Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
perf_event.h
Go to the documentation of this file.
1 /*
2  * Performance events:
3  *
4  * Copyright (C) 2008-2009, Thomas Gleixner <[email protected]>
5  * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6  * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
7  *
8  * Data type definitions, declarations, prototypes.
9  *
10  * Started by: Thomas Gleixner and Ingo Molnar
11  *
12  * For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
16 
17 #include <uapi/linux/perf_event.h>
18 
19 /*
20  * Kernel-internal data types and definitions:
21  */
22 
23 #ifdef CONFIG_PERF_EVENTS
24 # include <linux/cgroup.h>
25 # include <asm/perf_event.h>
26 # include <asm/local64.h>
27 #endif
28 
32  unsigned long (*get_guest_ip)(void);
33 };
34 
35 #ifdef CONFIG_HAVE_HW_BREAKPOINT
36 #include <asm/hw_breakpoint.h>
37 #endif
38 
39 #include <linux/list.h>
40 #include <linux/mutex.h>
41 #include <linux/rculist.h>
42 #include <linux/rcupdate.h>
43 #include <linux/spinlock.h>
44 #include <linux/hrtimer.h>
45 #include <linux/fs.h>
46 #include <linux/pid_namespace.h>
47 #include <linux/workqueue.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/irq_work.h>
51 #include <linux/static_key.h>
52 #include <linux/atomic.h>
53 #include <linux/sysfs.h>
54 #include <linux/perf_regs.h>
55 #include <asm/local.h>
56 
60 };
61 
64  void *data;
65 };
66 
67 /*
68  * single taken branch record layout:
69  *
70  * from: source instruction (may not always be a branch insn)
71  * to: branch target
72  * mispred: branch target was mispredicted
73  * predicted: branch target was predicted
74  *
75  * support for mispred, predicted is optional. In case it
76  * is not supported mispred = predicted = 0.
77  */
81  __u64 mispred:1, /* target mispredicted */
82  predicted:1,/* target predicted */
83  reserved:62;
84 };
85 
86 /*
87  * branch stack layout:
88  * nr: number of taken branches stored in entries[]
89  *
90  * Note that nr can vary from sample to sample
91  * branches (to, from) are stored from most recent
92  * to least recent, i.e., entries[0] contains the most
93  * recent branch.
94  */
98 };
99 
102  struct pt_regs *regs;
103 };
104 
105 struct task_struct;
106 
107 /*
108  * extra PMU register associated with an event
109  */
111  u64 config; /* register value */
112  unsigned int reg; /* register address or index */
113  int alloc; /* extra register already allocated */
114  int idx; /* index in shared_regs->regs[] */
115 };
116 
121 #ifdef CONFIG_PERF_EVENTS
122  union {
123  struct { /* hardware */
124  u64 config;
125  u64 last_tag;
126  unsigned long config_base;
127  unsigned long event_base;
128  int event_base_rdpmc;
129  int idx;
130  int last_cpu;
131 
132  struct hw_perf_event_extra extra_reg;
133  struct hw_perf_event_extra branch_reg;
134  };
135  struct { /* software */
136  struct hrtimer hrtimer;
137  };
138 #ifdef CONFIG_HAVE_HW_BREAKPOINT
139  struct { /* breakpoint */
140  struct arch_hw_breakpoint info;
141  struct list_head bp_list;
142  /*
143  * Crufty hack to avoid the chicken and egg
144  * problem hw_breakpoint has with context
145  * creation and event initalization.
146  */
147  struct task_struct *bp_target;
148  };
149 #endif
150  };
151  int state;
152  local64_t prev_count;
153  u64 sample_period;
154  u64 last_period;
155  local64_t period_left;
156  u64 interrupts_seq;
157  u64 interrupts;
158 
159  u64 freq_time_stamp;
160  u64 freq_count_stamp;
161 #endif
162 };
163 
164 /*
165  * hw_perf_event::state flags
166  */
167 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
168 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
169 #define PERF_HES_ARCH 0x04
170 
171 struct perf_event;
172 
173 /*
174  * Common implementation detail of pmu::{start,commit,cancel}_txn
175  */
176 #define PERF_EVENT_TXN 0x1
177 
181 struct pmu {
182  struct list_head entry;
183 
184  struct device *dev;
185  const struct attribute_group **attr_groups;
186  char *name;
187  int type;
188 
192 
193  /*
194  * Fully disable/enable this PMU, can be used to protect from the PMI
195  * as well as for lazy/batch writing of the MSRs.
196  */
197  void (*pmu_enable) (struct pmu *pmu); /* optional */
198  void (*pmu_disable) (struct pmu *pmu); /* optional */
199 
200  /*
201  * Try and initialize the event for this PMU.
