <[email protected]>
60  * Convert MCA/INIT handlers to use per event stacks and SAL/OS
61  * state.
62  *
63  * 2005-10-07 Keith Owens <[email protected]>
64  * Add notify_die() hooks.
65  *
66  * 2006-09-15 Hidetoshi Seto <[email protected]>
67  * Add printing support for MCA/INIT.
68  *
69  * 2007-04-27 Russ Anderson <[email protected]>
70  * Support multiple cpus going through OS_MCA in the same event.
71  */
72 #include <linux/jiffies.h>
73 #include <linux/types.h>
74 #include <linux/init.h>
75 #include <linux/sched.h>
76 #include <linux/interrupt.h>
77 #include <linux/irq.h>
78 #include <linux/bootmem.h>
79 #include <linux/acpi.h>
80 #include <linux/timer.h>
81 #include <linux/module.h>
82 #include <linux/kernel.h>
83 #include <linux/smp.h>
84 #include <linux/workqueue.h>
85 #include <linux/cpumask.h>
86 #include <linux/kdebug.h>
87 #include <linux/cpu.h>
88 #include <linux/gfp.h>
89 
90 #include <asm/delay.h>
91 #include <asm/machvec.h>
92 #include <asm/meminit.h>
93 #include <asm/page.h>
94 #include <asm/ptrace.h>
95 #include <asm/sal.h>
96 #include <asm/mca.h>
97 #include <asm/kexec.h>
98 
99 #include <asm/irq.h>
100 #include <asm/hw_irq.h>
101 #include <asm/tlb.h>
102 
103 #include "mca_drv.h"
104 #include "entry.h"
105 
106 #if defined(IA64_MCA_DEBUG_INFO)
107 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
108 #else
109 # define IA64_MCA_DEBUG(fmt...)
110 #endif
111 
112 #define NOTIFY_INIT(event, regs, arg, spin) \
113 do { \
114  if ((notify_die((event), "INIT", (regs), (arg), 0, 0) \
115  == NOTIFY_STOP) && ((spin) == 1)) \
116  ia64_mca_spin(__func__); \
117 } while (0)
118 
119 #define NOTIFY_MCA(event, regs, arg, spin) \
120 do { \
121  if ((notify_die((event), "MCA", (regs), (arg), 0, 0) \
122  == NOTIFY_STOP) && ((spin) == 1)) \
123  ia64_mca_spin(__func__); \
124 } while (0)
125 
126 /* Used by mca_asm.S */
127 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
128 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
129 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
130 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
131 DEFINE_PER_CPU(u64, ia64_mca_tr_reload); /* Flag for TR reload */
132 
133 unsigned long __per_cpu_mca[NR_CPUS];
134 
135 /* In mca_asm.S */
136 extern void ia64_os_init_dispatch_monarch (void);
137 extern void ia64_os_init_dispatch_slave (void);
138 
139 static int monarch_cpu = -1;
140 
141 static ia64_mc_info_t ia64_mc_info;
142 
143 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
144 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
145 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
146 #define CPE_HISTORY_LENGTH 5
147 #define CMC_HISTORY_LENGTH 5
148 
149 #ifdef CONFIG_ACPI
150 static struct timer_list cpe_poll_timer;
151 #endif
152 static struct timer_list cmc_poll_timer;
153 /*
154  * This variable tells whether we are currently in polling mode.
155  * Start with this in the wrong state so we won't play w/ timers
156  * before the system is ready.
157  */
158 static int cmc_polling_enabled = 1;
159 
160 /*
161  * Clearing this variable prevents CPE polling from getting activated
162  * in mca_late_init. Use it if your system doesn't provide a CPEI,
163  * but encounters problems retrieving CPE logs. This should only be
164  * necessary for debugging.
165  */
166 static int cpe_poll_enabled = 1;
167 
168 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
169 
170 static int mca_init __initdata;
171 
172 /*
173  * limited & delayed printing support for MCA/INIT handler
174  */
175 
176 #define mprintk(fmt...) ia64_mca_printk(fmt)
177 
178 #define MLOGBUF_SIZE (512+256*NR_CPUS)
179 #define MLOGBUF_MSGMAX 256
180 static char mlogbuf[MLOGBUF_SIZE];
181 static DEFINE_SPINLOCK(mlogbuf_wlock); /* mca context only */
182 static DEFINE_SPINLOCK(mlogbuf_rlock); /* normal context only */
183 static unsigned long mlogbuf_start;
184 static unsigned long mlogbuf_end;
185 static unsigned int mlogbuf_finished = 0;
186 static unsigned long mlogbuf_timestamp = 0;
187 
188 static int loglevel_save = -1;
189 #define BREAK_LOGLEVEL(__console_loglevel) \
190  oops_in_progress = 1; \
191  if (loglevel_save < 0) \
192  loglevel_save = __console_loglevel; \
193  __console_loglevel = 15;
194 
195 #define RESTORE_LOGLEVEL(__console_loglevel) \
196  if (loglevel_save >= 0) { \
197  __console_loglevel = loglevel_save; \
198  loglevel_save = -1; \
199  } \
200  mlogbuf_finished = 0; \
201  oops_in_progress = 0;
202 
203 /*
204  * Push messages into buffer, print them later if not urgent.
205  */
206 void ia64_mca_printk(const char *fmt, ...)
207 {
208  va_list args;
209  int printed_len;
210  char temp_buf[MLOGBUF_MSGMAX];
211  char *p;
212 
213  va_start(args, fmt);
214  printed_len = vscnprintf(temp_buf, sizeof(temp_buf), fmt, args);
215  va_end(args);
216 
217  /* Copy the output into mlogbuf */
218  if (oops_in_progress) {
219  /* mlogbuf was abandoned, use printk directly instead. */
220  printk(temp_buf);
221  } else {
222  spin_lock(&mlogbuf_wlock);
223  for (p = temp_buf; *p; p++) {
224  unsigned long next = (mlogbuf_end + 1) % MLOGBUF_SIZE;
225  if (next != mlogbuf_start) {
226  mlogbuf[mlogbuf_end] = *p;
227  mlogbuf_end = next;
228  } else {
229  /* buffer full */
230  break;
231  }
232  }
233  mlogbuf[mlogbuf_end] = '\0';
234  spin_unlock(&mlogbuf_wlock);
235  }
236 }
238 
239 /*
240  * Print buffered messages.
241  * NOTE: call this after returning normal context. (ex. from salinfod)
242  */
244 {
245  char temp_buf[MLOGBUF_MSGMAX];
246  char *p;
247  unsigned long index;
248  unsigned long flags;
249  unsigned int printed_len;
250 
251  /* Get output from mlogbuf */
252  while (mlogbuf_start != mlogbuf_end) {
253  temp_buf[0] = '\0';
254  p = temp_buf;
255  printed_len = 0;
256 
257  spin_lock_irqsave(&mlogbuf_rlock, flags);
258 
259  index = mlogbuf_start;
260  while (index != mlogbuf_end) {
261  *p = mlogbuf[index];
262  index = (index + 1) % MLOGBUF_SIZE;
263  if (!*p)
264  break;
265  p++;
266  if (++printed_len >= MLOGBUF_MSGMAX - 1)
267  break;
268  }
269  *p = '\0';
270  if (temp_buf[0])
271  printk(temp_buf);
272  mlogbuf_start = index;
273 
274  mlogbuf_timestamp = 0;
275  spin_unlock_irqrestore(&mlogbuf_rlock, flags);
276  }
277 }
279 
280 /*
281  * Call this if system is going to down or if immediate flushing messages to
282  * console is required. (ex. recovery was failed, crash dump is going to be
283  * invoked, long-wait rendezvous etc.)
284  * NOTE: this should be called from monarch.
285  */
286 static void ia64_mlogbuf_finish(int wait)
287 {
289 
290  spin_lock_init(&mlogbuf_rlock);
292  printk(KERN_EMERG "mlogbuf_finish: printing switched to urgent mode, "
293  "MCA/INIT might be dodgy or fail.\n");
294 
295  if (!wait)
296  return;
297 
298  /* wait for console */
299  printk("Delaying for 5 seconds...\n");
300  udelay(5*1000000);
301 
302  mlogbuf_finished = 1;
303 }
304 
305 /*
306  * Print buffered messages from INIT context.
