Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
udp.c
Go to the documentation of this file.
1 /*
2  * INET An implementation of the TCP/IP protocol suite for the LINUX
3  * operating system. INET is implemented using the BSD Socket
4  * interface as the means of communication with the user level.
5  *
6  * The User Datagram Protocol (UDP).
7  *
8  * Authors: Ross Biro
9  * Fred N. van Kempen, <[email protected]>
10  * Arnt Gulbrandsen, <[email protected]>
11  * Alan Cox, <[email protected]>
12  * Hirokazu Takahashi, <[email protected]>
13  *
14  * Fixes:
15  * Alan Cox : verify_area() calls
16  * Alan Cox : stopped close while in use off icmp
17  * messages. Not a fix but a botch that
18  * for udp at least is 'valid'.
19  * Alan Cox : Fixed icmp handling properly
20  * Alan Cox : Correct error for oversized datagrams
21  * Alan Cox : Tidied select() semantics.
22  * Alan Cox : udp_err() fixed properly, also now
23  * select and read wake correctly on errors
24  * Alan Cox : udp_send verify_area moved to avoid mem leak
25  * Alan Cox : UDP can count its memory
26  * Alan Cox : send to an unknown connection causes
27  * an ECONNREFUSED off the icmp, but
28  * does NOT close.
29  * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30  * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31  * bug no longer crashes it.
32  * Fred Van Kempen : Net2e support for sk->broadcast.
33  * Alan Cox : Uses skb_free_datagram
34  * Alan Cox : Added get/set sockopt support.
35  * Alan Cox : Broadcasting without option set returns EACCES.
36  * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37  * Alan Cox : Use ip_tos and ip_ttl
38  * Alan Cox : SNMP Mibs
39  * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40  * Matt Dillon : UDP length checks.
41  * Alan Cox : Smarter af_inet used properly.
42  * Alan Cox : Use new kernel side addressing.
43  * Alan Cox : Incorrect return on truncated datagram receive.
44  * Arnt Gulbrandsen : New udp_send and stuff
45  * Alan Cox : Cache last socket
46  * Alan Cox : Route cache
47  * Jon Peatfield : Minor efficiency fix to sendto().
48  * Mike Shaver : RFC1122 checks.
49  * Alan Cox : Nonblocking error fix.
50  * Willy Konynenberg : Transparent proxying support.
51  * Mike McLagan : Routing by source
52  * David S. Miller : New socket lookup architecture.
53  * Last socket cache retained as it
54  * does have a high hit rate.
55  * Olaf Kirch : Don't linearise iovec on sendmsg.
56  * Andi Kleen : Some cleanups, cache destination entry
57  * for connect.
58  * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59  * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60  * return ENOTCONN for unconnected sockets (POSIX)
61  * Janos Farkas : don't deliver multi/broadcasts to a different
62  * bound-to-device socket
63  * Hirokazu Takahashi : HW checksumming for outgoing UDP
64  * datagrams.
65  * Hirokazu Takahashi : sendfile() on UDP works now.
66  * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67  * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68  * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69  * a single port at the same time.
70  * Derek Atkins <[email protected]>: Add Encapulation Support
71  * James Chapman : Add L2TP encapsulation type.
72  *
73  *
74  * This program is free software; you can redistribute it and/or
75  * modify it under the terms of the GNU General Public License
76  * as published by the Free Software Foundation; either version
77  * 2 of the License, or (at your option) any later version.
78  */
79 
80 #define pr_fmt(fmt) "UDP: " fmt
81 
82 #include <asm/uaccess.h>
83 #include <asm/ioctls.h>
84 #include <linux/bootmem.h>
85 #include <linux/highmem.h>
86 #include <linux/swap.h>
87 #include <linux/types.h>
88 #include <linux/fcntl.h>
89 #include <linux/module.h>
90 #include <linux/socket.h>
91 #include <linux/sockios.h>
92 #include <linux/igmp.h>
93 #include <linux/in.h>
94 #include <linux/errno.h>
95 #include <linux/timer.h>
96 #include <linux/mm.h>
97 #include <linux/inet.h>
98 #include <linux/netdevice.h>
99 #include <linux/slab.h>
100 #include <net/tcp_states.h>
101 #include <linux/skbuff.h>
102 #include <linux/proc_fs.h>
103 #include <linux/seq_file.h>
104 #include <net/net_namespace.h>
105 #include <net/icmp.h>
106 #include <net/route.h>
107 #include <net/checksum.h>
108 #include <net/xfrm.h>
109 #include <trace/events/udp.h>
110 #include <linux/static_key.h>
111 #include <trace/events/skb.h>
112 #include "udp_impl.h"
113 
116 
119 
121 EXPORT_SYMBOL(sysctl_udp_rmem_min);
122 
124 EXPORT_SYMBOL(sysctl_udp_wmem_min);
125 
127 EXPORT_SYMBOL(udp_memory_allocated);
128 
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131 
132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133  const struct udp_hslot *hslot,
134  unsigned long *bitmap,
135  struct sock *sk,
136  int (*saddr_comp)(const struct sock *sk1,
137  const struct sock *sk2),
138  unsigned int log)
139 {
140  struct sock *sk2;
141  struct hlist_nulls_node *node;
142 
143  sk_nulls_for_each(sk2, node, &hslot->head)
144  if (net_eq(sock_net(sk2), net) &&
145  sk2 != sk &&
146  (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
147  (!sk2->sk_reuse || !sk->sk_reuse) &&
148  (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
149  sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
150  (*saddr_comp)(sk, sk2)) {
151  if (bitmap)
152  __set_bit(udp_sk(sk2)->udp_port_hash >> log,
153  bitmap);
154  else
155  return 1;
156  }
157  return 0;
158 }
159 
160 /*
161  * Note: we still hold spinlock of primary hash chain, so no other writer
162  * can insert/delete a socket with local_port == num
163  */
164 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
165  struct udp_hslot *hslot2,
166  struct sock *sk,
167  int (*saddr_comp)(const struct sock *sk1,
168  const struct sock *sk2))
169 {
170  struct sock *sk2;
171  struct hlist_nulls_node *node;
172  int res = 0;
173 
174  spin_lock(&hslot2->lock);
175  udp_portaddr_for_each_entry(sk2, node, &hslot2->head)
176  if (net_eq(sock_net(sk2), net) &&
177  sk2 != sk &&
178  (udp_sk(sk2)->udp_port_hash == num) &&
179  (!sk2->sk_reuse || !sk->sk_reuse) &&
180  (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
181  sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
182  (*saddr_comp)(sk, sk2)) {
183  res = 1;
184  break;
185  }
186  spin_unlock(&hslot2->lock);
187  return res;
188 }
189 
199 int udp_lib_get_port(struct sock *sk, unsigned short snum,
200  int (*saddr_comp)(const struct sock *sk1,
201  const struct sock *sk2),
202  unsigned int hash2_nulladdr)
203 {
204  struct udp_hslot *hslot, *hslot2;
205  struct udp_table *udptable = sk->sk_prot->h.udp_table;
206  int error = 1;
207  struct net *net = sock_net(sk);
208 
209  if (!snum) {
210  int low, high, remaining;
211  unsigned int rand;
212  unsigned short first, last;
214 
215  inet_get_local_port_range(&low, &high);
216  remaining = (high - low) + 1;
217 
218  rand = net_random();
219  first = (((u64)rand * remaining) >> 32) + low;
220  /*
221  * force rand to be an odd multiple of UDP_HTABLE_SIZE
222  */
223  rand = (rand | 1) * (udptable->mask + 1);
224  last = first + udptable->mask + 1;
225  do {
226  hslot = udp_hashslot(udptable, net, first);
227  bitmap_zero(bitmap, PORTS_PER_CHAIN);
228  spin_lock_bh(&hslot->lock);
229  udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
230  saddr_comp, udptable->log);
231 
232  snum = first;
233  /*
234  * Iterate on all possible values of snum for this hash.
235  * Using steps of an odd multiple of UDP_HTABLE_SIZE
236  * give us randomization and full range coverage.
