Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ip27-irq.c
Go to the documentation of this file.
1 /*
2  * ip27-irq.c: Highlevel interrupt handling for IP27 architecture.
3  *
4  * Copyright (C) 1999, 2000 Ralf Baechle ([email protected])
5  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
6  * Copyright (C) 1999 - 2001 Kanoj Sarcar
7  */
8 
9 #undef DEBUG
10 
11 #include <linux/init.h>
12 #include <linux/irq.h>
13 #include <linux/errno.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/types.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/timex.h>
20 #include <linux/smp.h>
21 #include <linux/random.h>
22 #include <linux/kernel.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/delay.h>
25 #include <linux/bitops.h>
26 
27 #include <asm/bootinfo.h>
28 #include <asm/io.h>
29 #include <asm/mipsregs.h>
30 
31 #include <asm/processor.h>
32 #include <asm/pci/bridge.h>
33 #include <asm/sn/addrs.h>
34 #include <asm/sn/agent.h>
35 #include <asm/sn/arch.h>
36 #include <asm/sn/hub.h>
37 #include <asm/sn/intr.h>
38 
39 /*
40  * Linux has a controller-independent x86 interrupt architecture.
41  * every controller has a 'controller-template', that is used
42  * by the main code to do the right thing. Each driver-visible
43  * interrupt source is transparently wired to the appropriate
44  * controller. Thus drivers need not be aware of the
45  * interrupt-controller.
46  *
47  * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC,
48  * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC.
49  * (IO-APICs assumed to be messaging to Pentium local-APICs)
50  *
51  * the code is designed to be easily extended with new/different
52  * interrupt controllers, without having to do assembly magic.
53  */
54 
55 extern asmlinkage void ip27_irq(void);
56 
57 extern struct bridge_controller *irq_to_bridge[];
58 extern int irq_to_slot[];
59 
60 /*
61  * use these macros to get the encoded nasid and widget id
62  * from the irq value
63  */
64 #define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)]
65 #define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i]
66 
67 static inline int alloc_level(int cpu, int irq)
68 {
69  struct hub_data *hub = hub_data(cpu_to_node(cpu));
70  struct slice_data *si = cpu_data[cpu].data;
71  int level;
72 
74  if (level >= LEVELS_PER_SLICE)
75  panic("Cpu %d flooded with devices", cpu);
76 
77  __set_bit(level, hub->irq_alloc_mask);
78  si->level_to_irq[level] = irq;
79 
80  return level;
81 }
82 
83 static inline int find_level(cpuid_t *cpunum, int irq)
84 {
85  int cpu, i;
86 
87  for_each_online_cpu(cpu) {
88  struct slice_data *si = cpu_data[cpu].data;
89 
90  for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++)
91  if (si->level_to_irq[i] == irq) {
92  *cpunum = cpu;
93 
94  return i;
95  }
96  }
97 
98  panic("Could not identify cpu/level for irq %d", irq);
99 }
100 
101 /*
102  * Find first bit set
103  */
104 static int ms1bit(unsigned long x)
105 {
106  int b = 0, s;
107 
108  s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s;
109  s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s;
110  s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s;
111  s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s;
112  s = 1; if (x >> 1 == 0) s = 0; b += s;
113 
114  return b;
115 }
116 
117 /*
118  * This code is unnecessarily complex, because we do
119  * intr enabling. Basically, once we grab the set of intrs we need
120  * to service, we must mask _all_ these interrupts; firstly, to make
121  * sure the same intr does not intr again, causing recursion that
122  * can lead to stack overflow. Secondly, we can not just mask the
123  * one intr we are do_IRQing, because the non-masked intrs in the
124  * first set might intr again, causing multiple servicings of the
125  * same intr. This effect is mostly seen for intercpu intrs.