307  */
308 static void ia64_mlogbuf_dump_from_init(void)
309 {
310  if (mlogbuf_finished)
311  return;
312 
313  if (mlogbuf_timestamp &&
314  time_before(jiffies, mlogbuf_timestamp + 30 * HZ)) {
315  printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT "
316  " and the system seems to be messed up.\n");
317  ia64_mlogbuf_finish(0);
318  return;
319  }
320 
321  if (!spin_trylock(&mlogbuf_rlock)) {
322  printk(KERN_ERR "INIT: mlogbuf_dump is interrupted by INIT. "
323  "Generated messages other than stack dump will be "
324  "buffered to mlogbuf and will be printed later.\n");
325  printk(KERN_ERR "INIT: If messages would not printed after "
326  "this INIT, wait 30sec and assert INIT again.\n");
327  if (!mlogbuf_timestamp)
328  mlogbuf_timestamp = jiffies;
329  return;
330  }
331  spin_unlock(&mlogbuf_rlock);
333 }
334 
335 static void inline
336 ia64_mca_spin(const char *func)
337 {
338  if (monarch_cpu == smp_processor_id())
339  ia64_mlogbuf_finish(0);
340  mprintk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
341  while (1)
342  cpu_relax();
343 }
344 /*
345  * IA64_MCA log support
346  */
347 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
348 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
349 
350 typedef struct ia64_state_log_s
351 {
354  unsigned long isl_count;
355  ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
357 
358 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
359 
360 #define IA64_LOG_ALLOCATE(it, size) \
361  {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
362  (ia64_err_rec_t *)alloc_bootmem(size); \
363  ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
364  (ia64_err_rec_t *)alloc_bootmem(size);}
365 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
366 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
367 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
368 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
369 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
370 #define IA64_LOG_INDEX_INC(it) \
371  {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
372  ia64_state_log[it].isl_count++;}
373 #define IA64_LOG_INDEX_DEC(it) \
374  ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
375 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
376 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
377 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
378 
379 /*
380  * ia64_log_init
381  * Reset the OS ia64 log buffer
382  * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
383  * Outputs : None
384  */
385 static void __init
386 ia64_log_init(int sal_info_type)
387 {
388  u64 max_size = 0;
389 
390  IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
391  IA64_LOG_LOCK_INIT(sal_info_type);
392 
393  // SAL will tell us the maximum size of any error record of this type
394  max_size = ia64_sal_get_state_info_size(sal_info_type);
395  if (!max_size)
396  /* alloc_bootmem() doesn't like zero-sized allocations! */
397  return;
398 
399  // set up OS data structures to hold error info
400  IA64_LOG_ALLOCATE(sal_info_type, max_size);
401  memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
402  memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
403 }
404 
405 /*
406  * ia64_log_get
407  *
408  * Get the current MCA log from SAL and copy it into the OS log buffer.
409  *
410  * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
411  * irq_safe whether you can use printk at this point
412  * Outputs : size (total record length)
413  * *buffer (ptr to error record)
414  *
415  */
416 static u64
417 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
418 {
419  sal_log_record_header_t *log_buffer;
420  u64 total_len = 0;
421  unsigned long s;
422 
423  IA64_LOG_LOCK(sal_info_type);
424 
425  /* Get the process state information */
426  log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
427 
428  total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
429 
430  if (total_len) {
431  IA64_LOG_INDEX_INC(sal_info_type);
432  IA64_LOG_UNLOCK(sal_info_type);
433  if (irq_safe) {
434  IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. Record length = %ld\n",
435  __func__, sal_info_type, total_len);
436  }
437  *buffer = (u8 *) log_buffer;
438  return total_len;
439  } else {
440  IA64_LOG_UNLOCK(sal_info_type);
441  return 0;
442  }
443 }
444 
445 /*
446  * ia64_mca_log_sal_error_record
447  *
448  * This function retrieves a specified error record type from SAL
449  * and wakes up any processes waiting for error records.
450  *
451  * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
452  * FIXME: remove MCA and irq_safe.
453  */
454 static void
455 ia64_mca_log_sal_error_record(int sal_info_type)
456 {
457  u8 *buffer;
459  u64 size;
460  int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
461 #ifdef IA64_MCA_DEBUG_INFO
462  static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
463 #endif
464 
465  size = ia64_log_get(sal_info_type, &buffer, irq_safe);
466  if (!size)
467  return;
468 
469  salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
470 
471  if (irq_safe)
472  IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
474  sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
475 
476  /* Clear logs from corrected errors in case there's no user-level logger */
477  rh = (sal_log_record_header_t *)buffer;
479  ia64_sal_clear_state_info(sal_info_type);
480 }
481 
482 /*
483  * search_mca_table
484  * See if the MCA surfaced in an instruction range
485  * that has been tagged as recoverable.
486  *
487  * Inputs
488  * first First address range to check
489  * last Last address range to check
490  * ip Instruction pointer, address we are looking for
491  *
492  * Return value:
493  * 1 on Success (in the table)/ 0 on Failure (not in the table)
494  */
495 int
497  const struct mca_table_entry *last,
498  unsigned long ip)
499 {
500  const struct mca_table_entry *curr;
501  u64 curr_start, curr_end;
502 
503  curr = first;
504  while (curr <= last) {
505  curr_start = (u64) &curr->start_addr + curr->start_addr;
506  curr_end = (u64) &curr->end_addr + curr->end_addr;
507 
508  if ((ip >= curr_start) && (ip <= curr_end)) {
509  return 1;
510  }
511  curr++;
512  }
513  return 0;
514 }
515 
516 /* Given an address, look for it in the mca tables. */
517 int mca_recover_range(unsigned long addr)
518 {
519  extern struct mca_table_entry __start___mca_table[];
520  extern struct mca_table_entry __stop___mca_table[];
521 
522  return search_mca_table(__start___mca_table, __stop___mca_table-1, addr);
523 }
525 
526 #ifdef CONFIG_ACPI
527 
528 int cpe_vector = -1;
529 int ia64_cpe_irq = -1;
530 
531 static irqreturn_t
532 ia64_mca_cpe_int_handler (int cpe_irq, void *arg)
533 {
534  static unsigned long cpe_history[CPE_HISTORY_LENGTH];
535  static int index;
536  static DEFINE_SPINLOCK(cpe_history_lock);
537 
538  IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
539  __func__, cpe_irq, smp_processor_id());
540 
541  /* SAL spec states this should run w/ interrupts enabled */
543 
544  spin_lock(&cpe_history_lock);
545  if (!cpe_poll_enabled && cpe_vector >= 0) {
546 
547  int i, count = 1; /* we know 1 happened now */
548  unsigned long now = jiffies;
549 
550  for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
551  if (now - cpe_history[i] <= HZ)
552  count++;
553  }
554 
555  IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
556  if (count >= CPE_HISTORY_LENGTH) {
557 
558  cpe_poll_enabled = 1;
559  spin_unlock(&cpe_history_lock);
560  disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
561 
562  /*
563  * Corrected errors will still be corrected, but
564  * make sure there's a log somewhere that indicates
565  * something is generating more than we can handle.
566  */
567  printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
568 
569  mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
570 
571  /* lock already released, get out now */
572  goto out;
573  } else {
574  cpe_history[index++] = now;
575  if (index == CPE_HISTORY_LENGTH)
576  index = 0;
577  }
578  }
579  spin_unlock(&cpe_history_lock);
580 out:
581  /* Get the CPE error record and log it */
582  ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
583 
585 
586  return IRQ_HANDLED;
587 }
588 
589 #endif /* CONFIG_ACPI */
590 
591 #ifdef CONFIG_ACPI
592 /*
593  * ia64_mca_register_cpev
594  *
595  * Register the corrected platform error vector with SAL.
596  *
597  * Inputs
598  * cpev Corrected Platform Error Vector number
599  *
600  * Outputs
601  * None
602  */
603 void
604 ia64_mca_register_cpev (int cpev)
605 {
606  /* Register the CPE interrupt vector with SAL */
607  struct ia64_sal_retval isrv;
608 
609  isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
610  if (isrv.status) {
611  printk(KERN_ERR "Failed to register Corrected Platform "
612  "Error interrupt vector with SAL (status %ld)\n", isrv.status);
613  return;
614  }
615 
616  IA64_MCA_DEBUG("%s: corrected platform error "
617  "vector %#x registered\n", __func__, cpev);
618 }
619 #endif /* CONFIG_ACPI */
620 
621 /*
622  * ia64_mca_cmc_vector_setup
623  *
624  * Setup the corrected machine check vector register in the processor.
625  * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
626  * This function is invoked on a per-processor basis.