237  */
238  do {
239  if (low <= snum && snum <= high &&
240  !test_bit(snum >> udptable->log, bitmap) &&
241  !inet_is_reserved_local_port(snum))
242  goto found;
243  snum += rand;
244  } while (snum != first);
245  spin_unlock_bh(&hslot->lock);
246  } while (++first != last);
247  goto fail;
248  } else {
249  hslot = udp_hashslot(udptable, net, snum);
250  spin_lock_bh(&hslot->lock);
251  if (hslot->count > 10) {
252  int exist;
253  unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
254 
255  slot2 &= udptable->mask;
256  hash2_nulladdr &= udptable->mask;
257 
258  hslot2 = udp_hashslot2(udptable, slot2);
259  if (hslot->count < hslot2->count)
260  goto scan_primary_hash;
261 
262  exist = udp_lib_lport_inuse2(net, snum, hslot2,
263  sk, saddr_comp);
264  if (!exist && (hash2_nulladdr != slot2)) {
265  hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
266  exist = udp_lib_lport_inuse2(net, snum, hslot2,
267  sk, saddr_comp);
268  }
269  if (exist)
270  goto fail_unlock;
271  else
272  goto found;
273  }
274 scan_primary_hash:
275  if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk,
276  saddr_comp, 0))
277  goto fail_unlock;
278  }
279 found:
280  inet_sk(sk)->inet_num = snum;
281  udp_sk(sk)->udp_port_hash = snum;
282  udp_sk(sk)->udp_portaddr_hash ^= snum;
283  if (sk_unhashed(sk)) {
284  sk_nulls_add_node_rcu(sk, &hslot->head);
285  hslot->count++;
286  sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
287 
288  hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
289  spin_lock(&hslot2->lock);
290  hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
291  &hslot2->head);
292  hslot2->count++;
293  spin_unlock(&hslot2->lock);
294  }
295  error = 0;
296 fail_unlock:
297  spin_unlock_bh(&hslot->lock);
298 fail:
299  return error;
300 }
302 
303 static int ipv4_rcv_saddr_equal(const struct sock *sk1, const struct sock *sk2)
304 {
305  struct inet_sock *inet1 = inet_sk(sk1), *inet2 = inet_sk(sk2);
306 
307  return (!ipv6_only_sock(sk2) &&
308  (!inet1->inet_rcv_saddr || !inet2->inet_rcv_saddr ||
309  inet1->inet_rcv_saddr == inet2->inet_rcv_saddr));
310 }
311 
312 static unsigned int udp4_portaddr_hash(struct net *net, __be32 saddr,
313  unsigned int port)
314 {
315  return jhash_1word((__force u32)saddr, net_hash_mix(net)) ^ port;
316 }
317 
318 int udp_v4_get_port(struct sock *sk, unsigned short snum)
319 {
320  unsigned int hash2_nulladdr =
321  udp4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
322  unsigned int hash2_partial =
323  udp4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
324 
325  /* precompute partial secondary hash */
326  udp_sk(sk)->udp_portaddr_hash = hash2_partial;
327  return udp_lib_get_port(sk, snum, ipv4_rcv_saddr_equal, hash2_nulladdr);
328 }
329 
330 static inline int compute_score(struct sock *sk, struct net *net, __be32 saddr,
331  unsigned short hnum,
332  __be16 sport, __be32 daddr, __be16 dport, int dif)
333 {
334  int score = -1;
335 
336  if (net_eq(sock_net(sk), net) && udp_sk(sk)->udp_port_hash == hnum &&
337  !ipv6_only_sock(sk)) {
338  struct inet_sock *inet = inet_sk(sk);
339 
340  score = (sk->sk_family == PF_INET ? 1 : 0);
341  if (inet->inet_rcv_saddr) {
342  if (inet->inet_rcv_saddr != daddr)
343  return -1;
344  score += 2;
345  }
346  if (inet->inet_daddr) {
347  if (inet->inet_daddr != saddr)
348  return -1;
349  score += 2;
350  }
351  if (inet->inet_dport) {
352  if (inet->inet_dport != sport)
353  return -1;
354  score += 2;
355  }
356  if (sk->sk_bound_dev_if) {
357  if (sk->sk_bound_dev_if != dif)
358  return -1;
359  score += 2;
360  }
361  }
362  return score;
363 }
364 
365 /*
366  * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
367  */
368 #define SCORE2_MAX (1 + 2 + 2 + 2)
369 static inline int compute_score2(struct sock *sk, struct net *net,
370  __be32 saddr, __be16 sport,
371  __be32 daddr, unsigned int hnum, int dif)
372 {
373  int score = -1;
374 
375  if (net_eq(sock_net(sk), net) && !ipv6_only_sock(sk)) {
376  struct inet_sock *inet = inet_sk(sk);
377 
378  if (inet->inet_rcv_saddr != daddr)
379  return -1;
380  if (inet->inet_num != hnum)
381  return -1;
382 
383  score = (sk->sk_family == PF_INET ? 1 : 0);
384  if (inet->inet_daddr) {
385  if (inet->inet_daddr != saddr)
386  return -1;
387  score += 2;
388  }
389  if (inet->inet_dport) {
390  if (inet->inet_dport != sport)
391  return -1;
392  score += 2;
393  }
394  if (sk->sk_bound_dev_if) {
395  if (sk->sk_bound_dev_if != dif)
396  return -1;
397  score += 2;
398  }
399  }
400  return score;
401 }
402 
403 
404 /* called with read_rcu_lock() */
405 static struct sock *udp4_lib_lookup2(struct net *net,
406  __be32 saddr, __be16 sport,
407  __be32 daddr, unsigned int hnum, int dif,
408  struct udp_hslot *hslot2, unsigned int slot2)
409 {
410  struct sock *sk, *result;
411  struct hlist_nulls_node *node;
412  int score, badness;
413 
414 begin:
415  result = NULL;
416  badness = -1;
417  udp_portaddr_for_each_entry_rcu(sk, node, &hslot2->head) {
418  score = compute_score2(sk, net, saddr, sport,
419  daddr, hnum, dif);
420  if (score > badness) {
421  result = sk;
422  badness = score;
423  if (score == SCORE2_MAX)
424  goto exact_match;
425  }
426  }
427  /*
428  * if the nulls value we got at the end of this lookup is
429  * not the expected one, we must restart lookup.
430  * We probably met an item that was moved to another chain.
431  */
432  if (get_nulls_value(node) != slot2)
433  goto begin;
434 
435  if (result) {
436 exact_match:
437  if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
438  result = NULL;
439  else if (unlikely(compute_score2(result, net, saddr, sport,
440  daddr, hnum, dif) < badness)) {
441  sock_put(result);
442  goto begin;
443  }
444  }
445  return result;
446 }
447 
448 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
449  * harder than this. -DaveM
450  */
451 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
452  __be16 sport, __be32 daddr, __be16 dport,
453  int dif, struct udp_table *udptable)
454 {
455  struct sock *sk, *result;
456  struct hlist_nulls_node *node;
457  unsigned short hnum = ntohs(dport);
458  unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
459  struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
460  int score, badness;
461 
462  rcu_read_lock();
463  if (hslot->count > 10) {
464  hash2 = udp4_portaddr_hash(net, daddr, hnum);
465  slot2 = hash2 & udptable->mask;
466  hslot2 = &udptable->hash2[slot2];
467  if (hslot->count < hslot2->count)
468  goto begin;
469 
470  result = udp4_lib_lookup2(net, saddr, sport,
471  daddr, hnum, dif,
472  hslot2, slot2);
473  if (!result) {
474  hash2 = udp4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
475  slot2 = hash2 & udptable->mask;
476  hslot2 = &udptable->hash2[slot2];
477  if (hslot->count < hslot2->count)
478  goto begin;
479 
480  result = udp4_lib_lookup2(net, saddr, sport,
481  htonl(INADDR_ANY), hnum, dif,
482  hslot2, slot2);
483  }
484  rcu_read_unlock();
485  return result;
486  }
487 begin:
488  result = NULL;
489  badness = -1;
490  sk_nulls_for_each_rcu(sk, node, &hslot->head) {
491  score = compute_score(sk, net, saddr, hnum, sport,
492  daddr, dport, dif);
493  if (score > badness) {
494  result = sk;
495  badness = score;
496  }
497  }
498  /*
499  * if the nulls value we got at the end of this lookup is
500  * not the expected one, we must restart lookup.
501  * We probably met an item that was moved to another chain.
502  */
503  if (get_nulls_value(node) != slot)
504  goto begin;
505 
506  if (result) {
507  if (unlikely(!atomic_inc_not_zero_hint(&result->sk_refcnt, 2)))
508  result = NULL;
509  else if (unlikely(compute_score(result, net, saddr, hnum, sport,
510  daddr, dport, dif) < badness)) {
511  sock_put(result);
512  goto begin;
513  }
514  }
515  rcu_read_unlock();
516  return result;
517 }
519 
520 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
521  __be16 sport, __be16 dport,
522  struct udp_table *udptable)
523 {
524  struct sock *sk;
525  const struct iphdr *iph = ip_hdr(skb);
526 
527  if (unlikely(sk = skb_steal_sock(skb)))
528  return sk;
529  else
530  return __udp4_lib_lookup(dev_net(skb_dst(skb)->dev), iph->saddr, sport,
531  iph->daddr, dport, inet_iif(skb),
532  udptable);
533 }
534 
535 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
536  __be32 daddr, __be16 dport, int dif)
537 {
538  return __udp4_lib_lookup(net, saddr, sport, daddr, dport, dif, &udp_table);
539 }
541 
542 static inline struct sock *udp_v4_mcast_next(struct net *net, struct sock *sk,
543  __be16 loc_port, __be32 loc_addr,
544  __be16 rmt_port, __be32 rmt_addr,
545  int dif)
546 {
547  struct hlist_nulls_node *node;
548  struct sock *s = sk;
549  unsigned short hnum = ntohs(loc_port);
550 
551  sk_nulls_for_each_from(s, node) {
552  struct inet_sock *inet = inet_sk(s);
553 
554  if (!net_eq(sock_net(s), net) ||
555  udp_sk(s)->udp_port_hash != hnum ||
556  (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
557  (inet->inet_dport != rmt_port && inet->inet_dport) ||
558  (inet->inet_rcv_saddr &&
559  inet->inet_rcv_saddr != loc_addr) ||
560  ipv6_only_sock(s) ||
561  (s->sk_bound_dev_if && s->sk_bound_dev_if != dif))
562  continue;
563  if (!ip_mc_sf_allow(s, loc_addr, rmt_addr, dif))
564  continue;
565  goto found;
566  }
567  s = NULL;
568 found:
569  return s;
570 }
571 
572 /*
573  * This routine is called by the ICMP module when it gets some
574  * sort of error condition. If err < 0 then the socket should
575  * be closed and the error returned to the user. If err > 0
576  * it's just the icmp type << 8 | icmp code.
