Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mbxfb.c
Go to the documentation of this file.
1 /*
2  * linux/drivers/video/mbx/mbxfb.c
3  *
4  * Copyright (C) 2006-2007 8D Technologies inc
5  * Raphael Assenat <[email protected]>
6  * - Added video overlay support
7  * - Various improvements
8  *
9  * Copyright (C) 2006 Compulab, Ltd.
10  * Mike Rapoport <[email protected]>
11  * - Creation of driver
12  *
13  * Based on pxafb.c
14  *
15  * This file is subject to the terms and conditions of the GNU General Public
16  * License. See the file COPYING in the main directory of this archive for
17  * more details.
18  *
19  * Intel 2700G (Marathon) Graphics Accelerator Frame Buffer Driver
20  *
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/fb.h>
25 #include <linux/init.h>
26 #include <linux/module.h>
27 #include <linux/platform_device.h>
28 #include <linux/uaccess.h>
29 #include <linux/io.h>
30 
31 #include <video/mbxfb.h>
32 
33 #include "regs.h"
34 #include "reg_bits.h"
35 
36 static void __iomem *virt_base_2700;
37 
38 #define write_reg(val, reg) do { writel((val), (reg)); } while(0)
39 
40 /* Without this delay, the graphics appears somehow scaled and
41  * there is a lot of jitter in scanlines. This delay is probably
42  * needed only after setting some specific register(s) somewhere,
43  * not all over the place... */
44 #define write_reg_dly(val, reg) do { writel((val), reg); udelay(1000); } while(0)
45 
46 #define MIN_XRES 16
47 #define MIN_YRES 16
48 #define MAX_XRES 2048
49 #define MAX_YRES 2048
50 
51 #define MAX_PALETTES 16
52 
53 /* FIXME: take care of different chip revisions with different sizes
54  of ODFB */
55 #define MEMORY_OFFSET 0x60000
56 
57 struct mbxfb_info {
58  struct device *dev;
59 
60  struct resource *fb_res;
61  struct resource *fb_req;
62 
63  struct resource *reg_res;
64  struct resource *reg_req;
65 
67  unsigned long fb_phys_addr;
68 
70  unsigned long reg_phys_addr;
71 
72  int (*platform_probe) (struct fb_info * fb);
73  int (*platform_remove) (struct fb_info * fb);
74 
76 #ifdef CONFIG_FB_MBX_DEBUG
77  void *debugfs_data;
78 #endif
79 
80 };
81 
82 static struct fb_var_screeninfo mbxfb_default __devinitdata = {
83  .xres = 640,
84  .yres = 480,
85  .xres_virtual = 640,
86  .yres_virtual = 480,
87  .bits_per_pixel = 16,
88  .red = {11, 5, 0},
89  .green = {5, 6, 0},
90  .blue = {0, 5, 0},
91  .activate = FB_ACTIVATE_TEST,
92  .height = -1,
93  .width = -1,
94  .pixclock = 40000,
95  .left_margin = 48,
96  .right_margin = 16,
97  .upper_margin = 33,
98  .lower_margin = 10,
99  .hsync_len = 96,
100  .vsync_len = 2,
101  .vmode = FB_VMODE_NONINTERLACED,
103 };
104 
105 static struct fb_fix_screeninfo mbxfb_fix __devinitdata = {
106  .id = "MBX",
107  .type = FB_TYPE_PACKED_PIXELS,
108  .visual = FB_VISUAL_TRUECOLOR,
109  .xpanstep = 0,
110  .ypanstep = 0,
111  .ywrapstep = 0,
112  .accel = FB_ACCEL_NONE,
113 };
114 
115 struct pixclock_div {
116  u8 m;
117  u8 n;
118  u8 p;
119 };
120 
121 static unsigned int mbxfb_get_pixclock(unsigned int pixclock_ps,
122  struct pixclock_div *div)
123 {
124  u8 m, n, p;
125  unsigned int err = 0;
126  unsigned int min_err = ~0x0;
127  unsigned int clk;
128  unsigned int best_clk = 0;
129  unsigned int ref_clk = 13000; /* FIXME: take from platform data */
130  unsigned int pixclock;
131 
132  /* convert pixclock to KHz */
133  pixclock = PICOS2KHZ(pixclock_ps);
134 
135  /* PLL output freq = (ref_clk * M) / (N * 2^P)
136  *