627  *
628  * Inputs
629  * None
630  *
631  * Outputs
632  * None
633  */
634 void __cpuinit
636 {
637  cmcv_reg_t cmcv;
638 
639  cmcv.cmcv_regval = 0;
640  cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
641  cmcv.cmcv_vector = IA64_CMC_VECTOR;
643 
644  IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x registered.\n",
645  __func__, smp_processor_id(), IA64_CMC_VECTOR);
646 
647  IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
649 }
650 
651 /*
652  * ia64_mca_cmc_vector_disable
653  *
654  * Mask the corrected machine check vector register in the processor.
655  * This function is invoked on a per-processor basis.
656  *
657  * Inputs
658  * dummy(unused)
659  *
660  * Outputs
661  * None
662  */
663 static void
664 ia64_mca_cmc_vector_disable (void *dummy)
665 {
666  cmcv_reg_t cmcv;
667 
669 
670  cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
672 
673  IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x disabled.\n",
674  __func__, smp_processor_id(), cmcv.cmcv_vector);
675 }
676 
677 /*
678  * ia64_mca_cmc_vector_enable
679  *
680  * Unmask the corrected machine check vector register in the processor.
681  * This function is invoked on a per-processor basis.
682  *
683  * Inputs
684  * dummy(unused)
685  *
686  * Outputs
687  * None
688  */
689 static void
690 ia64_mca_cmc_vector_enable (void *dummy)
691 {
692  cmcv_reg_t cmcv;
693 
695 
696  cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
698 
699  IA64_MCA_DEBUG("%s: CPU %d corrected machine check vector %#x enabled.\n",
700  __func__, smp_processor_id(), cmcv.cmcv_vector);
701 }
702 
703 /*
704  * ia64_mca_cmc_vector_disable_keventd
705  *
706  * Called via keventd (smp_call_function() is not safe in interrupt context) to
707  * disable the cmc interrupt vector.
708  */
709 static void
710 ia64_mca_cmc_vector_disable_keventd(struct work_struct *unused)
711 {
712  on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 0);
713 }
714 
715 /*
716  * ia64_mca_cmc_vector_enable_keventd
717  *
718  * Called via keventd (smp_call_function() is not safe in interrupt context) to
719  * enable the cmc interrupt vector.
720  */
721 static void
722 ia64_mca_cmc_vector_enable_keventd(struct work_struct *unused)
723 {
724  on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 0);
725 }
726 
727 /*
728  * ia64_mca_wakeup
729  *
730  * Send an inter-cpu interrupt to wake-up a particular cpu.
731  *
732  * Inputs : cpuid
733  * Outputs : None
734  */
735 static void
736 ia64_mca_wakeup(int cpu)
737 {
739 }
740 
741 /*
742  * ia64_mca_wakeup_all
743  *
744  * Wakeup all the slave cpus which have rendez'ed previously.
745  *
746  * Inputs : None
747  * Outputs : None
748  */
749 static void
750 ia64_mca_wakeup_all(void)
751 {
752  int cpu;
753 
754  /* Clear the Rendez checkin flag for all cpus */
755  for_each_online_cpu(cpu) {
756  if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
757  ia64_mca_wakeup(cpu);
758  }
759 
760 }
761 
762 /*
763  * ia64_mca_rendez_interrupt_handler
764  *
765  * This is handler used to put slave processors into spinloop
766  * while the monarch processor does the mca handling and later
767  * wake each slave up once the monarch is done. The state
768  * IA64_MCA_RENDEZ_CHECKIN_DONE indicates the cpu is rendez'ed
769  * in SAL. The state IA64_MCA_RENDEZ_CHECKIN_NOTDONE indicates
770  * the cpu has come out of OS rendezvous.
771  *
772  * Inputs : None
773  * Outputs : None
774  */
775 static irqreturn_t
776 ia64_mca_rendez_int_handler(int rendez_irq, void *arg)
777 {
778  unsigned long flags;
779  int cpu = smp_processor_id();
780  struct ia64_mca_notify_die nd =
781  { .sos = NULL, .monarch_cpu = &monarch_cpu };
782 
783  /* Mask all interrupts */
784  local_irq_save(flags);
785 
787 
789  /* Register with the SAL monarch that the slave has
790  * reached SAL
791  */
792  ia64_sal_mc_rendez();
793 
795 
796  /* Wait for the monarch cpu to exit. */
797  while (monarch_cpu != -1)
798  cpu_relax(); /* spin until monarch leaves */
799 
801 
803  /* Enable all interrupts */
804  local_irq_restore(flags);
805  return IRQ_HANDLED;
806 }
807 
808 /*
809  * ia64_mca_wakeup_int_handler
810  *
811  * The interrupt handler for processing the inter-cpu interrupt to the
812  * slave cpu which was spinning in the rendez loop.
813  * Since this spinning is done by turning off the interrupts and
814  * polling on the wakeup-interrupt bit in the IRR, there is
815  * nothing useful to be done in the handler.
816  *
817  * Inputs : wakeup_irq (Wakeup-interrupt bit)
818  * arg (Interrupt handler specific argument)
819  * Outputs : None
820  *
821  */
822 static irqreturn_t
823 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg)
824 {
825  return IRQ_HANDLED;
826 }
827 
828 /* Function pointer for extra MCA recovery */
830  (void*,struct ia64_sal_os_state*)
831  = NULL;
832 
833 int
834 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
835 {
837  return 1;
838 
840  return 0;
841 }
842 
843 void
845 {
848 }
849 
852 
853 
854 static inline void
855 copy_reg(const u64 *fr, u64 fnat, unsigned long *tr, unsigned long *tnat)
856 {
857  u64 fslot, tslot, nat;
858  *tr = *fr;
859  fslot = ((unsigned long)fr >> 3) & 63;
860  tslot = ((unsigned long)tr >> 3) & 63;
861  *tnat &= ~(1UL << tslot);
862  nat = (fnat >> fslot) & 1;
863  *tnat |= (nat << tslot);
864 }
865 
866 /* Change the comm field on the MCA/INT task to include the pid that
867  * was interrupted, it makes for easier debugging. If that pid was 0
868  * (swapper or nested MCA/INIT) then use the start of the previous comm
869  * field suffixed with its cpu.
870  */
871 
872 static void
873 ia64_mca_modify_comm(const struct task_struct *previous_current)
874 {
875  char *p, comm[sizeof(current->comm)];
876  if (previous_current->pid)
877  snprintf(comm, sizeof(comm), "%s %d",
878  current->comm, previous_current->pid);
879  else {
880  int l;
881  if ((p = strchr(previous_current->comm, ' ')))
882  l = p - previous_current->comm;
883  else
884  l = strlen(previous_current->comm);
885  snprintf(comm, sizeof(comm), "%s %*s %d",
886  current->comm, l, previous_current->comm,
887  task_thread_info(previous_current)->cpu);
888  }
889  memcpy(current->comm, comm, sizeof(current->comm));
890 }
891 
892 static void
893 finish_pt_regs(struct pt_regs *regs, struct ia64_sal_os_state *sos,
894  unsigned long *nat)
895 {
896  const pal_min_state_area_t *ms = sos->pal_min_state;
897  const u64 *bank;
898 
899  /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
900  * pmsa_{xip,xpsr,xfs}
901  */
902  if (ia64_psr(regs)->ic) {
903  regs->cr_iip = ms->pmsa_iip;
904  regs->cr_ipsr = ms->pmsa_ipsr;
905  regs->cr_ifs = ms->pmsa_ifs;
906  } else {
907  regs->cr_iip = ms->pmsa_xip;
908  regs->cr_ipsr = ms->pmsa_xpsr;
909  regs->cr_ifs = ms->pmsa_xfs;
910 
911  sos->iip = ms->pmsa_iip;
912  sos->ipsr = ms->pmsa_ipsr;
913  sos->ifs = ms->pmsa_ifs;
914  }
915  regs->pr = ms->pmsa_pr;
916  regs->b0 = ms->pmsa_br0;
917  regs->ar_rsc = ms->pmsa_rsc;
918  copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &regs->r1, nat);
919  copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &regs->r2, nat);
920  copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &regs->r3, nat);
921  copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &regs->r8, nat);
922  copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &regs->r9, nat);
923  copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &regs->r10, nat);
924  copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &regs->r11, nat);
925  copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &regs->r12, nat);
926  copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &regs->r13, nat);
927  copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &regs->r14, nat);
928  copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &regs->r15, nat);
929  if (ia64_psr(regs)->bn)
930  bank = ms->pmsa_bank1_gr;
931  else
932  bank = ms->pmsa_bank0_gr;
933  copy_reg(&bank[16-16], ms->pmsa_nat_bits, &regs->r16, nat);
934  copy_reg(&bank[17-16], ms->pmsa_nat_bits, &regs->r17, nat);
935  copy_reg(&bank[18-16], ms->pmsa_nat_bits, &regs->r18, nat);
936  copy_reg(&bank[19-16], ms->pmsa_nat_bits, &regs->r19, nat);
937  copy_reg(&bank[20-16], ms->pmsa_nat_bits, &regs->r20, nat);
938  copy_reg(&bank[21-16], ms->pmsa_nat_bits, &regs->r21, nat);
939  copy_reg(&bank[22-16], ms->pmsa_nat_bits, &regs->r22, nat);
940  copy_reg(&bank[23-16], ms->pmsa_nat_bits, &regs->r23, nat);
941  copy_reg(&bank[24-16], ms->pmsa_nat_bits, &regs->r24, nat);
942  copy_reg(&bank[25-16], ms->pmsa_nat_bits, &regs->r25, nat);
943  copy_reg(&bank[26-16], ms->pmsa_nat_bits, &regs->r26, nat);
944  copy_reg(&bank[27-16], ms->pmsa_nat_bits, &regs->r27, nat);
945  copy_reg(&bank[28-16], ms->pmsa_nat_bits, &regs->r28, nat);
946  copy_reg(&bank[29-16], ms->pmsa_nat_bits, &regs->r29, nat);
947  copy_reg(&bank[30-16], ms->pmsa_nat_bits, &regs->r30, nat);
948  copy_reg(&bank[31-16], ms->pmsa_nat_bits, &regs->r31, nat);
949 }
950 
951 /* On entry to this routine, we are running on the per cpu stack, see
952  * mca_asm.h. The original stack has not been touched by this event. Some of
953  * the original stack's registers will be in the RBS on this stack. This stack
954  * also contains a partial pt_regs and switch_stack, the rest of the data is in
955  * PAL minstate.