577  * Header points to the ip header of the error packet. We move
578  * on past this. Then (as it used to claim before adjustment)
579  * header points to the first 8 bytes of the udp header. We need
580  * to find the appropriate port.
581  */
582 
583 void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
584 {
585  struct inet_sock *inet;
586  const struct iphdr *iph = (const struct iphdr *)skb->data;
587  struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
588  const int type = icmp_hdr(skb)->type;
589  const int code = icmp_hdr(skb)->code;
590  struct sock *sk;
591  int harderr;
592  int err;
593  struct net *net = dev_net(skb->dev);
594 
595  sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
596  iph->saddr, uh->source, skb->dev->ifindex, udptable);
597  if (sk == NULL) {
599  return; /* No socket for error */
600  }
601 
602  err = 0;
603  harderr = 0;
604  inet = inet_sk(sk);
605 
606  switch (type) {
607  default:
608  case ICMP_TIME_EXCEEDED:
609  err = EHOSTUNREACH;
610  break;
611  case ICMP_SOURCE_QUENCH:
612  goto out;
613  case ICMP_PARAMETERPROB:
614  err = EPROTO;
615  harderr = 1;
616  break;
617  case ICMP_DEST_UNREACH:
618  if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
619  ipv4_sk_update_pmtu(skb, sk, info);
620  if (inet->pmtudisc != IP_PMTUDISC_DONT) {
621  err = EMSGSIZE;
622  harderr = 1;
623  break;
624  }
625  goto out;
626  }
627  err = EHOSTUNREACH;
628  if (code <= NR_ICMP_UNREACH) {
629  harderr = icmp_err_convert[code].fatal;
630  err = icmp_err_convert[code].errno;
631  }
632  break;
633  case ICMP_REDIRECT:
634  ipv4_sk_redirect(skb, sk);
635  break;
636  }
637 
638  /*
639  * RFC1122: OK. Passes ICMP errors back to application, as per
640  * 4.1.3.3.
641  */
642  if (!inet->recverr) {
643  if (!harderr || sk->sk_state != TCP_ESTABLISHED)
644  goto out;
645  } else
646  ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
647 
648  sk->sk_err = err;
649  sk->sk_error_report(sk);
650 out:
651  sock_put(sk);
652 }
653 
654 void udp_err(struct sk_buff *skb, u32 info)
655 {
656  __udp4_lib_err(skb, info, &udp_table);
657 }
658 
659 /*
660  * Throw away all pending data and cancel the corking. Socket is locked.
661  */
663 {
664  struct udp_sock *up = udp_sk(sk);
665 
666  if (up->pending) {
667  up->len = 0;
668  up->pending = 0;
670  }
671 }
673 
681 static void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
682 {
683  struct udphdr *uh = udp_hdr(skb);
684  struct sk_buff *frags = skb_shinfo(skb)->frag_list;
685  int offset = skb_transport_offset(skb);
686  int len = skb->len - offset;
687  int hlen = len;
688  __wsum csum = 0;
689 
690  if (!frags) {
691  /*
692  * Only one fragment on the socket.
693  */
694  skb->csum_start = skb_transport_header(skb) - skb->head;
695  skb->csum_offset = offsetof(struct udphdr, check);
696  uh->check = ~csum_tcpudp_magic(src, dst, len,
697  IPPROTO_UDP, 0);
698  } else {
699  /*
700  * HW-checksum won't work as there are two or more
701  * fragments on the socket so that all csums of sk_buffs
702  * should be together
703  */
704  do {
705  csum = csum_add(csum, frags->csum);
706  hlen -= frags->len;
707  } while ((frags = frags->next));
708 
709  csum = skb_checksum(skb, offset, hlen, csum);
710  skb->ip_summed = CHECKSUM_NONE;
711 
712  uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
713  if (uh->check == 0)
714  uh->check = CSUM_MANGLED_0;
715  }
716 }
717 
718 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
719 {
720  struct sock *sk = skb->sk;
721  struct inet_sock *inet = inet_sk(sk);
722  struct udphdr *uh;
723  int err = 0;
724  int is_udplite = IS_UDPLITE(sk);
725  int offset = skb_transport_offset(skb);
726  int len = skb->len - offset;
727  __wsum csum = 0;
728 
729  /*
730  * Create a UDP header
731  */
732  uh = udp_hdr(skb);
733  uh->source = inet->inet_sport;
734  uh->dest = fl4->fl4_dport;
735  uh->len = htons(len);
736  uh->check = 0;
737 
738  if (is_udplite) /* UDP-Lite */
739  csum = udplite_csum(skb);
740 
741  else if (sk->sk_no_check == UDP_CSUM_NOXMIT) { /* UDP csum disabled */
742 
743  skb->ip_summed = CHECKSUM_NONE;
744  goto send;
745 
746  } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
747 
748  udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
749  goto send;
750 
751  } else
752  csum = udp_csum(skb);
753 
754  /* add protocol-dependent pseudo-header */
755  uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
756  sk->sk_protocol, csum);
757  if (uh->check == 0)
758  uh->check = CSUM_MANGLED_0;
759 
760 send:
761  err = ip_send_skb(sock_net(sk), skb);
762  if (err) {
763  if (err == -ENOBUFS && !inet->recverr) {
764  UDP_INC_STATS_USER(sock_net(sk),
765  UDP_MIB_SNDBUFERRORS, is_udplite);
766  err = 0;
767  }
768  } else
769  UDP_INC_STATS_USER(sock_net(sk),
770  UDP_MIB_OUTDATAGRAMS, is_udplite);
771  return err;
772 }
773 
774 /*
775  * Push out all pending data as one UDP datagram. Socket is locked.
776  */
777 static int udp_push_pending_frames(struct sock *sk)
778 {
779  struct udp_sock *up = udp_sk(sk);
780  struct inet_sock *inet = inet_sk(sk);
781  struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
782  struct sk_buff *skb;
783  int err = 0;
784 
785  skb = ip_finish_skb(sk, fl4);
786  if (!skb)
787  goto out;
788 
789  err = udp_send_skb(skb, fl4);
790 
791 out:
792  up->len = 0;
793  up->pending = 0;
794  return err;
795 }
796 
797 int udp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
798  size_t len)
799 {
800  struct inet_sock *inet = inet_sk(sk);
801  struct udp_sock *up = udp_sk(sk);
802  struct flowi4 fl4_stack;
803  struct flowi4 *fl4;
804  int ulen = len;
805  struct ipcm_cookie ipc;
806  struct rtable *rt = NULL;
807  int free = 0;
808  int connected = 0;
810  __be16 dport;
811  u8 tos;
812  int err, is_udplite = IS_UDPLITE(sk);
813  int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
814  int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
815  struct sk_buff *skb;
816  struct ip_options_data opt_copy;
817 
818  if (len > 0xFFFF)
819  return -EMSGSIZE;
820 
821  /*
822  * Check the flags.
823  */
824 
825  if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
826  return -EOPNOTSUPP;
827 
828  ipc.opt = NULL;
829  ipc.tx_flags = 0;
830 
831  getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
832 
833  fl4 = &inet->cork.fl.u.ip4;
834  if (up->pending) {
835  /*
836  * There are pending frames.
837  * The socket lock must be held while it's corked.
838  */
839  lock_sock(sk);
840  if (likely(up->pending)) {
841  if (unlikely(up->pending != AF_INET)) {
842  release_sock(sk);
843  return -EINVAL;
844  }
845  goto do_append_data;
846  }
847  release_sock(sk);
848  }
849  ulen += sizeof(struct udphdr);
850 
851  /*
852  * Get and verify the address.
853  */
854  if (msg->msg_name) {
855  struct sockaddr_in *usin = (struct sockaddr_in *)msg->msg_name;
856  if (msg->msg_namelen < sizeof(*usin))
857  return -EINVAL;
858  if (usin->sin_family != AF_INET) {
859  if (usin->sin_family != AF_UNSPEC)
860  return -EAFNOSUPPORT;
861  }
862 
863  daddr = usin->sin_addr.s_addr;
864  dport = usin->sin_port;
865  if (dport == 0)
866  return -EINVAL;
867  } else {
868  if (sk->sk_state != TCP_ESTABLISHED)
869  return -EDESTADDRREQ;
870  daddr = inet->inet_daddr;
871  dport = inet->inet_dport;
872  /* Open fast path for connected socket.