202  * Should return -ENOENT when the @event doesn't match this PMU.
203  */
205 
206 #define PERF_EF_START 0x01 /* start the counter when adding */
207 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
208 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
209 
210  /*
211  * Adds/Removes a counter to/from the PMU, can be done inside
212  * a transaction, see the ->*_txn() methods.
213  */
214  int (*add) (struct perf_event *event, int flags);
215  void (*del) (struct perf_event *event, int flags);
216 
217  /*
218  * Starts/Stops a counter present on the PMU. The PMI handler
219  * should stop the counter when perf_event_overflow() returns
220  * !0. ->start() will be used to continue.
221  */
222  void (*start) (struct perf_event *event, int flags);
223  void (*stop) (struct perf_event *event, int flags);
224 
225  /*
226  * Updates the counter value of the event.
227  */
228  void (*read) (struct perf_event *event);
229 
230  /*
231  * Group events scheduling is treated as a transaction, add
232  * group events as a whole and perform one schedulability test.
233  * If the test fails, roll back the whole group
234  *
235  * Start the transaction, after this ->add() doesn't need to
236  * do schedulability tests.
237  */
238  void (*start_txn) (struct pmu *pmu); /* optional */
239  /*
240  * If ->start_txn() disabled the ->add() schedulability test
241  * then ->commit_txn() is required to perform one. On success
242  * the transaction is closed. On error the transaction is kept
243  * open until ->cancel_txn() is called.
244  */
245  int (*commit_txn) (struct pmu *pmu); /* optional */
246  /*
247  * Will cancel the transaction, assumes ->del() is called
248  * for each successful ->add() during the transaction.
249  */
250  void (*cancel_txn) (struct pmu *pmu); /* optional */
251 
252  /*
253  * Will return the value for perf_event_mmap_page::index for this event,
254  * if no implementation is provided it will default to: event->hw.idx + 1.
255  */
256  int (*event_idx) (struct perf_event *event); /*optional */
257 
258  /*
259  * flush branch stack on context-switches (needed in cpu-wide mode)
260  */
262 };
263 
272 };
273 
274 struct file;
275 struct perf_sample_data;
276 
278  struct perf_sample_data *,
279  struct pt_regs *regs);
280 
283 };
284 
285 #define SWEVENT_HLIST_BITS 8
286 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
287 
291 };
292 
293 #define PERF_ATTACH_CONTEXT 0x01
294 #define PERF_ATTACH_GROUP 0x02
295 #define PERF_ATTACH_TASK 0x04
296 
297 #ifdef CONFIG_CGROUP_PERF
298 /*
299  * perf_cgroup_info keeps track of time_enabled for a cgroup.
300  * This is a per-cpu dynamically allocated data structure.
301  */
302 struct perf_cgroup_info {
303  u64 time;
304  u64 timestamp;
305 };
306 
307 struct perf_cgroup {
308  struct cgroup_subsys_state css;
309  struct perf_cgroup_info *info; /* timing info, one per cpu */
310 };
311 #endif
312 
313 struct ring_buffer;
314 
318 struct perf_event {
319 #ifdef CONFIG_PERF_EVENTS
320  struct list_head group_entry;
321  struct list_head event_entry;
322  struct list_head sibling_list;
323  struct hlist_node hlist_entry;
324  int nr_siblings;
325  int group_flags;
326  struct perf_event *group_leader;
327  struct pmu *pmu;
328 
330  unsigned int attach_state;
332  atomic64_t child_count;
333 
334  /*
335  * These are the total time in nanoseconds that the event
336  * has been enabled (i.e. eligible to run, and the task has
337  * been scheduled in, if this is a per-task event)
338  * and running (scheduled onto the CPU), respectively.
339  *
340  * They are computed from tstamp_enabled, tstamp_running and
341  * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
342  */
343  u64 total_time_enabled;
344  u64 total_time_running;
345 
346  /*
347  * These are timestamps used for computing total_time_enabled
348  * and total_time_running when the event is in INACTIVE or
349  * ACTIVE state, measured in nanoseconds from an arbitrary point
350  * in time.
351  * tstamp_enabled: the notional time when the event was enabled
352  * tstamp_running: the notional time when the event was scheduled on
353  * tstamp_stopped: in INACTIVE state, the notional time when the
354  * event was scheduled off.
355  */
356  u64 tstamp_enabled;
357  u64 tstamp_running;
358  u64 tstamp_stopped;
359 
360  /*
361  * timestamp shadows the actual context timing but it can
362  * be safely used in NMI interrupt context. It reflects the
363  * context time as it was when the event was last scheduled in.