956  *
957  * The first thing to do is modify the original stack to look like a blocked
958  * task so we can run backtrace on the original task. Also mark the per cpu
959  * stack as current to ensure that we use the correct task state, it also means
960  * that we can do backtrace on the MCA/INIT handler code itself.
961  */
962 
963 static struct task_struct *
964 ia64_mca_modify_original_stack(struct pt_regs *regs,
965  const struct switch_stack *sw,
966  struct ia64_sal_os_state *sos,
967  const char *type)
968 {
969  char *p;
970  ia64_va va;
971  extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
972  const pal_min_state_area_t *ms = sos->pal_min_state;
973  struct task_struct *previous_current;
974  struct pt_regs *old_regs;
975  struct switch_stack *old_sw;
976  unsigned size = sizeof(struct pt_regs) +
977  sizeof(struct switch_stack) + 16;
978  unsigned long *old_bspstore, *old_bsp;
979  unsigned long *new_bspstore, *new_bsp;
980  unsigned long old_unat, old_rnat, new_rnat, nat;
981  u64 slots, loadrs = regs->loadrs;
982  u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
983  u64 ar_bspstore = regs->ar_bspstore;
984  u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
985  const char *msg;
986  int cpu = smp_processor_id();
987 
988  previous_current = curr_task(cpu);
989  set_curr_task(cpu, current);
990  if ((p = strchr(current->comm, ' ')))
991  *p = '\0';
992 
993  /* Best effort attempt to cope with MCA/INIT delivered while in
994  * physical mode.
995  */
996  regs->cr_ipsr = ms->pmsa_ipsr;
997  if (ia64_psr(regs)->dt == 0) {
998  va.l = r12;
999  if (va.f.reg == 0) {
1000  va.f.reg = 7;
1001  r12 = va.l;
1002  }
1003  va.l = r13;
1004  if (va.f.reg == 0) {
1005  va.f.reg = 7;
1006  r13 = va.l;
1007  }
1008  }
1009  if (ia64_psr(regs)->rt == 0) {
1010  va.l = ar_bspstore;
1011  if (va.f.reg == 0) {
1012  va.f.reg = 7;
1013  ar_bspstore = va.l;
1014  }
1015  va.l = ar_bsp;
1016  if (va.f.reg == 0) {
1017  va.f.reg = 7;
1018  ar_bsp = va.l;
1019  }
1020  }
1021 
1022  /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
1023  * have been copied to the old stack, the old stack may fail the
1024  * validation tests below. So ia64_old_stack() must restore the dirty
1025  * registers from the new stack. The old and new bspstore probably
1026  * have different alignments, so loadrs calculated on the old bsp
1027  * cannot be used to restore from the new bsp. Calculate a suitable
1028  * loadrs for the new stack and save it in the new pt_regs, where
1029  * ia64_old_stack() can get it.
1030  */
1031  old_bspstore = (unsigned long *)ar_bspstore;
1032  old_bsp = (unsigned long *)ar_bsp;
1033  slots = ia64_rse_num_regs(old_bspstore, old_bsp);
1034  new_bspstore = (unsigned long *)((u64)current + IA64_RBS_OFFSET);
1035  new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
1036  regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
1037 
1038  /* Verify the previous stack state before we change it */
1039  if (user_mode(regs)) {
1040  msg = "occurred in user space";
1041  /* previous_current is guaranteed to be valid when the task was
1042  * in user space, so ...
1043  */
1044  ia64_mca_modify_comm(previous_current);
1045  goto no_mod;
1046  }
1047 
1048  if (r13 != sos->prev_IA64_KR_CURRENT) {
1049  msg = "inconsistent previous current and r13";
1050  goto no_mod;
1051  }
1052 
1053  if (!mca_recover_range(ms->pmsa_iip)) {
1054  if ((r12 - r13) >= KERNEL_STACK_SIZE) {
1055  msg = "inconsistent r12 and r13";
1056  goto no_mod;
1057  }
1058  if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
1059  msg = "inconsistent ar.bspstore and r13";
1060  goto no_mod;
1061  }
1062  va.p = old_bspstore;
1063  if (va.f.reg < 5) {
1064  msg = "old_bspstore is in the wrong region";
1065  goto no_mod;
1066  }
1067  if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
1068  msg = "inconsistent ar.bsp and r13";
1069  goto no_mod;
1070  }
1071  size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
1072  if (ar_bspstore + size > r12) {
1073  msg = "no room for blocked state";
1074  goto no_mod;
1075  }
1076  }
1077 
1078  ia64_mca_modify_comm(previous_current);
1079 
1080  /* Make the original task look blocked. First stack a struct pt_regs,
1081  * describing the state at the time of interrupt. mca_asm.S built a
1082  * partial pt_regs, copy it and fill in the blanks using minstate.
1083  */
1084  p = (char *)r12 - sizeof(*regs);
1085  old_regs = (struct pt_regs *)p;
1086  memcpy(old_regs, regs, sizeof(*regs));
1087  old_regs->loadrs = loadrs;
1088  old_unat = old_regs->ar_unat;
1089  finish_pt_regs(old_regs, sos, &old_unat);
1090 
1091  /* Next stack a struct switch_stack. mca_asm.S built a partial
1092  * switch_stack, copy it and fill in the blanks using pt_regs and
1093  * minstate.
1094  *
1095  * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
1096  * ar.pfs is set to 0.
1097  *
1098  * unwind.c::unw_unwind() does special processing for interrupt frames.
1099  * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
1100  * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
1101  * that this is documented, of course. Set PRED_NON_SYSCALL in the
1102  * switch_stack on the original stack so it will unwind correctly when
1103  * unwind.c reads pt_regs.
1104  *
1105  * thread.ksp is updated to point to the synthesized switch_stack.
1106  */
1107  p -= sizeof(struct switch_stack);
1108  old_sw = (struct switch_stack *)p;
1109  memcpy(old_sw, sw, sizeof(*sw));
1110  old_sw->caller_unat = old_unat;
1111  old_sw->ar_fpsr = old_regs->ar_fpsr;
1112  copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
1113  copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
1114  copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
1115  copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
1116  old_sw->b0 = (u64)ia64_leave_kernel;
1117  old_sw->b1 = ms->pmsa_br1;
1118  old_sw->ar_pfs = 0;
1119  old_sw->ar_unat = old_unat;
1120  old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
1121  previous_current->thread.ksp = (u64)p - 16;
1122 
1123  /* Finally copy the original stack's registers back to its RBS.
1124  * Registers from ar.bspstore through ar.bsp at the time of the event
1125  * are in the current RBS, copy them back to the original stack. The
1126  * copy must be done register by register because the original bspstore
1127  * and the current one have different alignments, so the saved RNAT
1128  * data occurs at different places.