873  Route will not be used, if at least one option is set.
874  */
875  connected = 1;
876  }
877  ipc.addr = inet->inet_saddr;
878 
879  ipc.oif = sk->sk_bound_dev_if;
880  err = sock_tx_timestamp(sk, &ipc.tx_flags);
881  if (err)
882  return err;
883  if (msg->msg_controllen) {
884  err = ip_cmsg_send(sock_net(sk), msg, &ipc);
885  if (err)
886  return err;
887  if (ipc.opt)
888  free = 1;
889  connected = 0;
890  }
891  if (!ipc.opt) {
892  struct ip_options_rcu *inet_opt;
893 
894  rcu_read_lock();
895  inet_opt = rcu_dereference(inet->inet_opt);
896  if (inet_opt) {
897  memcpy(&opt_copy, inet_opt,
898  sizeof(*inet_opt) + inet_opt->opt.optlen);
899  ipc.opt = &opt_copy.opt;
900  }
901  rcu_read_unlock();
902  }
903 
904  saddr = ipc.addr;
905  ipc.addr = faddr = daddr;
906 
907  if (ipc.opt && ipc.opt->opt.srr) {
908  if (!daddr)
909  return -EINVAL;
910  faddr = ipc.opt->opt.faddr;
911  connected = 0;
912  }
913  tos = RT_TOS(inet->tos);
914  if (sock_flag(sk, SOCK_LOCALROUTE) ||
915  (msg->msg_flags & MSG_DONTROUTE) ||
916  (ipc.opt && ipc.opt->opt.is_strictroute)) {
917  tos |= RTO_ONLINK;
918  connected = 0;
919  }
920 
921  if (ipv4_is_multicast(daddr)) {
922  if (!ipc.oif)
923  ipc.oif = inet->mc_index;
924  if (!saddr)
925  saddr = inet->mc_addr;
926  connected = 0;
927  } else if (!ipc.oif)
928  ipc.oif = inet->uc_index;
929 
930  if (connected)
931  rt = (struct rtable *)sk_dst_check(sk, 0);
932 
933  if (rt == NULL) {
934  struct net *net = sock_net(sk);
935 
936  fl4 = &fl4_stack;
937  flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
939  inet_sk_flowi_flags(sk)|FLOWI_FLAG_CAN_SLEEP,
940  faddr, saddr, dport, inet->inet_sport);
941 
942  security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
943  rt = ip_route_output_flow(net, fl4, sk);
944  if (IS_ERR(rt)) {
945  err = PTR_ERR(rt);
946  rt = NULL;
947  if (err == -ENETUNREACH)
949  goto out;
950  }
951 
952  err = -EACCES;
953  if ((rt->rt_flags & RTCF_BROADCAST) &&
954  !sock_flag(sk, SOCK_BROADCAST))
955  goto out;
956  if (connected)
957  sk_dst_set(sk, dst_clone(&rt->dst));
958  }
959 
960  if (msg->msg_flags&MSG_CONFIRM)
961  goto do_confirm;
962 back_from_confirm:
963 
964  saddr = fl4->saddr;
965  if (!ipc.addr)
966  daddr = ipc.addr = fl4->daddr;
967 
968  /* Lockless fast path for the non-corking case. */
969  if (!corkreq) {
970  skb = ip_make_skb(sk, fl4, getfrag, msg->msg_iov, ulen,
971  sizeof(struct udphdr), &ipc, &rt,
972  msg->msg_flags);
973  err = PTR_ERR(skb);
974  if (skb && !IS_ERR(skb))
975  err = udp_send_skb(skb, fl4);
976  goto out;
977  }
978 
979  lock_sock(sk);
980  if (unlikely(up->pending)) {
981  /* The socket is already corked while preparing it. */
982  /* ... which is an evident application bug. --ANK */
983  release_sock(sk);
984 
985  LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("cork app bug 2\n"));
986  err = -EINVAL;
987  goto out;
988  }
989  /*
990  * Now cork the socket to pend data.
991  */
992  fl4 = &inet->cork.fl.u.ip4;
993  fl4->daddr = daddr;
994  fl4->saddr = saddr;
995  fl4->fl4_dport = dport;
996  fl4->fl4_sport = inet->inet_sport;
997  up->pending = AF_INET;
998 
999 do_append_data:
1000  up->len += ulen;
1001  err = ip_append_data(sk, fl4, getfrag, msg->msg_iov, ulen,
1002  sizeof(struct udphdr), &ipc, &rt,
1003  corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1004  if (err)
1006  else if (!corkreq)
1007  err = udp_push_pending_frames(sk);
1008  else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1009  up->pending = 0;
1010  release_sock(sk);
1011 
1012 out:
1013  ip_rt_put(rt);
1014  if (free)
1015  kfree(ipc.opt);
1016  if (!err)
1017  return len;
1018  /*
1019  * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1020  * ENOBUFS might not be good (it's not tunable per se), but otherwise
1021  * we don't have a good statistic (IpOutDiscards but it can be too many
1022  * things). We could add another new stat but at least for now that
1023  * seems like overkill.
1024  */
1025  if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1026  UDP_INC_STATS_USER(sock_net(sk),
1027  UDP_MIB_SNDBUFERRORS, is_udplite);
1028  }
1029  return err;
1030 
1031 do_confirm:
1032  dst_confirm(&rt->dst);
1033  if (!(msg->msg_flags&MSG_PROBE) || len)
1034  goto back_from_confirm;
1035  err = 0;
1036  goto out;
1037 }
1039 
1040 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1041  size_t size, int flags)
1042 {
1043  struct inet_sock *inet = inet_sk(sk);
1044  struct udp_sock *up = udp_sk(sk);
1045  int ret;
1046 
1047  if (!up->pending) {
1048  struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1049 
1050  /* Call udp_sendmsg to specify destination address which
1051  * sendpage interface can't pass.
1052  * This will succeed only when the socket is connected.
1053  */
1054  ret = udp_sendmsg(NULL, sk, &msg, 0);
1055  if (ret < 0)
1056  return ret;
1057  }
1058 
1059  lock_sock(sk);
1060 
1061  if (unlikely(!up->pending)) {
1062  release_sock(sk);
1063 
1064  LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("udp cork app bug 3\n"));
1065  return -EINVAL;
1066  }
1067 
1068  ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1069  page, offset, size, flags);
1070  if (ret == -EOPNOTSUPP) {
1071  release_sock(sk);
1072  return sock_no_sendpage(sk->sk_socket, page, offset,
1073  size, flags);
1074  }
1075  if (ret < 0) {
1077  goto out;
1078  }
1079 
1080  up->len += size;
1081  if (!(up->corkflag || (flags&MSG_MORE)))
1082  ret = udp_push_pending_frames(sk);
1083  if (!ret)
1084  ret = size;
1085 out:
1086  release_sock(sk);
1087  return ret;
1088 }
1089 
1090 
1098 static unsigned int first_packet_length(struct sock *sk)
1099 {
1100  struct sk_buff_head list_kill, *rcvq = &sk->sk_receive_queue;
1101  struct sk_buff *skb;
1102  unsigned int res;
1103 
1104  __skb_queue_head_init(&list_kill);
1105 
1106  spin_lock_bh(&rcvq->lock);
1107  while ((skb = skb_peek(rcvq)) != NULL &&
1108  udp_lib_checksum_complete(skb)) {
1109  UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1110  IS_UDPLITE(sk));
1111  atomic_inc(&sk->sk_drops);
1112  __skb_unlink(skb, rcvq);
1113  __skb_queue_tail(&list_kill, skb);
1114  }
1115  res = skb ? skb->len : 0;
1116  spin_unlock_bh(&rcvq->lock);
1117 
1118  if (!skb_queue_empty(&list_kill)) {
1119  bool slow = lock_sock_fast(sk);
1120 
1121  __skb_queue_purge(&list_kill);
1122  sk_mem_reclaim_partial(sk);
1123  unlock_sock_fast(sk, slow);
1124  }
1125  return res;
1126 }
1127 
1128 /*
1129  * IOCTL requests applicable to the UDP protocol
1130  */
1131 
1132 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1133 {
1134  switch (cmd) {
1135  case SIOCOUTQ:
1136  {
1137  int amount = sk_wmem_alloc_get(sk);
1138 
1139  return put_user(amount, (int __user *)arg);
1140  }
1141 
1142  case SIOCINQ:
1143  {
1144  unsigned int amount = first_packet_length(sk);
1145 
1146  if (amount)
1147  /*
1148  * We will only return the amount
1149  * of this packet since that is all
1150  * that will be read.
1151  */
1152  amount -= sizeof(struct udphdr);
1153 
1154  return put_user(amount, (int __user *)arg);
1155  }
1156 
1157  default:
1158  return -ENOIOCTLCMD;
1159  }
1160 
1161  return 0;
1162 }
1164 
1165 /*
1166  * This should be easy, if there is something there we
1167  * return it, otherwise we block.