364  *
365  * ctx_time already accounts for ctx->timestamp. Therefore to
366  * compute ctx_time for a sample, simply add perf_clock().
367  */
368  u64 shadow_ctx_time;
369 
370  struct perf_event_attr attr;
372  u16 id_header_size;
373  u16 read_size;
374  struct hw_perf_event hw;
375 
376  struct perf_event_context *ctx;
378 
379  /*
380  * These accumulate total time (in nanoseconds) that children
381  * events have been enabled and running, respectively.
382  */
383  atomic64_t child_total_time_enabled;
384  atomic64_t child_total_time_running;
385 
386  /*
387  * Protect attach/detach and child_list:
388  */
389  struct mutex child_mutex;
390  struct list_head child_list;
391  struct perf_event *parent;
392 
393  int oncpu;
394  int cpu;
395 
396  struct list_head owner_entry;
397  struct task_struct *owner;
398 
399  /* mmap bits */
400  struct mutex mmap_mutex;
401  atomic_t mmap_count;
402  int mmap_locked;
403  struct user_struct *mmap_user;
404  struct ring_buffer *rb;
405  struct list_head rb_entry;
406 
407  /* poll related */
408  wait_queue_head_t waitq;
409  struct fasync_struct *fasync;
410 
411  /* delayed work for NMIs and such */
412  int pending_wakeup;
413  int pending_kill;
414  int pending_disable;
415  struct irq_work pending;
416 
417  atomic_t event_limit;
418 
419  void (*destroy)(struct perf_event *);
420  struct rcu_head rcu_head;
421 
422  struct pid_namespace *ns;
423  u64 id;
424 
425  perf_overflow_handler_t overflow_handler;
426  void *overflow_handler_context;
427 
428 #ifdef CONFIG_EVENT_TRACING
429  struct ftrace_event_call *tp_event;
430  struct event_filter *filter;
431 #ifdef CONFIG_FUNCTION_TRACER
432  struct ftrace_ops ftrace_ops;
433 #endif
434 #endif
435 
436 #ifdef CONFIG_CGROUP_PERF
437  struct perf_cgroup *cgrp; /* cgroup event is attach to */
438  int cgrp_defer_enabled;
439 #endif
440 
441 #endif /* CONFIG_PERF_EVENTS */
442 };
443 
447 };
448 
455  struct pmu *pmu;
457  /*
458  * Protect the states of the events in the list,
459  * nr_active, and the list:
460  */
462  /*
463  * Protect the list of events. Locking either mutex or lock
464  * is sufficient to ensure the list doesn't change; to change
465  * the list you need to lock both the mutex and the spinlock.
466  */
467  struct mutex mutex;
468 
475  int nr_stat;
476  int nr_freq;
479  struct task_struct *task;
480 
481  /*
482  * Context clock, runs when context enabled.
483  */
486 
487  /*
488  * These fields let us detect when two contexts have both
489  * been cloned (inherited) from a common ancestor.
490  */
495  int nr_cgroups; /* cgroup evts */
496  int nr_branch_stack; /* branch_stack evt */
498 };
499 
500 /*
501  * Number of contexts where an event can trigger:
502  * task, softirq, hardirq, nmi.
503  */
504 #define PERF_NR_CONTEXTS 4
505 
516  struct pmu *unique_pmu;
517  struct perf_cgroup *cgrp;
518 };
519 
521  struct perf_event *event;
522  struct ring_buffer *rb;
523  unsigned long wakeup;
524  unsigned long size;
525  void *addr;
526  int page;
527 };
528 
529 #ifdef CONFIG_PERF_EVENTS
530 
531 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
532 extern void perf_pmu_unregister(struct pmu *pmu);
533 
534 extern int perf_num_counters(void);
535 extern const char *perf_pmu_name(void);
536 extern void __perf_event_task_sched_in(struct task_struct *prev,
537  struct task_struct *task);
538 extern void __perf_event_task_sched_out(struct task_struct *prev,
539  struct task_struct *next);
540 extern int perf_event_init_task(struct task_struct *child);
541 extern void perf_event_exit_task(struct task_struct *child);
542 extern void perf_event_free_task(struct task_struct *task);
543 extern void perf_event_delayed_put(struct task_struct *task);
544 extern void perf_event_print_debug(void);
545 extern void perf_pmu_disable(struct pmu *pmu);
546 extern void perf_pmu_enable(struct pmu *pmu);
547 extern int perf_event_task_disable(void);
548 extern int perf_event_task_enable(void);
549 extern int perf_event_refresh(struct perf_event *event, int refresh);
550 extern void perf_event_update_userpage(struct perf_event *event);
551 extern int perf_event_release_kernel(struct perf_event *event);
552 extern struct perf_event *
554  int cpu,
555  struct task_struct *task,
557  void *context);
558 extern void perf_pmu_migrate_context(struct pmu *pmu,
559  int src_cpu, int dst_cpu);
561  u64 *enabled, u64 *running);
562 
563 