1129  *
1130  * mca_asm does cover, so the old_bsp already includes all registers at
1131  * the time of MCA/INIT. It also does flushrs, so all registers before
1132  * this function have been written to backing store on the MCA/INIT
1133  * stack.
1134  */
1135  new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
1136  old_rnat = regs->ar_rnat;
1137  while (slots--) {
1138  if (ia64_rse_is_rnat_slot(new_bspstore)) {
1139  new_rnat = ia64_get_rnat(new_bspstore++);
1140  }
1141  if (ia64_rse_is_rnat_slot(old_bspstore)) {
1142  *old_bspstore++ = old_rnat;
1143  old_rnat = 0;
1144  }
1145  nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
1146  old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
1147  old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
1148  *old_bspstore++ = *new_bspstore++;
1149  }
1150  old_sw->ar_bspstore = (unsigned long)old_bspstore;
1151  old_sw->ar_rnat = old_rnat;
1152 
1153  sos->prev_task = previous_current;
1154  return previous_current;
1155 
1156 no_mod:
1157  mprintk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
1158  smp_processor_id(), type, msg);
1159  old_unat = regs->ar_unat;
1160  finish_pt_regs(regs, sos, &old_unat);
1161  return previous_current;
1162 }
1163 
1164 /* The monarch/slave interaction is based on monarch_cpu and requires that all
1165  * slaves have entered rendezvous before the monarch leaves. If any cpu has
1166  * not entered rendezvous yet then wait a bit. The assumption is that any
1167  * slave that has not rendezvoused after a reasonable time is never going to do
1168  * so. In this context, slave includes cpus that respond to the MCA rendezvous
1169  * interrupt, as well as cpus that receive the INIT slave event.
1170  */
1171 
1172 static void
1173 ia64_wait_for_slaves(int monarch, const char *type)
1174 {
1175  int c, i , wait;
1176 
1177  /*
1178  * wait 5 seconds total for slaves (arbitrary)
1179  */
1180  for (i = 0; i < 5000; i++) {
1181  wait = 0;
1182  for_each_online_cpu(c) {
1183  if (c == monarch)
1184  continue;
1185  if (ia64_mc_info.imi_rendez_checkin[c]
1187  udelay(1000); /* short wait */
1188  wait = 1;
1189  break;
1190  }
1191  }
1192  if (!wait)
1193  goto all_in;
1194  }
1195 
1196  /*
1197  * Maybe slave(s) dead. Print buffered messages immediately.
1198  */
1199  ia64_mlogbuf_finish(0);
1200  mprintk(KERN_INFO "OS %s slave did not rendezvous on cpu", type);
1201  for_each_online_cpu(c) {
1202  if (c == monarch)
1203  continue;
1204  if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
1205  mprintk(" %d", c);
1206  }
1207  mprintk("\n");
1208  return;
1209 
1210 all_in:
1211  mprintk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type);
1212  return;
1213 }
1214 
1215 /* mca_insert_tr
1216  *
1217  * Switch rid when TR reload and needed!
1218  * iord: 1: itr, 2: itr;
1219  *
1220 */
1221 static void mca_insert_tr(u64 iord)
1222 {
1223 
1224  int i;
1225  u64 old_rr;
1226  struct ia64_tr_entry *p;
1227  unsigned long psr;
1228  int cpu = smp_processor_id();
1229 
1230  if (!ia64_idtrs[cpu])
1231  return;
1232 
1233  psr = ia64_clear_ic();
1234  for (i = IA64_TR_ALLOC_BASE; i < IA64_TR_ALLOC_MAX; i++) {
1235  p = ia64_idtrs[cpu] + (iord - 1) * IA64_TR_ALLOC_MAX;
1236  if (p->pte & 0x1) {
1237  old_rr = ia64_get_rr(p->ifa);
1238  if (old_rr != p->rr) {
1239  ia64_set_rr(p->ifa, p->rr);
1240  ia64_srlz_d();
1241  }
1242  ia64_ptr(iord, p->ifa, p->itir >> 2);
1243  ia64_srlz_i();
1244  if (iord & 0x1) {
1245  ia64_itr(0x1, i, p->ifa, p->pte, p->itir >> 2);
1246  ia64_srlz_i();
1247  }
1248  if (iord & 0x2) {
1249  ia64_itr(0x2, i, p->ifa, p->pte, p->itir >> 2);
1250  ia64_srlz_i();
1251  }
1252  if (old_rr != p->rr) {
1253  ia64_set_rr(p->ifa, old_rr);
1254  ia64_srlz_d();
1255  }
1256  }
1257  }
1258  ia64_set_psr(psr);
1259 }
1260 
1261 /*
1262  * ia64_mca_handler
1263  *
1264  * This is uncorrectable machine check handler called from OS_MCA
1265  * dispatch code which is in turn called from SAL_CHECK().
1266  * This is the place where the core of OS MCA handling is done.
1267  * Right now the logs are extracted and displayed in a well-defined
1268  * format. This handler code is supposed to be run only on the
1269  * monarch processor. Once the monarch is done with MCA handling
1270  * further MCA logging is enabled by clearing logs.
1271  * Monarch also has the duty of sending wakeup-IPIs to pull the
1272  * slave processors out of rendezvous spinloop.
1273  *
1274  * If multiple processors call into OS_MCA, the first will become
1275  * the monarch. Subsequent cpus will be recorded in the mca_cpu
1276  * bitmask. After the first monarch has processed its MCA, it
1277  * will wake up the next cpu in the mca_cpu bitmask and then go
1278  * into the rendezvous loop. When all processors have serviced
1279  * their MCA, the last monarch frees up the rest of the processors.
1280  */
1281 void
1282 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
1283  struct ia64_sal_os_state *sos)
1284 {
1285  int recover, cpu = smp_processor_id();
1286  struct task_struct *previous_current;
1287  struct ia64_mca_notify_die nd =
1288  { .sos = sos, .monarch_cpu = &monarch_cpu, .data = &recover };
1289  static atomic_t mca_count;
1290  static cpumask_t mca_cpu;
1291 
1292  if (atomic_add_return(1, &mca_count) == 1) {
1293  monarch_cpu = cpu;
1294  sos->monarch = 1;
1295  } else {
1296  cpu_set(cpu, mca_cpu);
1297  sos->monarch = 0;
1298  }
1299  mprintk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d "
1300  "monarch=%ld\n", sos->proc_state_param, cpu, sos->monarch);
1301 
1302  previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
1303 
1304  NOTIFY_MCA(DIE_MCA_MONARCH_ENTER, regs, (long)&nd, 1);
1305 
1307  if (sos->monarch) {
1308  ia64_wait_for_slaves(cpu, "MCA");
1309 
1310  /* Wakeup all the processors which are spinning in the
1311  * rendezvous loop. They will leave SAL, then spin in the OS
1312  * with interrupts disabled until this monarch cpu leaves the
1313  * MCA handler. That gets control back to the OS so we can
1314  * backtrace the other cpus, backtrace when spinning in SAL
1315  * does not work.
1316  */
1317  ia64_mca_wakeup_all();
1318  } else {
1319  while (cpu_isset(cpu, mca_cpu))
1320  cpu_relax(); /* spin until monarch wakes us */
1321  }
1322 
1323  NOTIFY_MCA(DIE_MCA_MONARCH_PROCESS, regs, (long)&nd, 1);
1324 
1325  /* Get the MCA error record and log it */
1326  ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1327 
1328  /* MCA error recovery */
1329  recover = (ia64_mca_ucmc_extension
1332  sos));
1333 
1334  if (recover) {
1337  ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1339  } else {
1340  /* Dump buffered message to console */
1341  ia64_mlogbuf_finish(1);
1342  }
1343 
1344  if (__get_cpu_var(ia64_mca_tr_reload)) {
1345  mca_insert_tr(0x1); /*Reload dynamic itrs*/
1346  mca_insert_tr(0x2); /*Reload dynamic itrs*/
1347  }
1348 
1349  NOTIFY_MCA(DIE_MCA_MONARCH_LEAVE, regs, (long)&nd, 1);
1350 
1351  if (atomic_dec_return(&mca_count) > 0) {
1352  int i;
1353 
1354  /* wake up the next monarch cpu,
1355  * and put this cpu in the rendez loop.