1168  */
1169 
1170 int udp_recvmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg,
1171  size_t len, int noblock, int flags, int *addr_len)
1172 {
1173  struct inet_sock *inet = inet_sk(sk);
1174  struct sockaddr_in *sin = (struct sockaddr_in *)msg->msg_name;
1175  struct sk_buff *skb;
1176  unsigned int ulen, copied;
1177  int peeked, off = 0;
1178  int err;
1179  int is_udplite = IS_UDPLITE(sk);
1180  bool slow;
1181 
1182  /*
1183  * Check any passed addresses
1184  */
1185  if (addr_len)
1186  *addr_len = sizeof(*sin);
1187 
1188  if (flags & MSG_ERRQUEUE)
1189  return ip_recv_error(sk, msg, len);
1190 
1191 try_again:
1192  skb = __skb_recv_datagram(sk, flags | (noblock ? MSG_DONTWAIT : 0),
1193  &peeked, &off, &err);
1194  if (!skb)
1195  goto out;
1196 
1197  ulen = skb->len - sizeof(struct udphdr);
1198  copied = len;
1199  if (copied > ulen)
1200  copied = ulen;
1201  else if (copied < ulen)
1202  msg->msg_flags |= MSG_TRUNC;
1203 
1204  /*
1205  * If checksum is needed at all, try to do it while copying the
1206  * data. If the data is truncated, or if we only want a partial
1207  * coverage checksum (UDP-Lite), do it before the copy.
1208  */
1209 
1210  if (copied < ulen || UDP_SKB_CB(skb)->partial_cov) {
1211  if (udp_lib_checksum_complete(skb))
1212  goto csum_copy_err;
1213  }
1214 
1215  if (skb_csum_unnecessary(skb))
1216  err = skb_copy_datagram_iovec(skb, sizeof(struct udphdr),
1217  msg->msg_iov, copied);
1218  else {
1220  sizeof(struct udphdr),
1221  msg->msg_iov);
1222 
1223  if (err == -EINVAL)
1224  goto csum_copy_err;
1225  }
1226 
1227  if (unlikely(err)) {
1228  trace_kfree_skb(skb, udp_recvmsg);
1229  if (!peeked) {
1230  atomic_inc(&sk->sk_drops);
1231  UDP_INC_STATS_USER(sock_net(sk),
1232  UDP_MIB_INERRORS, is_udplite);
1233  }
1234  goto out_free;
1235  }
1236 
1237  if (!peeked)
1238  UDP_INC_STATS_USER(sock_net(sk),
1239  UDP_MIB_INDATAGRAMS, is_udplite);
1240 
1241  sock_recv_ts_and_drops(msg, sk, skb);
1242 
1243  /* Copy the address. */
1244  if (sin) {
1245  sin->sin_family = AF_INET;
1246  sin->sin_port = udp_hdr(skb)->source;
1247  sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1248  memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1249  }
1250  if (inet->cmsg_flags)
1251  ip_cmsg_recv(msg, skb);
1252 
1253  err = copied;
1254  if (flags & MSG_TRUNC)
1255  err = ulen;
1256 
1257 out_free:
1258  skb_free_datagram_locked(sk, skb);
1259 out:
1260  return err;
1261 
1262 csum_copy_err:
1263  slow = lock_sock_fast(sk);
1264  if (!skb_kill_datagram(sk, skb, flags))
1265  UDP_INC_STATS_USER(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1266  unlock_sock_fast(sk, slow);
1267 
1268  if (noblock)
1269  return -EAGAIN;
1270 
1271  /* starting over for a new packet */
1272  msg->msg_flags &= ~MSG_TRUNC;
1273  goto try_again;
1274 }
1275 
1276 
1277 int udp_disconnect(struct sock *sk, int flags)
1278 {
1279  struct inet_sock *inet = inet_sk(sk);
1280  /*
1281  * 1003.1g - break association.
1282  */
1283 
1284  sk->sk_state = TCP_CLOSE;
1285  inet->inet_daddr = 0;
1286  inet->inet_dport = 0;
1287  sock_rps_reset_rxhash(sk);
1288  sk->sk_bound_dev_if = 0;
1289  if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1290  inet_reset_saddr(sk);
1291 
1292  if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1293  sk->sk_prot->unhash(sk);
1294  inet->inet_sport = 0;
1295  }
1296  sk_dst_reset(sk);
1297  return 0;
1298 }
1300 
1301 void udp_lib_unhash(struct sock *sk)
1302 {
1303  if (sk_hashed(sk)) {
1304  struct udp_table *udptable = sk->sk_prot->h.udp_table;
1305  struct udp_hslot *hslot, *hslot2;
1306 
1307  hslot = udp_hashslot(udptable, sock_net(sk),
1308  udp_sk(sk)->udp_port_hash);
1309  hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1310 
1311  spin_lock_bh(&hslot->lock);
1312  if (sk_nulls_del_node_init_rcu(sk)) {
1313  hslot->count--;
1314  inet_sk(sk)->inet_num = 0;
1315  sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1316 
1317  spin_lock(&hslot2->lock);
1318  hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1319  hslot2->count--;
1320  spin_unlock(&hslot2->lock);
1321  }
1322  spin_unlock_bh(&hslot->lock);
1323  }
1324 }
1326 
1327 /*
1328  * inet_rcv_saddr was changed, we must rehash secondary hash
1329  */
1330 void udp_lib_rehash(struct sock *sk, u16 newhash)
1331 {
1332  if (sk_hashed(sk)) {
1333  struct udp_table *udptable = sk->sk_prot->h.udp_table;
1334  struct udp_hslot *hslot, *hslot2, *nhslot2;
1335 
1336  hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1337  nhslot2 = udp_hashslot2(udptable, newhash);
1338  udp_sk(sk)->udp_portaddr_hash = newhash;
1339  if (hslot2 != nhslot2) {
1340  hslot = udp_hashslot(udptable, sock_net(sk),
1341  udp_sk(sk)->udp_port_hash);
1342  /* we must lock primary chain too */
1343  spin_lock_bh(&hslot->lock);
1344 
1345  spin_lock(&hslot2->lock);
1346  hlist_nulls_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1347  hslot2->count--;
1348  spin_unlock(&hslot2->lock);
1349 
1350  spin_lock(&nhslot2->lock);
1351  hlist_nulls_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1352  &nhslot2->head);
1353  nhslot2->count++;
1354  spin_unlock(&nhslot2->lock);
1355 
1356  spin_unlock_bh(&hslot->lock);
1357  }
1358  }
1359 }
1361 
1362 static void udp_v4_rehash(struct sock *sk)
1363 {
1364  u16 new_hash = udp4_portaddr_hash(sock_net(sk),
1365  inet_sk(sk)->inet_rcv_saddr,
1366  inet_sk(sk)->inet_num);
1367  udp_lib_rehash(sk, new_hash);
1368 }
1369 
1370 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1371 {
1372  int rc;
1373 
1374  if (inet_sk(sk)->inet_daddr)
1375  sock_rps_save_rxhash(sk, skb);
1376 
1377  rc = sock_queue_rcv_skb(sk, skb);
1378  if (rc < 0) {
1379  int is_udplite = IS_UDPLITE(sk);
1380 
1381  /* Note that an ENOMEM error is charged twice */
1382  if (rc == -ENOMEM)
1383  UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1384  is_udplite);
1385  UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1386  kfree_skb(skb);
1387  trace_udp_fail_queue_rcv_skb(rc, sk);
1388  return -1;
1389  }
1390 
1391  return 0;
1392 
1393 }
1394 
1395 static struct static_key udp_encap_needed __read_mostly;
1397 {
1398  if (!static_key_enabled(&udp_encap_needed))
1399  static_key_slow_inc(&udp_encap_needed);
1400 }
1402 
1403 /* returns:
1404  * -1: error
1405  * 0: success
1406  * >0: "udp encap" protocol resubmission
1407  *
1408  * Note that in the success and error cases, the skb is assumed to
1409  * have either been requeued or freed.
1410  */
1411 int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1412 {
1413  struct udp_sock *up = udp_sk(sk);
1414  int rc;
1415  int is_udplite = IS_UDPLITE(sk);
1416 
1417  /*
1418  * Charge it to the socket, dropping if the queue is full.
1419  */
1420  if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
1421  goto drop;
1422  nf_reset(skb);
1423 
1424  if (static_key_false(&udp_encap_needed) && up->encap_type) {
1425  int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1426 
1427  /*
1428  * This is an encapsulation socket so pass the skb to
1429  * the socket's udp_encap_rcv() hook. Otherwise, just
1430  * fall through and pass this up the UDP socket.
1431  * up->encap_rcv() returns the following value:
1432  * =0 if skb was successfully passed to the encap
1433  * handler or was discarded by it.
1434  * >0 if skb should be passed on to UDP.
1435  * <0 if skb should be resubmitted as proto -N
1436  */
1437 
1438  /* if we're overly short, let UDP handle it */
1439  encap_rcv = ACCESS_ONCE(up->encap_rcv);
1440  if (skb->len > sizeof(struct udphdr) && encap_rcv != NULL) {
1441  int ret;
1442 
1443  ret = encap_rcv(sk, skb);
1444  if (ret <= 0) {
1445  UDP_INC_STATS_BH(sock_net(sk),
1447  is_udplite);
1448  return -ret;
1449  }
1450  }
1451 
1452  /* FALLTHROUGH -- it's a UDP Packet */
1453  }
1454 
1455  /*
1456  * UDP-Lite specific tests, ignored on UDP sockets
1457  */
1458  if ((is_udplite & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
1459 
1460  /*
1461  * MIB statistics other than incrementing the error count are
1462  * disabled for the following two types of errors: these depend
1463  * on the application settings, not on the functioning of the
1464  * protocol stack as such.
1465  *
1466  * RFC 3828 here recommends (sec 3.3): "There should also be a
1467  * way ... to ... at least let the receiving application block
1468  * delivery of packets with coverage values less than a value
1469  * provided by the application."