126  * Kanoj 05.13.00
127  */
128 
129 static void ip27_do_irq_mask0(void)
130 {
131  int irq, swlevel;
132  hubreg_t pend0, mask0;
133  cpuid_t cpu = smp_processor_id();
134  int pi_int_mask0 =
135  (cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B;
136 
137  /* copied from Irix intpend0() */
138  pend0 = LOCAL_HUB_L(PI_INT_PEND0);
139  mask0 = LOCAL_HUB_L(pi_int_mask0);
140 
141  pend0 &= mask0; /* Pick intrs we should look at */
142  if (!pend0)
143  return;
144 
145  swlevel = ms1bit(pend0);
146 #ifdef CONFIG_SMP
147  if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) {
149  scheduler_ipi();
150  } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) {
152  scheduler_ipi();
153  } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) {
156  } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) {
159  } else
160 #endif
161  {
162  /* "map" swlevel to irq */
163  struct slice_data *si = cpu_data[cpu].data;
164 
165  irq = si->level_to_irq[swlevel];
166  do_IRQ(irq);
167  }
168 
170 }
171 
172 static void ip27_do_irq_mask1(void)
173 {
174  int irq, swlevel;
175  hubreg_t pend1, mask1;
176  cpuid_t cpu = smp_processor_id();
177  int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B;
178  struct slice_data *si = cpu_data[cpu].data;
179 
180  /* copied from Irix intpend0() */
181  pend1 = LOCAL_HUB_L(PI_INT_PEND1);
182  mask1 = LOCAL_HUB_L(pi_int_mask1);
183 
184  pend1 &= mask1; /* Pick intrs we should look at */
185  if (!pend1)
186  return;
187 
188  swlevel = ms1bit(pend1);
189  /* "map" swlevel to irq */
190  irq = si->level_to_irq[swlevel];
191  LOCAL_HUB_CLR_INTR(swlevel);
192  do_IRQ(irq);
193 
195 }
196 
197 static void ip27_prof_timer(void)
198 {
199  panic("CPU %d got a profiling interrupt", smp_processor_id());
200 }
201 
202 static void ip27_hub_error(void)
203 {
204  panic("CPU %d got a hub error interrupt", smp_processor_id());
205 }
206 
207 static int intr_connect_level(int cpu, int bit)
208 {
210  struct slice_data *si = cpu_data[cpu].data;
211 
212  set_bit(bit, si->irq_enable_mask);
213 
214  if (!cputoslice(cpu)) {
217  } else {
220  }
221 
222  return 0;
223 }
224 
225 static int intr_disconnect_level(int cpu, int bit)
226 {
228  struct slice_data *si = cpu_data[cpu].data;
229 
230  clear_bit(bit, si->irq_enable_mask);
231 
232  if (!cputoslice(cpu)) {
235  } else {
238  }
239 
240  return 0;
241 }
242 
243 /* Startup one of the (PCI ...) IRQs routes over a bridge. */
244 static unsigned int startup_bridge_irq(struct irq_data *d)
245 {
246  struct bridge_controller *bc;
248  bridge_t *bridge;
249  int pin, swlevel;
250  cpuid_t cpu;
251 
252  pin = SLOT_FROM_PCI_IRQ(d->irq);
253  bc = IRQ_TO_BRIDGE(d->irq);
254  bridge = bc->base;
255 
256  pr_debug("bridge_startup(): irq= 0x%x pin=%d\n", d->irq, pin);
257  /*
258  * "map" irq to a swlevel greater than 6 since the first 6 bits
259  * of INT_PEND0 are taken
260  */
261  swlevel = find_level(&cpu, d->irq);
262  bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8));
263  bridge->b_int_enable |= (1 << pin);
264  bridge->b_int_enable |= 0x7ffffe00; /* more stuff in int_enable */
265 
266  /*
267  * Enable sending of an interrupt clear packt to the hub on a high to
268  * low transition of the interrupt pin.
269  *
270  * IRIX sets additional bits in the address which are documented as
271  * reserved in the bridge docs.
272  */
273  bridge->b_int_mode |= (1UL << pin);
274 
275  /*
276  * We assume the bridge to have a 1:1 mapping between devices
277  * (slots) and intr pins.