1356  */
1357  for_each_online_cpu(i) {
1358  if (cpu_isset(i, mca_cpu)) {
1359  monarch_cpu = i;
1360  cpu_clear(i, mca_cpu); /* wake next cpu */
1361  while (monarch_cpu != -1)
1362  cpu_relax(); /* spin until last cpu leaves */
1363  set_curr_task(cpu, previous_current);
1364  ia64_mc_info.imi_rendez_checkin[cpu]
1366  return;
1367  }
1368  }
1369  }
1370  set_curr_task(cpu, previous_current);
1372  monarch_cpu = -1; /* This frees the slaves and previous monarchs */
1373 }
1374 
1375 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd);
1376 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd);
1377 
1378 /*
1379  * ia64_mca_cmc_int_handler
1380  *
1381  * This is corrected machine check interrupt handler.
1382  * Right now the logs are extracted and displayed in a well-defined
1383  * format.
1384  *
1385  * Inputs
1386  * interrupt number
1387  * client data arg ptr
1388  *
1389  * Outputs
1390  * None
1391  */
1392 static irqreturn_t
1393 ia64_mca_cmc_int_handler(int cmc_irq, void *arg)
1394 {
1395  static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1396  static int index;
1397  static DEFINE_SPINLOCK(cmc_history_lock);
1398 
1399  IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1400  __func__, cmc_irq, smp_processor_id());
1401 
1402  /* SAL spec states this should run w/ interrupts enabled */
1403  local_irq_enable();
1404 
1405  spin_lock(&cmc_history_lock);
1406  if (!cmc_polling_enabled) {
1407  int i, count = 1; /* we know 1 happened now */
1408  unsigned long now = jiffies;
1409 
1410  for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1411  if (now - cmc_history[i] <= HZ)
1412  count++;
1413  }
1414 
1415  IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1416  if (count >= CMC_HISTORY_LENGTH) {
1417 
1418  cmc_polling_enabled = 1;
1419  spin_unlock(&cmc_history_lock);
1420  /* If we're being hit with CMC interrupts, we won't
1421  * ever execute the schedule_work() below. Need to
1422  * disable CMC interrupts on this processor now.
1423  */
1424  ia64_mca_cmc_vector_disable(NULL);
1425  schedule_work(&cmc_disable_work);
1426 
1427  /*
1428  * Corrected errors will still be corrected, but
1429  * make sure there's a log somewhere that indicates
1430  * something is generating more than we can handle.
1431  */
1432  printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1433 
1434  mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1435 
1436  /* lock already released, get out now */
1437  goto out;
1438  } else {
1439  cmc_history[index++] = now;
1440  if (index == CMC_HISTORY_LENGTH)
1441  index = 0;
1442  }
1443  }
1444  spin_unlock(&cmc_history_lock);
1445 out:
1446  /* Get the CMC error record and log it */
1447  ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1448 
1450 
1451  return IRQ_HANDLED;
1452 }
1453 
1454 /*
1455  * ia64_mca_cmc_int_caller
1456  *
1457  * Triggered by sw interrupt from CMC polling routine. Calls
1458  * real interrupt handler and either triggers a sw interrupt
1459  * on the next cpu or does cleanup at the end.
1460  *
1461  * Inputs
1462  * interrupt number
1463  * client data arg ptr
1464  * Outputs
1465  * handled
1466  */
1467 static irqreturn_t
1468 ia64_mca_cmc_int_caller(int cmc_irq, void *arg)
1469 {
1470  static int start_count = -1;
1471  unsigned int cpuid;
1472 
1473  cpuid = smp_processor_id();
1474 
1475  /* If first cpu, update count */
1476  if (start_count == -1)
1477  start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1478 
1479  ia64_mca_cmc_int_handler(cmc_irq, arg);
1480 
1481  cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1482 
1483  if (cpuid < nr_cpu_ids) {
1485  } else {
1486  /* If no log record, switch out of polling mode */
1487  if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1488 
1489  printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1490  schedule_work(&cmc_enable_work);
1491  cmc_polling_enabled = 0;
1492 
1493  } else {
1494 
1495  mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1496  }
1497 
1498  start_count = -1;
1499  }
1500 
1501  return IRQ_HANDLED;
1502 }
1503 
1504 /*
1505  * ia64_mca_cmc_poll
1506  *
1507  * Poll for Corrected Machine Checks (CMCs)
1508  *
1509  * Inputs : dummy(unused)
1510  * Outputs : None
1511  *
1512  */
1513 static void
1514 ia64_mca_cmc_poll (unsigned long dummy)
1515 {
1516  /* Trigger a CMC interrupt cascade */
1517  platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CMCP_VECTOR,
1518  IA64_IPI_DM_INT, 0);
1519 }
1520 
1521 /*
1522  * ia64_mca_cpe_int_caller
1523  *
1524  * Triggered by sw interrupt from CPE polling routine. Calls
1525  * real interrupt handler and either triggers a sw interrupt
1526  * on the next cpu or does cleanup at the end.
1527  *
1528  * Inputs
1529  * interrupt number
1530  * client data arg ptr
1531  * Outputs
1532  * handled
1533  */
1534 #ifdef CONFIG_ACPI
1535 
1536 static irqreturn_t
1537 ia64_mca_cpe_int_caller(int cpe_irq, void *arg)
1538 {
1539  static int start_count = -1;
1540  static int poll_time = MIN_CPE_POLL_INTERVAL;
1541  unsigned int cpuid;
1542 
1543  cpuid = smp_processor_id();
1544 
1545  /* If first cpu, update count */
1546  if (start_count == -1)
1547  start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1548 
1549  ia64_mca_cpe_int_handler(cpe_irq, arg);
1550 
1551  cpuid = cpumask_next(cpuid+1, cpu_online_mask);
1552 
1553  if (cpuid < NR_CPUS) {
1555  } else {
1556  /*
1557  * If a log was recorded, increase our polling frequency,
1558  * otherwise, backoff or return to interrupt mode.
1559  */
1560  if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1561  poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1562  } else if (cpe_vector < 0) {
1563  poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1564  } else {
1565  poll_time = MIN_CPE_POLL_INTERVAL;
1566 
1567  printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1568  enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1569  cpe_poll_enabled = 0;
1570  }
1571 
1572  if (cpe_poll_enabled)
1573  mod_timer(&cpe_poll_timer, jiffies + poll_time);
1574  start_count = -1;
1575  }
1576 
1577  return IRQ_HANDLED;
1578 }
1579 
1580 /*
1581  * ia64_mca_cpe_poll
1582  *
1583  * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1584  * on first cpu, from there it will trickle through all the cpus.
1585  *
1586  * Inputs : dummy(unused)
1587  * Outputs : None
1588  *
1589  */
1590 static void
1591 ia64_mca_cpe_poll (unsigned long dummy)
1592 {
1593  /* Trigger a CPE interrupt cascade */
1594  platform_send_ipi(cpumask_first(cpu_online_mask), IA64_CPEP_VECTOR,
1595  IA64_IPI_DM_INT, 0);
1596 }
1597 
1598 #endif /* CONFIG_ACPI */
1599 
1600 static int
1601 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1602 {
1603  int c;
1604  struct task_struct *g, *t;
1605  if (val != DIE_INIT_MONARCH_PROCESS)
1606  return NOTIFY_DONE;
1607 #ifdef CONFIG_KEXEC
1609  return NOTIFY_DONE;
1610 #endif
1611 
1612  /*
1613  * FIXME: mlogbuf will brim over with INIT stack dumps.
1614  * To enable show_stack from INIT, we use oops_in_progress which should
1615  * be used in real oops. This would cause something wrong after INIT.
1616  */
1618  ia64_mlogbuf_dump_from_init();
1619 
1620  printk(KERN_ERR "Processes interrupted by INIT -");
1621  for_each_online_cpu(c) {
1622  struct ia64_sal_os_state *s;
1623  t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1624  s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1625  g = s->prev_task;
1626  if (g) {
1627  if (g->pid)
1628  printk(" %d", g->pid);
1629  else
1630  printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1631  }
1632  }
1633  printk("\n\n");
1634  if (read_trylock(&tasklist_lock)) {
1635  do_each_thread (g, t) {
1636  printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1637  show_stack(t, NULL);
1638  } while_each_thread (g, t);
1639  read_unlock(&tasklist_lock);
1640  }
1641  /* FIXME: This will not restore zapped printk locks. */
1643  return NOTIFY_DONE;
1644 }
1645 
1646 /*
1647  * C portion of the OS INIT handler
1648  *
1649  * Called from ia64_os_init_dispatch
1650  *
1651  * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1652  * this event. This code is used for both monarch and slave INIT events, see
1653  * sos->monarch.