1470  */
1471  if (up->pcrlen == 0) { /* full coverage was set */
1472  LIMIT_NETDEBUG(KERN_WARNING "UDPLite: partial coverage %d while full coverage %d requested\n",
1473  UDP_SKB_CB(skb)->cscov, skb->len);
1474  goto drop;
1475  }
1476  /* The next case involves violating the min. coverage requested
1477  * by the receiver. This is subtle: if receiver wants x and x is
1478  * greater than the buffersize/MTU then receiver will complain
1479  * that it wants x while sender emits packets of smaller size y.
1480  * Therefore the above ...()->partial_cov statement is essential.
1481  */
1482  if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
1483  LIMIT_NETDEBUG(KERN_WARNING "UDPLite: coverage %d too small, need min %d\n",
1484  UDP_SKB_CB(skb)->cscov, up->pcrlen);
1485  goto drop;
1486  }
1487  }
1488 
1489  if (rcu_access_pointer(sk->sk_filter) &&
1490  udp_lib_checksum_complete(skb))
1491  goto drop;
1492 
1493 
1494  if (sk_rcvqueues_full(sk, skb, sk->sk_rcvbuf))
1495  goto drop;
1496 
1497  rc = 0;
1498 
1499  ipv4_pktinfo_prepare(skb);
1500  bh_lock_sock(sk);
1501  if (!sock_owned_by_user(sk))
1502  rc = __udp_queue_rcv_skb(sk, skb);
1503  else if (sk_add_backlog(sk, skb, sk->sk_rcvbuf)) {
1504  bh_unlock_sock(sk);
1505  goto drop;
1506  }
1507  bh_unlock_sock(sk);
1508 
1509  return rc;
1510 
1511 drop:
1512  UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1513  atomic_inc(&sk->sk_drops);
1514  kfree_skb(skb);
1515  return -1;
1516 }
1517 
1518 
1519 static void flush_stack(struct sock **stack, unsigned int count,
1520  struct sk_buff *skb, unsigned int final)
1521 {
1522  unsigned int i;
1523  struct sk_buff *skb1 = NULL;
1524  struct sock *sk;
1525 
1526  for (i = 0; i < count; i++) {
1527  sk = stack[i];
1528  if (likely(skb1 == NULL))
1529  skb1 = (i == final) ? skb : skb_clone(skb, GFP_ATOMIC);
1530 
1531  if (!skb1) {
1532  atomic_inc(&sk->sk_drops);
1533  UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1534  IS_UDPLITE(sk));
1535  UDP_INC_STATS_BH(sock_net(sk), UDP_MIB_INERRORS,
1536  IS_UDPLITE(sk));
1537  }
1538 
1539  if (skb1 && udp_queue_rcv_skb(sk, skb1) <= 0)
1540  skb1 = NULL;
1541  }
1542  if (unlikely(skb1))
1543  kfree_skb(skb1);
1544 }
1545 
1546 /*
1547  * Multicasts and broadcasts go to each listener.
1548  *
1549  * Note: called only from the BH handler context.
1550  */
1551 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1552  struct udphdr *uh,
1553  __be32 saddr, __be32 daddr,
1554  struct udp_table *udptable)
1555 {
1556  struct sock *sk, *stack[256 / sizeof(struct sock *)];
1557  struct udp_hslot *hslot = udp_hashslot(udptable, net, ntohs(uh->dest));
1558  int dif;
1559  unsigned int i, count = 0;
1560 
1561  spin_lock(&hslot->lock);
1562  sk = sk_nulls_head(&hslot->head);
1563  dif = skb->dev->ifindex;
1564  sk = udp_v4_mcast_next(net, sk, uh->dest, daddr, uh->source, saddr, dif);
1565  while (sk) {
1566  stack[count++] = sk;
1567  sk = udp_v4_mcast_next(net, sk_nulls_next(sk), uh->dest,
1568  daddr, uh->source, saddr, dif);
1569  if (unlikely(count == ARRAY_SIZE(stack))) {
1570  if (!sk)
1571  break;
1572  flush_stack(stack, count, skb, ~0);
1573  count = 0;
1574  }
1575  }
1576  /*
1577  * before releasing chain lock, we must take a reference on sockets
1578  */
1579  for (i = 0; i < count; i++)
1580  sock_hold(stack[i]);
1581 
1582  spin_unlock(&hslot->lock);
1583 
1584  /*
1585  * do the slow work with no lock held
1586  */
1587  if (count) {
1588  flush_stack(stack, count, skb, count - 1);
1589 
1590  for (i = 0; i < count; i++)
1591  sock_put(stack[i]);
1592  } else {
1593  kfree_skb(skb);
1594  }
1595  return 0;
1596 }
1597 
1598 /* Initialize UDP checksum. If exited with zero value (success),
1599  * CHECKSUM_UNNECESSARY means, that no more checks are required.
1600  * Otherwise, csum completion requires chacksumming packet body,
1601  * including udp header and folding it to skb->csum.
1602  */
1603 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
1604  int proto)
1605 {
1606  const struct iphdr *iph;
1607  int err;
1608 
1609  UDP_SKB_CB(skb)->partial_cov = 0;
1610  UDP_SKB_CB(skb)->cscov = skb->len;
1611 
1612  if (proto == IPPROTO_UDPLITE) {
1613  err = udplite_checksum_init(skb, uh);
1614  if (err)
1615  return err;
1616  }
1617 
1618  iph = ip_hdr(skb);
1619  if (uh->check == 0) {
1621  } else if (skb->ip_summed == CHECKSUM_COMPLETE) {
1622  if (!csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
1623  proto, skb->csum))
1625  }
1626  if (!skb_csum_unnecessary(skb))
1627  skb->csum = csum_tcpudp_nofold(iph->saddr, iph->daddr,
1628  skb->len, proto, 0);
1629  /* Probably, we should checksum udp header (it should be in cache
1630  * in any case) and data in tiny packets (< rx copybreak).
1631  */
1632 
1633  return 0;
1634 }
1635 
1636 /*
1637  * All we need to do is get the socket, and then do a checksum.
1638  */
1639 
1640 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
1641  int proto)
1642 {
1643  struct sock *sk;
1644  struct udphdr *uh;
1645  unsigned short ulen;
1646  struct rtable *rt = skb_rtable(skb);
1647  __be32 saddr, daddr;
1648  struct net *net = dev_net(skb->dev);
1649 
1650  /*
1651  * Validate the packet.
1652  */
1653  if (!pskb_may_pull(skb, sizeof(struct udphdr)))
1654  goto drop; /* No space for header. */
1655 
1656  uh = udp_hdr(skb);
1657  ulen = ntohs(uh->len);
1658  saddr = ip_hdr(skb)->saddr;
1659  daddr = ip_hdr(skb)->daddr;
1660 
1661  if (ulen > skb->len)
1662  goto short_packet;
1663 
1664  if (proto == IPPROTO_UDP) {
1665  /* UDP validates ulen. */
1666  if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
1667  goto short_packet;
1668  uh = udp_hdr(skb);
1669  }
1670 
1671  if (udp4_csum_init(skb, uh, proto))
1672  goto csum_error;
1673 
1675  return __udp4_lib_mcast_deliver(net, skb, uh,
1676  saddr, daddr, udptable);
1677 
1678  sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
1679 
1680  if (sk != NULL) {
1681  int ret = udp_queue_rcv_skb(sk, skb);
1682  sock_put(sk);
1683 
1684  /* a return value > 0 means to resubmit the input, but
1685  * it wants the return to be -protocol, or 0
1686  */
1687  if (ret > 0)
1688  return -ret;
1689  return 0;
1690  }
1691 
1692  if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
1693  goto drop;
1694  nf_reset(skb);
1695 
1696  /* No socket. Drop packet silently, if checksum is wrong */
1697  if (udp_lib_checksum_complete(skb))
1698  goto csum_error;
1699 
1702 
1703  /*
1704  * Hmm. We got an UDP packet to a port to which we
1705  * don't wanna listen. Ignore it.