564 struct perf_sample_data {
565  u64 type;
566 
567  u64 ip;
568  struct {
569  u32 pid;
570  u32 tid;
571  } tid_entry;
572  u64 time;
573  u64 addr;
574  u64 id;
575  u64 stream_id;
576  struct {
577  u32 cpu;
578  u32 reserved;
579  } cpu_entry;
580  u64 period;
581  struct perf_callchain_entry *callchain;
582  struct perf_raw_record *raw;
583  struct perf_branch_stack *br_stack;
584  struct perf_regs_user regs_user;
585  u64 stack_user_size;
586 };
587 
588 static inline void perf_sample_data_init(struct perf_sample_data *data,
589  u64 addr, u64 period)
590 {
591  /* remaining struct members initialized in perf_prepare_sample() */
592  data->addr = addr;
593  data->raw = NULL;
594  data->br_stack = NULL;
595  data->period = period;
596  data->regs_user.abi = PERF_SAMPLE_REGS_ABI_NONE;
597  data->regs_user.regs = NULL;
598  data->stack_user_size = 0;
599 }
600 
601 extern void perf_output_sample(struct perf_output_handle *handle,
602  struct perf_event_header *header,
603  struct perf_sample_data *data,
604  struct perf_event *event);
605 extern void perf_prepare_sample(struct perf_event_header *header,
606  struct perf_sample_data *data,
607  struct perf_event *event,
608  struct pt_regs *regs);
609 
610 extern int perf_event_overflow(struct perf_event *event,
611  struct perf_sample_data *data,
612  struct pt_regs *regs);
613 
614 static inline bool is_sampling_event(struct perf_event *event)
615 {
616  return event->attr.sample_period != 0;
617 }
618 
619 /*
620  * Return 1 for a software event, 0 for a hardware event
621  */
622 static inline int is_software_event(struct perf_event *event)
623 {
624  return event->pmu->task_ctx_nr == perf_sw_context;
625 }
626 
628 
629 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
630 
631 #ifndef perf_arch_fetch_caller_regs
632 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
633 #endif
634 
635 /*
636  * Take a snapshot of the regs. Skip ip and frame pointer to
637  * the nth caller. We only need a few of the regs:
638  * - ip for PERF_SAMPLE_IP
639  * - cs for user_mode() tests
640  * - bp for callchains
641  * - eflags, for future purposes, just in case
642  */
643 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
644 {
645  memset(regs, 0, sizeof(*regs));
646 
647  perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
648 }
649 
650 static __always_inline void
651 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
652 {
653  struct pt_regs hot_regs;
654 
655  if (static_key_false(&perf_swevent_enabled[event_id])) {
656  if (!regs) {
657  perf_fetch_caller_regs(&hot_regs);
658  regs = &hot_regs;
659  }
660  __perf_sw_event(event_id, nr, regs, addr);
661  }
662 }
663 
664 extern struct static_key_deferred perf_sched_events;
665 
666 static inline void perf_event_task_sched_in(struct task_struct *prev,
667  struct task_struct *task)
668 {
669  if (static_key_false(&perf_sched_events.key))
670  __perf_event_task_sched_in(prev, task);
671 }
672 
673 static inline void perf_event_task_sched_out(struct task_struct *prev,
674  struct task_struct *next)
675 {
676  perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
677 
678  if (static_key_false(&perf_sched_events.key))
679  __perf_event_task_sched_out(prev, next);
680 }
681 
682 extern void perf_event_mmap(struct vm_area_struct *vma);
686 
687 extern void perf_event_comm(struct task_struct *tsk);
688 extern void perf_event_fork(struct task_struct *tsk);
689 
690 /* Callchains */
692 
693 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
694 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
695 
696 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
697 {
698  if (entry->nr < PERF_MAX_STACK_DEPTH)
699  entry->ip[entry->nr++] = ip;
700 }
701 
702 extern int sysctl_perf_event_paranoid;
703 extern int sysctl_perf_event_mlock;
704 extern int sysctl_perf_event_sample_rate;
705 
706 extern int perf_proc_update_handler(struct ctl_table *table, int write,
707  void __user *buffer, size_t *lenp,
708  loff_t *ppos);
709 
710 static inline bool perf_paranoid_tracepoint_raw(void)
711 {
712  return sysctl_perf_event_paranoid > -1;
713 }
714 
715 static inline bool perf_paranoid_cpu(void)
716 {
717  return sysctl_perf_event_paranoid > 0;
718 }
719 
720 static inline bool perf_paranoid_kernel(void)
721 {
722  return sysctl_perf_event_paranoid > 1;
723 }
724 
725 extern void perf_event_init(void);
726 extern void perf_tp_event(u64 addr, u64 count, void *record,