278  */
279  device = bridge->b_int_device;
280  device &= ~(7 << (pin*3));
281  device |= (pin << (pin*3));
282  bridge->b_int_device = device;
283 
284  bridge->b_wid_tflush;
285 
286  intr_connect_level(cpu, swlevel);
287 
288  return 0; /* Never anything pending. */
289 }
290 
291 /* Shutdown one of the (PCI ...) IRQs routes over a bridge. */
292 static void shutdown_bridge_irq(struct irq_data *d)
293 {
294  struct bridge_controller *bc = IRQ_TO_BRIDGE(d->irq);
295  bridge_t *bridge = bc->base;
296  int pin, swlevel;
297  cpuid_t cpu;
298 
299  pr_debug("bridge_shutdown: irq 0x%x\n", d->irq);
300  pin = SLOT_FROM_PCI_IRQ(d->irq);
301 
302  /*
303  * map irq to a swlevel greater than 6 since the first 6 bits
304  * of INT_PEND0 are taken
305  */
306  swlevel = find_level(&cpu, d->irq);
307  intr_disconnect_level(cpu, swlevel);
308 
309  bridge->b_int_enable &= ~(1 << pin);
310  bridge->b_wid_tflush;
311 }
312 
313 static inline void enable_bridge_irq(struct irq_data *d)
314 {
315  cpuid_t cpu;
316  int swlevel;
317 
318  swlevel = find_level(&cpu, d->irq); /* Criminal offence */
319  intr_connect_level(cpu, swlevel);
320 }
321 
322 static inline void disable_bridge_irq(struct irq_data *d)
323 {
324  cpuid_t cpu;
325  int swlevel;
326 
327  swlevel = find_level(&cpu, d->irq); /* Criminal offence */
328  intr_disconnect_level(cpu, swlevel);
329 }
330 
331 static struct irq_chip bridge_irq_type = {
332  .name = "bridge",
333  .irq_startup = startup_bridge_irq,
334  .irq_shutdown = shutdown_bridge_irq,
335  .irq_mask = disable_bridge_irq,
336  .irq_unmask = enable_bridge_irq,
337 };
338 
339 void register_bridge_irq(unsigned int irq)
340 {
341  irq_set_chip_and_handler(irq, &bridge_irq_type, handle_level_irq);
342 }
343 
345 {
346  int irq = allocate_irqno();
347  int swlevel, cpu;
348  nasid_t nasid;
349 
350  if (irq < 0)
351  return irq;
352 
353  /*
354  * "map" irq to a swlevel greater than 6 since the first 6 bits
355  * of INT_PEND0 are taken
356  */
357  cpu = bc->irq_cpu;
358  swlevel = alloc_level(cpu, irq);
359  if (unlikely(swlevel < 0)) {
360  free_irqno(irq);
361 
362  return -EAGAIN;
363  }
364 
365  /* Make sure it's not already pending when we connect it. */
366  nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu));
367  REMOTE_HUB_CLR_INTR(nasid, swlevel);
368 
369  intr_connect_level(cpu, swlevel);
370 
371  register_bridge_irq(irq);
372 
373  return irq;
374 }
375 
377 {
378  unsigned long pending = read_c0_cause() & read_c0_status();
379  extern unsigned int rt_timer_irq;
380 
381  if (pending & CAUSEF_IP4)
382  do_IRQ(rt_timer_irq);
383  else if (pending & CAUSEF_IP2) /* PI_INT_PEND_0 or CC_PEND_{A|B} */
384  ip27_do_irq_mask0();
385  else if (pending & CAUSEF_IP3) /* PI_INT_PEND_1 */
386  ip27_do_irq_mask1();
387  else if (pending & CAUSEF_IP5)
388  ip27_prof_timer();
389  else if (pending & CAUSEF_IP6)
390  ip27_hub_error();
391 }
392 
394 {
395 }
396 
397 void install_ipi(void)
398 {
400  int cpu = smp_processor_id();
401  struct slice_data *si = cpu_data[cpu].data;
402  struct hub_data *hub = hub_data(cpu_to_node(cpu));
403  int resched, call;
404 
405  resched = CPU_RESCHED_A_IRQ + slice;
406  __set_bit(resched, hub->irq_alloc_mask);
407  __set_bit(resched, si->irq_enable_mask);
408  LOCAL_HUB_CLR_INTR(resched);
409 
410  call = CPU_CALL_A_IRQ + slice;
411  __set_bit(call, hub->irq_alloc_mask);
412  __set_bit(call, si->irq_enable_mask);
413  LOCAL_HUB_CLR_INTR(call);
414 
415  if (slice == 0) {
418  } else {
421  }
422 }