1706  */
1707  kfree_skb(skb);
1708  return 0;
1709 
1710 short_packet:
1711  LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1712  proto == IPPROTO_UDPLITE ? "Lite" : "",
1713  &saddr, ntohs(uh->source),
1714  ulen, skb->len,
1715  &daddr, ntohs(uh->dest));
1716  goto drop;
1717 
1718 csum_error:
1719  /*
1720  * RFC1122: OK. Discards the bad packet silently (as far as
1721  * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1722  */
1723  LIMIT_NETDEBUG(KERN_DEBUG "UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1724  proto == IPPROTO_UDPLITE ? "Lite" : "",
1725  &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
1726  ulen);
1727 drop:
1729  kfree_skb(skb);
1730  return 0;
1731 }
1732 
1733 int udp_rcv(struct sk_buff *skb)
1734 {
1735  return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
1736 }
1737 
1738 void udp_destroy_sock(struct sock *sk)
1739 {
1740  bool slow = lock_sock_fast(sk);
1742  unlock_sock_fast(sk, slow);
1743 }
1744 
1745 /*
1746  * Socket option code for UDP
1747  */
1748 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
1749  char __user *optval, unsigned int optlen,
1750  int (*push_pending_frames)(struct sock *))
1751 {
1752  struct udp_sock *up = udp_sk(sk);
1753  int val;
1754  int err = 0;
1755  int is_udplite = IS_UDPLITE(sk);
1756 
1757  if (optlen < sizeof(int))
1758  return -EINVAL;
1759 
1760  if (get_user(val, (int __user *)optval))
1761  return -EFAULT;
1762 
1763  switch (optname) {
1764  case UDP_CORK:
1765  if (val != 0) {
1766  up->corkflag = 1;
1767  } else {
1768  up->corkflag = 0;
1769  lock_sock(sk);
1770  (*push_pending_frames)(sk);
1771  release_sock(sk);
1772  }
1773  break;
1774 
1775  case UDP_ENCAP:
1776  switch (val) {
1777  case 0:
1778  case UDP_ENCAP_ESPINUDP:
1781  /* FALLTHROUGH */
1782  case UDP_ENCAP_L2TPINUDP:
1783  up->encap_type = val;
1784  udp_encap_enable();
1785  break;
1786  default:
1787  err = -ENOPROTOOPT;
1788  break;
1789  }
1790  break;
1791 
1792  /*
1793  * UDP-Lite's partial checksum coverage (RFC 3828).
1794  */
1795  /* The sender sets actual checksum coverage length via this option.
1796  * The case coverage > packet length is handled by send module. */
1797  case UDPLITE_SEND_CSCOV:
1798  if (!is_udplite) /* Disable the option on UDP sockets */
1799  return -ENOPROTOOPT;
1800  if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
1801  val = 8;
1802  else if (val > USHRT_MAX)
1803  val = USHRT_MAX;
1804  up->pcslen = val;
1805  up->pcflag |= UDPLITE_SEND_CC;
1806  break;
1807 
1808  /* The receiver specifies a minimum checksum coverage value. To make
1809  * sense, this should be set to at least 8 (as done below). If zero is
1810  * used, this again means full checksum coverage. */
1811  case UDPLITE_RECV_CSCOV:
1812  if (!is_udplite) /* Disable the option on UDP sockets */
1813  return -ENOPROTOOPT;
1814  if (val != 0 && val < 8) /* Avoid silly minimal values. */
1815  val = 8;
1816  else if (val > USHRT_MAX)
1817  val = USHRT_MAX;
1818  up->pcrlen = val;
1819  up->pcflag |= UDPLITE_RECV_CC;
1820  break;
1821 
1822  default:
1823  err = -ENOPROTOOPT;
1824  break;
1825  }
1826 
1827  return err;
1828 }
1830 
1831 int udp_setsockopt(struct sock *sk, int level, int optname,
1832  char __user *optval, unsigned int optlen)
1833 {
1834  if (level == SOL_UDP || level == SOL_UDPLITE)
1835  return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1836  udp_push_pending_frames);
1837  return ip_setsockopt(sk, level, optname, optval, optlen);
1838 }
1839 
1840 #ifdef CONFIG_COMPAT
1841 int compat_udp_setsockopt(struct sock *sk, int level, int optname,
1842  char __user *optval, unsigned int optlen)
1843 {
1844  if (level == SOL_UDP || level == SOL_UDPLITE)
1845  return udp_lib_setsockopt(sk, level, optname, optval, optlen,
1846  udp_push_pending_frames);
1847  return compat_ip_setsockopt(sk, level, optname, optval, optlen);
1848 }
1849 #endif
1850 
1851 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
1852  char __user *optval, int __user *optlen)
1853 {
1854  struct udp_sock *up = udp_sk(sk);
1855  int val, len;
1856 
1857  if (get_user(len, optlen))
1858  return -EFAULT;
1859 
1860  len = min_t(unsigned int, len, sizeof(int));
1861 
1862  if (len < 0)
1863  return -EINVAL;
1864 
1865  switch (optname) {
1866  case UDP_CORK:
1867  val = up->corkflag;
1868  break;
1869 
1870  case UDP_ENCAP:
1871  val = up->encap_type;
1872  break;
1873 
1874  /* The following two cannot be changed on UDP sockets, the return is
1875  * always 0 (which corresponds to the full checksum coverage of UDP). */
1876  case UDPLITE_SEND_CSCOV:
1877  val = up->pcslen;
1878  break;
1879 
1880  case UDPLITE_RECV_CSCOV:
1881  val = up->pcrlen;
1882  break;
1883 
1884  default:
1885  return -ENOPROTOOPT;
1886  }
1887 
1888  if (put_user(len, optlen))
1889  return -EFAULT;
1890  if (copy_to_user(optval, &val, len))
1891  return -EFAULT;
1892  return 0;
1893 }
1895 
1896 int udp_getsockopt(struct sock *sk, int level, int optname,
1897  char __user *optval, int __user *optlen)
1898 {
1899  if (level == SOL_UDP || level == SOL_UDPLITE)
1900  return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1901  return ip_getsockopt(sk, level, optname, optval, optlen);
1902 }
1903 
1904 #ifdef CONFIG_COMPAT
1905 int compat_udp_getsockopt(struct sock *sk, int level, int optname,
1906  char __user *optval, int __user *optlen)
1907 {
1908  if (level == SOL_UDP || level == SOL_UDPLITE)
1909  return udp_lib_getsockopt(sk, level, optname, optval, optlen);
1910  return compat_ip_getsockopt(sk, level, optname, optval, optlen);
1911 }
1912 #endif
1913 
1926 unsigned int udp_poll(struct file *file, struct socket *sock, poll_table *wait)
1927 {
1928  unsigned int mask = datagram_poll(file, sock, wait);
1929  struct sock *sk = sock->sk;
1930 
1931  /* Check for false positives due to checksum errors */
1932  if ((mask & POLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
1933  !(sk->sk_shutdown & RCV_SHUTDOWN) && !first_packet_length(sk))
1934  mask &= ~(POLLIN | POLLRDNORM);
1935 
1936  return mask;
1937 
1938 }
1940 
1941 struct proto udp_prot = {
1942  .name = "UDP",
1943  .owner = THIS_MODULE,
1944  .close = udp_lib_close,
1945  .connect = ip4_datagram_connect,
1946  .disconnect = udp_disconnect,
1947  .ioctl = udp_ioctl,
1948  .destroy = udp_destroy_sock,
1949  .setsockopt = udp_setsockopt,
1950  .getsockopt = udp_getsockopt,
1951  .sendmsg = udp_sendmsg,
1952  .recvmsg = udp_recvmsg,
1953  .sendpage = udp_sendpage,
1954  .backlog_rcv = __udp_queue_rcv_skb,
1955  .hash = udp_lib_hash,
1956  .unhash = udp_lib_unhash,
1957  .rehash = udp_v4_rehash,
1958  .get_port = udp_v4_get_port,
1959  .memory_allocated = &udp_memory_allocated,
1960  .sysctl_mem = sysctl_udp_mem,
1961  .sysctl_wmem = &sysctl_udp_wmem_min,
1962  .sysctl_rmem = &sysctl_udp_rmem_min,
1963  .obj_size = sizeof(struct udp_sock),
1964  .slab_flags = SLAB_DESTROY_BY_RCU,
1965  .h.udp_table = &udp_table,
1966 #ifdef CONFIG_COMPAT
1967  .compat_setsockopt = compat_udp_setsockopt,
1968  .compat_getsockopt = compat_udp_getsockopt,
1969 #endif
1970  .clear_sk = sk_prot_clear_portaddr_nulls,
1971 };
1972 EXPORT_SYMBOL(udp_prot);
1973 
1974 /* ------------------------------------------------------------------------ */
1975 #ifdef CONFIG_PROC_FS
1976 
1977 static struct sock *udp_get_first(struct seq_file *seq, int start)
1978 {
1979  struct sock *sk;
1980  struct udp_iter_state *state = seq->private;
1981  struct net *net = seq_file_net(seq);
1982 
1983  for (state->bucket = start; state->bucket <= state->udp_table->mask;
1984  ++state->bucket) {
1985  struct hlist_nulls_node *node;
1986  struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
1987 
1988  if (hlist_nulls_empty(&hslot->head))
1989  continue;
1990 
1991  spin_lock_bh(&hslot->lock);
1992  sk_nulls_for_each(sk, node, &hslot->head) {
1993  if (!net_eq(sock_net(sk), net))
1994  continue;
1995  if (sk->sk_family == state->family)
1996  goto found;
1997  }
1998  spin_unlock_bh(&hslot->lock);
1999  }
2000  sk = NULL;
2001 found:
2002  return sk;
2003 }
2004 
2005 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2006 {
2007  struct udp_iter_state *state = seq->private;
2008  struct net *net = seq_file_net(seq);
2009 
2010  do {
2011  sk = sk_nulls_next(sk);