1654  *
1655  * All INIT events switch to the INIT stack and change the previous process to
1656  * blocked status. If one of the INIT events is the monarch then we are
1657  * probably processing the nmi button/command. Use the monarch cpu to dump all
1658  * the processes. The slave INIT events all spin until the monarch cpu
1659  * returns. We can also get INIT slave events for MCA, in which case the MCA
1660  * process is the monarch.
1661  */
1662 
1663 void
1664 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1665  struct ia64_sal_os_state *sos)
1666 {
1667  static atomic_t slaves;
1668  static atomic_t monarchs;
1669  struct task_struct *previous_current;
1670  int cpu = smp_processor_id();
1671  struct ia64_mca_notify_die nd =
1672  { .sos = sos, .monarch_cpu = &monarch_cpu };
1673 
1674  NOTIFY_INIT(DIE_INIT_ENTER, regs, (long)&nd, 0);
1675 
1676  mprintk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1677  sos->proc_state_param, cpu, sos->monarch);
1679 
1680  previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1681  sos->os_status = IA64_INIT_RESUME;
1682 
1683  /* FIXME: Workaround for broken proms that drive all INIT events as
1684  * slaves. The last slave that enters is promoted to be a monarch.
1685  * Remove this code in September 2006, that gives platforms a year to
1686  * fix their proms and get their customers updated.
1687  */
1688  if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1689  mprintk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1690  __func__, cpu);
1691  atomic_dec(&slaves);
1692  sos->monarch = 1;
1693  }
1694 
1695  /* FIXME: Workaround for broken proms that drive all INIT events as
1696  * monarchs. Second and subsequent monarchs are demoted to slaves.
1697  * Remove this code in September 2006, that gives platforms a year to
1698  * fix their proms and get their customers updated.
1699  */
1700  if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1701  mprintk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1702  __func__, cpu);
1703  atomic_dec(&monarchs);
1704  sos->monarch = 0;
1705  }
1706 
1707  if (!sos->monarch) {
1709 
1710 #ifdef CONFIG_KEXEC
1711  while (monarch_cpu == -1 && !atomic_read(&kdump_in_progress))
1712  udelay(1000);
1713 #else
1714  while (monarch_cpu == -1)
1715  cpu_relax(); /* spin until monarch enters */
1716 #endif
1717 
1718  NOTIFY_INIT(DIE_INIT_SLAVE_ENTER, regs, (long)&nd, 1);
1719  NOTIFY_INIT(DIE_INIT_SLAVE_PROCESS, regs, (long)&nd, 1);
1720 
1721 #ifdef CONFIG_KEXEC
1722  while (monarch_cpu != -1 && !atomic_read(&kdump_in_progress))
1723  udelay(1000);
1724 #else
1725  while (monarch_cpu != -1)
1726  cpu_relax(); /* spin until monarch leaves */
1727 #endif
1728 
1729  NOTIFY_INIT(DIE_INIT_SLAVE_LEAVE, regs, (long)&nd, 1);
1730 
1731  mprintk("Slave on cpu %d returning to normal service.\n", cpu);
1732  set_curr_task(cpu, previous_current);
1734  atomic_dec(&slaves);
1735  return;
1736  }
1737 
1738  monarch_cpu = cpu;
1739  NOTIFY_INIT(DIE_INIT_MONARCH_ENTER, regs, (long)&nd, 1);
1740 
1741  /*
1742  * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1743  * generated via the BMC's command-line interface, but since the console is on the
1744  * same serial line, the user will need some time to switch out of the BMC before
1745  * the dump begins.
1746  */
1747  mprintk("Delaying for 5 seconds...\n");
1748  udelay(5*1000000);
1749  ia64_wait_for_slaves(cpu, "INIT");
1750  /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1751  * to default_monarch_init_process() above and just print all the
1752  * tasks.
1753  */
1754  NOTIFY_INIT(DIE_INIT_MONARCH_PROCESS, regs, (long)&nd, 1);
1755  NOTIFY_INIT(DIE_INIT_MONARCH_LEAVE, regs, (long)&nd, 1);
1756 
1757  mprintk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1758  atomic_dec(&monarchs);
1759  set_curr_task(cpu, previous_current);
1760  monarch_cpu = -1;
1761  return;
1762 }
1763 
1764 static int __init
1765 ia64_mca_disable_cpe_polling(char *str)
1766 {
1767  cpe_poll_enabled = 0;
1768  return 1;
1769 }
1770 
1771 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1772 
1773 static struct irqaction cmci_irqaction = {
1774  .handler = ia64_mca_cmc_int_handler,
1775  .flags = IRQF_DISABLED,
1776  .name = "cmc_hndlr"
1777 };
1778 
1779 static struct irqaction cmcp_irqaction = {
1780  .handler = ia64_mca_cmc_int_caller,
1781  .flags = IRQF_DISABLED,
1782  .name = "cmc_poll"
1783 };
1784 
1785 static struct irqaction mca_rdzv_irqaction = {
1786  .handler = ia64_mca_rendez_int_handler,
1787  .flags = IRQF_DISABLED,
1788  .name = "mca_rdzv"
1789 };
1790 
1791 static struct irqaction mca_wkup_irqaction = {
1792  .handler = ia64_mca_wakeup_int_handler,
1793  .flags = IRQF_DISABLED,
1794  .name = "mca_wkup"
1795 };
1796 
1797 #ifdef CONFIG_ACPI
1798 static struct irqaction mca_cpe_irqaction = {
1799  .handler = ia64_mca_cpe_int_handler,
1800  .flags = IRQF_DISABLED,
1801  .name = "cpe_hndlr"
1802 };
1803 
1804 static struct irqaction mca_cpep_irqaction = {
1805  .handler = ia64_mca_cpe_int_caller,
1806  .flags = IRQF_DISABLED,
1807  .name = "cpe_poll"
1808 };
1809 #endif /* CONFIG_ACPI */
1810 
1811 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1812  * these stacks can never sleep, they cannot return from the kernel to user
1813  * space, they do not appear in a normal ps listing. So there is no need to
1814  * format most of the fields.
1815  */
1816 
1817 static void __cpuinit
1818 format_mca_init_stack(void *mca_data, unsigned long offset,
1819  const char *type, int cpu)
1820 {
1821  struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1822  struct thread_info *ti;
1823  memset(p, 0, KERNEL_STACK_SIZE);
1824  ti = task_thread_info(p);
1825  ti->flags = _TIF_MCA_INIT;
1826  ti->preempt_count = 1;
1827  ti->task = p;
1828  ti->cpu = cpu;
1829  p->stack = ti;
1831  cpu_set(cpu, p->cpus_allowed);
1832  INIT_LIST_HEAD(&p->tasks);
1833  p->parent = p->real_parent = p->group_leader = p;
1834  INIT_LIST_HEAD(&p->children);
1835  INIT_LIST_HEAD(&p->sibling);
1836  strncpy(p->comm, type, sizeof(p->comm)-1);
1837 }
1838 
1839 /* Caller prevents this from being called after init */
1840 static void * __init_refok mca_bootmem(void)
1841 {
1842  return __alloc_bootmem(sizeof(struct ia64_mca_cpu),
1843  KERNEL_STACK_SIZE, 0);
1844 }
1845 
1846 /* Do per-CPU MCA-related initialization. */
1847 void __cpuinit
1849 {
1850  void *pal_vaddr;
1851  void *data;
1852  long sz = sizeof(struct ia64_mca_cpu);
1853  int cpu = smp_processor_id();
1854  static int first_time = 1;
1855 
1856  /*
1857  * Structure will already be allocated if cpu has been online,
1858  * then offlined.
1859  */
1860  if (__per_cpu_mca[cpu]) {
1861  data = __va(__per_cpu_mca[cpu]);
1862  } else {
1863  if (first_time) {
1864  data = mca_bootmem();
1865  first_time = 0;
1866  } else
1867  data = (void *)__get_free_pages(GFP_KERNEL,
1868  get_order(sz));
1869  if (!data)
1870  panic("Could not allocate MCA memory for cpu %d\n",
1871  cpu);
1872  }
1873  format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, mca_stack),
1874  "MCA", cpu);
1875  format_mca_init_stack(data, offsetof(struct ia64_mca_cpu, init_stack),
1876  "INIT", cpu);
1877  __get_cpu_var(ia64_mca_data) = __per_cpu_mca[cpu] = __pa(data);
1878 
1879  /*
1880  * Stash away a copy of the PTE needed to map the per-CPU page.
1881  * We may need it during MCA recovery.
1882  */
1883  __get_cpu_var(ia64_mca_per_cpu_pte) =
1884  pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1885 
1886  /*
1887  * Also, stash away a copy of the PAL address and the PTE
1888  * needed to map it.