727  int entry_size, struct pt_regs *regs,
728  struct hlist_head *head, int rctx,
729  struct task_struct *task);
730 extern void perf_bp_event(struct perf_event *event, void *data);
731 
732 #ifndef perf_misc_flags
733 # define perf_misc_flags(regs) \
734  (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
735 # define perf_instruction_pointer(regs) instruction_pointer(regs)
736 #endif
737 
738 static inline bool has_branch_stack(struct perf_event *event)
739 {
740  return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
741 }
742 
743 extern int perf_output_begin(struct perf_output_handle *handle,
744  struct perf_event *event, unsigned int size);
745 extern void perf_output_end(struct perf_output_handle *handle);
746 extern unsigned int perf_output_copy(struct perf_output_handle *handle,
747  const void *buf, unsigned int len);
748 extern unsigned int perf_output_skip(struct perf_output_handle *handle,
749  unsigned int len);
750 extern int perf_swevent_get_recursion_context(void);
751 extern void perf_swevent_put_recursion_context(int rctx);
752 extern void perf_event_enable(struct perf_event *event);
753 extern void perf_event_disable(struct perf_event *event);
754 extern int __perf_event_disable(void *info);
755 extern void perf_event_task_tick(void);
756 #else
757 static inline void
758 perf_event_task_sched_in(struct task_struct *prev,
759  struct task_struct *task) { }
760 static inline void
761 perf_event_task_sched_out(struct task_struct *prev,
762  struct task_struct *next) { }
763 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
764 static inline void perf_event_exit_task(struct task_struct *child) { }
765 static inline void perf_event_free_task(struct task_struct *task) { }
766 static inline void perf_event_delayed_put(struct task_struct *task) { }
767 static inline void perf_event_print_debug(void) { }
768 static inline int perf_event_task_disable(void) { return -EINVAL; }
769 static inline int perf_event_task_enable(void) { return -EINVAL; }
770 static inline int perf_event_refresh(struct perf_event *event, int refresh)
771 {
772  return -EINVAL;
773 }
774 
775 static inline void
776 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
777 static inline void
778 perf_bp_event(struct perf_event *event, void *data) { }
779 
780 static inline int perf_register_guest_info_callbacks
781 (struct perf_guest_info_callbacks *callbacks) { return 0; }
782 static inline int perf_unregister_guest_info_callbacks
783 (struct perf_guest_info_callbacks *callbacks) { return 0; }
784 
785 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
786 static inline void perf_event_comm(struct task_struct *tsk) { }
787 static inline void perf_event_fork(struct task_struct *tsk) { }
788 static inline void perf_event_init(void) { }
789 static inline int perf_swevent_get_recursion_context(void) { return -1; }
790 static inline void perf_swevent_put_recursion_context(int rctx) { }
791 static inline void perf_event_enable(struct perf_event *event) { }
792 static inline void perf_event_disable(struct perf_event *event) { }
793 static inline int __perf_event_disable(void *info) { return -1; }
794 static inline void perf_event_task_tick(void) { }
795 #endif
796 
797 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
798 
799 /*
800  * This has to have a higher priority than migration_notifier in sched.c.
801  */
802 #define perf_cpu_notifier(fn) \
803 do { \
804  static struct notifier_block fn##_nb __cpuinitdata = \
805  { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
806  unsigned long cpu = smp_processor_id(); \
807  unsigned long flags; \
808  fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
809  (void *)(unsigned long)cpu); \
810  local_irq_save(flags); \
811  fn(&fn##_nb, (unsigned long)CPU_STARTING, \
812  (void *)(unsigned long)cpu); \
813  local_irq_restore(flags); \
814  fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
815  (void *)(unsigned long)cpu); \
816  register_cpu_notifier(&fn##_nb); \
817 } while (0)
818 
819 
820 #define PMU_FORMAT_ATTR(_name, _format) \
821 static ssize_t \
822 _name##_show(struct device *dev, \
823  struct device_attribute *attr, \
824  char *page) \
825 { \
826  BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
827  return sprintf(page, _format "\n"); \
828 } \
829  \
830 static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
831 
832 #endif /* _LINUX_PERF_EVENT_H */