2012  } while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2013 
2014  if (!sk) {
2015  if (state->bucket <= state->udp_table->mask)
2016  spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2017  return udp_get_first(seq, state->bucket + 1);
2018  }
2019  return sk;
2020 }
2021 
2022 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2023 {
2024  struct sock *sk = udp_get_first(seq, 0);
2025 
2026  if (sk)
2027  while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2028  --pos;
2029  return pos ? NULL : sk;
2030 }
2031 
2032 static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2033 {
2034  struct udp_iter_state *state = seq->private;
2035  state->bucket = MAX_UDP_PORTS;
2036 
2037  return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2038 }
2039 
2040 static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2041 {
2042  struct sock *sk;
2043 
2044  if (v == SEQ_START_TOKEN)
2045  sk = udp_get_idx(seq, 0);
2046  else
2047  sk = udp_get_next(seq, v);
2048 
2049  ++*pos;
2050  return sk;
2051 }
2052 
2053 static void udp_seq_stop(struct seq_file *seq, void *v)
2054 {
2055  struct udp_iter_state *state = seq->private;
2056 
2057  if (state->bucket <= state->udp_table->mask)
2058  spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2059 }
2060 
2061 int udp_seq_open(struct inode *inode, struct file *file)
2062 {
2063  struct udp_seq_afinfo *afinfo = PDE(inode)->data;
2064  struct udp_iter_state *s;
2065  int err;
2066 
2067  err = seq_open_net(inode, file, &afinfo->seq_ops,
2068  sizeof(struct udp_iter_state));
2069  if (err < 0)
2070  return err;
2071 
2072  s = ((struct seq_file *)file->private_data)->private;
2073  s->family = afinfo->family;
2074  s->udp_table = afinfo->udp_table;
2075  return err;
2076 }
2078 
2079 /* ------------------------------------------------------------------------ */
2080 int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2081 {
2082  struct proc_dir_entry *p;
2083  int rc = 0;
2084 
2085  afinfo->seq_ops.start = udp_seq_start;
2086  afinfo->seq_ops.next = udp_seq_next;
2087  afinfo->seq_ops.stop = udp_seq_stop;
2088 
2089  p = proc_create_data(afinfo->name, S_IRUGO, net->proc_net,
2090  afinfo->seq_fops, afinfo);
2091  if (!p)
2092  rc = -ENOMEM;
2093  return rc;
2094 }
2095 EXPORT_SYMBOL(udp_proc_register);
2096 
2097 void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2098 {
2099  proc_net_remove(net, afinfo->name);
2100 }
2101 EXPORT_SYMBOL(udp_proc_unregister);
2102 
2103 /* ------------------------------------------------------------------------ */
2104 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2105  int bucket, int *len)
2106 {
2107  struct inet_sock *inet = inet_sk(sp);
2108  __be32 dest = inet->inet_daddr;
2109  __be32 src = inet->inet_rcv_saddr;
2110  __u16 destp = ntohs(inet->inet_dport);
2111  __u16 srcp = ntohs(inet->inet_sport);
2112 
2113  seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2114  " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %pK %d%n",
2115  bucket, src, srcp, dest, destp, sp->sk_state,
2116  sk_wmem_alloc_get(sp),
2117  sk_rmem_alloc_get(sp),
2118  0, 0L, 0,
2119  from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2120  0, sock_i_ino(sp),
2121  atomic_read(&sp->sk_refcnt), sp,
2122  atomic_read(&sp->sk_drops), len);
2123 }
2124 
2125 int udp4_seq_show(struct seq_file *seq, void *v)
2126 {
2127  if (v == SEQ_START_TOKEN)
2128  seq_printf(seq, "%-127s\n",
2129  " sl local_address rem_address st tx_queue "
2130  "rx_queue tr tm->when retrnsmt uid timeout "
2131  "inode ref pointer drops");
2132  else {
2133  struct udp_iter_state *state = seq->private;
2134  int len;
2135 
2136  udp4_format_sock(v, seq, state->bucket, &len);
2137  seq_printf(seq, "%*s\n", 127 - len, "");
2138  }
2139  return 0;
2140 }
2141 
2142 static const struct file_operations udp_afinfo_seq_fops = {
2143  .owner = THIS_MODULE,
2144  .open = udp_seq_open,
2145  .read = seq_read,
2146  .llseek = seq_lseek,
2147  .release = seq_release_net
2148 };
2149 
2150 /* ------------------------------------------------------------------------ */
2151 static struct udp_seq_afinfo udp4_seq_afinfo = {
2152  .name = "udp",
2153  .family = AF_INET,
2154  .udp_table = &udp_table,
2155  .seq_fops = &udp_afinfo_seq_fops,
2156  .seq_ops = {
2157  .show = udp4_seq_show,
2158  },
2159 };
2160 
2161 static int __net_init udp4_proc_init_net(struct net *net)
2162 {
2163  return udp_proc_register(net, &udp4_seq_afinfo);
2164 }
2165 
2166 static void __net_exit udp4_proc_exit_net(struct net *net)
2167 {
2168  udp_proc_unregister(net, &udp4_seq_afinfo);
2169 }
2170 
2171 static struct pernet_operations udp4_net_ops = {
2172  .init = udp4_proc_init_net,
2173  .exit = udp4_proc_exit_net,
2174 };
2175 
2176 int __init udp4_proc_init(void)
2177 {
2178  return register_pernet_subsys(&udp4_net_ops);
2179 }
2180 
2181 void udp4_proc_exit(void)
2182 {
2183  unregister_pernet_subsys(&udp4_net_ops);
2184 }
2185 #endif /* CONFIG_PROC_FS */
2186 
2187 static __initdata unsigned long uhash_entries;
2188 static int __init set_uhash_entries(char *str)
2189 {
2190  ssize_t ret;
2191 
2192  if (!str)
2193  return 0;
2194 
2195  ret = kstrtoul(str, 0, &uhash_entries);
2196  if (ret)
2197  return 0;
2198 
2199  if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2200  uhash_entries = UDP_HTABLE_SIZE_MIN;
2201  return 1;
2202 }
2203 __setup("uhash_entries=", set_uhash_entries);
2204 
2205 void __init udp_table_init(struct udp_table *table, const char *name)
2206 {
2207  unsigned int i;
2208 
2209  table->hash = alloc_large_system_hash(name,
2210  2 * sizeof(struct udp_hslot),
2211  uhash_entries,
2212  21, /* one slot per 2 MB */
2213  0,
2214  &table->log,
2215  &table->mask,
2217  64 * 1024);
2218 
2219  table->hash2 = table->hash + (table->mask + 1);
2220  for (i = 0; i <= table->mask; i++) {
2221  INIT_HLIST_NULLS_HEAD(&table->hash[i].head, i);
2222  table->hash[i].count = 0;
2223  spin_lock_init(&table->hash[i].lock);
2224  }
2225  for (i = 0; i <= table->mask; i++) {
2226  INIT_HLIST_NULLS_HEAD(&table->hash2[i].head, i);
2227  table->hash2[i].count = 0;
2228  spin_lock_init(&table->hash2[i].lock);
2229  }
2230 }
2231 
2232 void __init udp_init(void)
2233 {
2234  unsigned long limit;
2235 
2236  udp_table_init(&udp_table, "UDP");
2237  limit = nr_free_buffer_pages() / 8;
2238  limit = max(limit, 128UL);
2239  sysctl_udp_mem[0] = limit / 4 * 3;
2240  sysctl_udp_mem[1] = limit;
2241  sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2242 
2245 }
2246 
2248 {
2249  const struct iphdr *iph;
2250  struct udphdr *uh;
2251 
2252  if (!pskb_may_pull(skb, sizeof(*uh)))
2253  return -EINVAL;
2254 
2255  iph = ip_hdr(skb);
2256  uh = udp_hdr(skb);
2257 
2258  uh->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr, skb->len,
2259  IPPROTO_UDP, 0);
2260  skb->csum_start = skb_transport_header(skb) - skb->head;
2261  skb->csum_offset = offsetof(struct udphdr, check);
2262  skb->ip_summed = CHECKSUM_PARTIAL;
2263  return 0;
2264 }
2265 
2266 struct sk_buff *udp4_ufo_fragment(struct sk_buff *skb,
2268 {
2269  struct sk_buff *segs = ERR_PTR(-EINVAL);
2270  unsigned int mss;
2271  int offset;
2272  __wsum csum;
2273 
2274  mss = skb_shinfo(skb)->gso_size;
2275  if (unlikely(skb->len <= mss))
2276  goto out;
2277 
2278  if (skb_gso_ok(skb, features | NETIF_F_GSO_ROBUST)) {
2279  /* Packet is from an untrusted source, reset gso_segs. */
2280  int type = skb_shinfo(skb)->gso_type;
2281 
2282  if (unlikely(type & ~(SKB_GSO_UDP | SKB_GSO_DODGY) ||
2283  !(type & (SKB_GSO_UDP))))
2284  goto out;
2285 
2286  skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(skb->len, mss);
2287 
2288  segs = NULL;
2289  goto out;
2290  }
2291 
2292  /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2293  * do checksum of UDP packets sent as multiple IP fragments.
2294  */
2295  offset = skb_checksum_start_offset(skb);
2296  csum = skb_checksum(skb, offset, skb->len - offset, 0);
2297  offset += skb->csum_offset;
2298  *(__sum16 *)(skb->data + offset) = csum_fold(csum);
2299  skb->ip_summed = CHECKSUM_NONE;
2300 
2301  /* Fragment the skb. IP headers of the fragments are updated in
2302  * inet_gso_segment()
2303  */
2304  segs = skb_segment(skb, features);
2305 out:
2306  return segs;
2307 }
2308