1889  */
1890  pal_vaddr = efi_get_pal_addr();
1891  if (!pal_vaddr)
1892  return;
1893  __get_cpu_var(ia64_mca_pal_base) =
1894  GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1895  __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1896  PAGE_KERNEL));
1897 }
1898 
1899 static void __cpuinit ia64_mca_cmc_vector_adjust(void *dummy)
1900 {
1901  unsigned long flags;
1902 
1903  local_irq_save(flags);
1904  if (!cmc_polling_enabled)
1905  ia64_mca_cmc_vector_enable(NULL);
1906  local_irq_restore(flags);
1907 }
1908 
1909 static int __cpuinit mca_cpu_callback(struct notifier_block *nfb,
1910  unsigned long action,
1911  void *hcpu)
1912 {
1913  int hotcpu = (unsigned long) hcpu;
1914 
1915  switch (action) {
1916  case CPU_ONLINE:
1917  case CPU_ONLINE_FROZEN:
1918  smp_call_function_single(hotcpu, ia64_mca_cmc_vector_adjust,
1919  NULL, 0);
1920  break;
1921  }
1922  return NOTIFY_OK;
1923 }
1924 
1925 static struct notifier_block mca_cpu_notifier __cpuinitdata = {
1926  .notifier_call = mca_cpu_callback
1927 };
1928 
1929 /*
1930  * ia64_mca_init
1931  *
1932  * Do all the system level mca specific initialization.
1933  *
1934  * 1. Register spinloop and wakeup request interrupt vectors
1935  *
1936  * 2. Register OS_MCA handler entry point
1937  *
1938  * 3. Register OS_INIT handler entry point
1939  *
1940  * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1941  *
1942  * Note that this initialization is done very early before some kernel
1943  * services are available.
1944  *
1945  * Inputs : None
1946  *
1947  * Outputs : None
1948  */
1949 void __init
1951 {
1952  ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1953  ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1954  ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1955  int i;
1956  long rc;
1957  struct ia64_sal_retval isrv;
1958  unsigned long timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1959  static struct notifier_block default_init_monarch_nb = {
1960  .notifier_call = default_monarch_init_process,
1961  .priority = 0/* we need to notified last */
1962  };
1963 
1964  IA64_MCA_DEBUG("%s: begin\n", __func__);
1965 
1966  /* Clear the Rendez checkin flag for all cpus */
1967  for(i = 0 ; i < NR_CPUS; i++)
1969 
1970  /*
1971  * Register the rendezvous spinloop and wakeup mechanism with SAL
1972  */
1973 
1974  /* Register the rendezvous interrupt vector with SAL */
1975  while (1) {
1976  isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1979  timeout,
1981  rc = isrv.status;
1982  if (rc == 0)
1983  break;
1984  if (rc == -2) {
1985  printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1986  "%ld to %ld milliseconds\n", timeout, isrv.v0);
1987  timeout = isrv.v0;
1988  NOTIFY_MCA(DIE_MCA_NEW_TIMEOUT, NULL, timeout, 0);
1989  continue;
1990  }
1991  printk(KERN_ERR "Failed to register rendezvous interrupt "
1992  "with SAL (status %ld)\n", rc);
1993  return;
1994  }
1995 
1996  /* Register the wakeup interrupt vector with SAL */
1997  isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
2000  0, 0);
2001  rc = isrv.status;
2002  if (rc) {
2003  printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
2004  "(status %ld)\n", rc);
2005  return;
2006  }
2007 
2008  IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __func__);
2009 
2010  ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
2011  /*
2012  * XXX - disable SAL checksum by setting size to 0; should be
2013  * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
2014  */
2015  ia64_mc_info.imi_mca_handler_size = 0;
2016 
2017  /* Register the os mca handler with SAL */
2018  if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
2019  ia64_mc_info.imi_mca_handler,
2020  ia64_tpa(mca_hldlr_ptr->gp),
2021  ia64_mc_info.imi_mca_handler_size,
2022  0, 0, 0)))
2023  {
2024  printk(KERN_ERR "Failed to register OS MCA handler with SAL "
2025  "(status %ld)\n", rc);
2026  return;
2027  }
2028 
2029  IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __func__,
2030  ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
2031 
2032  /*
2033  * XXX - disable SAL checksum by setting size to 0, should be
2034  * size of the actual init handler in mca_asm.S.
2035  */
2036  ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
2037  ia64_mc_info.imi_monarch_init_handler_size = 0;
2038  ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
2039  ia64_mc_info.imi_slave_init_handler_size = 0;
2040 
2041  IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __func__,
2042  ia64_mc_info.imi_monarch_init_handler);
2043 
2044  /* Register the os init handler with SAL */
2045  if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
2046  ia64_mc_info.imi_monarch_init_handler,
2048  ia64_mc_info.imi_monarch_init_handler_size,
2049  ia64_mc_info.imi_slave_init_handler,
2051  ia64_mc_info.imi_slave_init_handler_size)))
2052  {
2053  printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
2054  "(status %ld)\n", rc);
2055  return;
2056  }
2057  if (register_die_notifier(&default_init_monarch_nb)) {
2058  printk(KERN_ERR "Failed to register default monarch INIT process\n");
2059  return;
2060  }
2061 
2062  IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __func__);
2063 
2064  /* Initialize the areas set aside by the OS to buffer the
2065  * platform/processor error states for MCA/INIT/CMC
2066  * handling.
2067  */
2068  ia64_log_init(SAL_INFO_TYPE_MCA);
2069  ia64_log_init(SAL_INFO_TYPE_INIT);
2070  ia64_log_init(SAL_INFO_TYPE_CMC);
2071  ia64_log_init(SAL_INFO_TYPE_CPE);
2072 
2073  mca_init = 1;
2074  printk(KERN_INFO "MCA related initialization done\n");
2075 }
2076 
2077 /*
2078  * ia64_mca_late_init
2079  *
2080  * Opportunity to setup things that require initialization later
2081  * than ia64_mca_init. Setup a timer to poll for CPEs if the
2082  * platform doesn't support an interrupt driven mechanism.
2083  *
2084  * Inputs : None
2085  * Outputs : Status
2086  */
2087 static int __init
2088 ia64_mca_late_init(void)
2089 {
2090  if (!mca_init)
2091  return 0;
2092 
2093  /*
2094  * Configure the CMCI/P vector and handler. Interrupts for CMC are
2095  * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
2096  */
2097  register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
2098  register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
2099  ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
2100 
2101  /* Setup the MCA rendezvous interrupt vector */
2102  register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
2103 
2104  /* Setup the MCA wakeup interrupt vector */
2105  register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
2106 
2107 #ifdef CONFIG_ACPI
2108  /* Setup the CPEI/P handler */
2109  register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
2110 #endif
2111 
2112  register_hotcpu_notifier(&mca_cpu_notifier);
2113 
2114  /* Setup the CMCI/P vector and handler */
2115  init_timer(&cmc_poll_timer);
2116  cmc_poll_timer.function = ia64_mca_cmc_poll;
2117 
2118  /* Unmask/enable the vector */
2119  cmc_polling_enabled = 0;
2120  schedule_work(&cmc_enable_work);
2121 
2122  IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __func__);
2123 
2124 #ifdef CONFIG_ACPI
2125  /* Setup the CPEI/P vector and handler */
2126  cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
2127  init_timer(&cpe_poll_timer);
2128  cpe_poll_timer.function = ia64_mca_cpe_poll;
2129 
2130  {
2131  unsigned int irq;
2132 
2133  if (cpe_vector >= 0) {
2134  /* If platform supports CPEI, enable the irq. */
2135  irq = local_vector_to_irq(cpe_vector);
2136  if (irq > 0) {
2137  cpe_poll_enabled = 0;
2138  irq_set_status_flags(irq, IRQ_PER_CPU);
2139  setup_irq(irq, &mca_cpe_irqaction);
2140  ia64_cpe_irq = irq;
2141  ia64_mca_register_cpev(cpe_vector);
2142  IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n",
2143  __func__);
2144  return 0;
2145  }
2146  printk(KERN_ERR "%s: Failed to find irq for CPE "
2147  "interrupt handler, vector %d\n",
2148  __func__, cpe_vector);
2149  }
2150  /* If platform doesn't support CPEI, get the timer going. */
2151  if (cpe_poll_enabled) {
2152  ia64_mca_cpe_poll(0UL);
2153  IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __func__);
2154  }
2155  }
2156 #endif
2157 
2158  return 0;
2159 }
2160 
2161 device_initcall(ia64_mca_late_init);