137  * M: 1 to 63
138  * N: 1 to 7
139  * P: 0 to 7
140  */
141 
142  /* RAPH: When N==1, the resulting pixel clock appears to
143  * get divided by 2. Preventing N=1 by starting the following
144  * loop at 2 prevents this. Is this a bug with my chip
145  * revision or something I dont understand? */
146  for (m = 1; m < 64; m++) {
147  for (n = 2; n < 8; n++) {
148  for (p = 0; p < 8; p++) {
149  clk = (ref_clk * m) / (n * (1 << p));
150  err = (clk > pixclock) ? (clk - pixclock) :
151  (pixclock - clk);
152  if (err < min_err) {
153  min_err = err;
154  best_clk = clk;
155  div->m = m;
156  div->n = n;
157  div->p = p;
158  }
159  }
160  }
161  }
162  return KHZ2PICOS(best_clk);
163 }
164 
165 static int mbxfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
166  u_int trans, struct fb_info *info)
167 {
168  u32 val, ret = 1;
169 
170  if (regno < MAX_PALETTES) {
171  u32 *pal = info->pseudo_palette;
172 
173  val = (red & 0xf800) | ((green & 0xfc00) >> 5) |
174  ((blue & 0xf800) >> 11);
175  pal[regno] = val;
176  ret = 0;
177  }
178 
179  return ret;
180 }
181 
182 static int mbxfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
183 {
184  struct pixclock_div div;
185 
186  var->pixclock = mbxfb_get_pixclock(var->pixclock, &div);
187 
188  if (var->xres < MIN_XRES)
189  var->xres = MIN_XRES;
190  if (var->yres < MIN_YRES)
191  var->yres = MIN_YRES;
192  if (var->xres > MAX_XRES)
193  return -EINVAL;
194  if (var->yres > MAX_YRES)
195  return -EINVAL;
196  var->xres_virtual = max(var->xres_virtual, var->xres);
197  var->yres_virtual = max(var->yres_virtual, var->yres);
198 
199  switch (var->bits_per_pixel) {
200  /* 8 bits-per-pixel is not supported yet */
201  case 8:
202  return -EINVAL;
203  case 16:
204  var->green.length = (var->green.length == 5) ? 5 : 6;
205  var->red.length = 5;
206  var->blue.length = 5;
207  var->transp.length = 6 - var->green.length;
208  var->blue.offset = 0;
209  var->green.offset = 5;
210  var->red.offset = 5 + var->green.length;
211  var->transp.offset = (5 + var->red.offset) & 15;
212  break;
213  case 24: /* RGB 888 */
214  case 32: /* RGBA 8888 */
215  var->red.offset = 16;
216  var->red.length = 8;
217  var->green.offset = 8;
218  var->green.length = 8;
219  var->blue.offset = 0;
220  var->blue.length = 8;
221  var->transp.length = var->bits_per_pixel - 24;
222  var->transp.offset = (var->transp.length) ? 24 : 0;
223  break;
224  }
225  var->red.msb_right = 0;
226  var->green.msb_right = 0;
227  var->blue.msb_right = 0;
228  var->transp.msb_right = 0;
229 
230  return 0;
231 }
232 
233 static int mbxfb_set_par(struct fb_info *info)
234 {
235  struct fb_var_screeninfo *var = &info->var;
236  struct pixclock_div div;
237  ushort hbps, ht, hfps, has;
238  ushort vbps, vt, vfps, vas;
239  u32 gsctrl = readl(GSCTRL);
240  u32 gsadr = readl(GSADR);
241 
242  info->fix.line_length = var->xres_virtual * var->bits_per_pixel / 8;
243 
244  /* setup color mode */
245  gsctrl &= ~(FMsk(GSCTRL_GPIXFMT));
246  /* FIXME: add *WORKING* support for 8-bits per color */
247  if (info->var.bits_per_pixel == 8) {
248  return -EINVAL;
249  } else {
250  fb_dealloc_cmap(&info->cmap);
251  gsctrl &= ~GSCTRL_LUT_EN;
252 
253  info->fix.visual = FB_VISUAL_TRUECOLOR;
254  switch (info->var.bits_per_pixel) {
255  case 16:
256  if (info->var.green.length == 5)
257  gsctrl |= GSCTRL_GPIXFMT_ARGB1555;
258  else
259  gsctrl |= GSCTRL_GPIXFMT_RGB565;
260  break;
261  case 24:
262  gsctrl |= GSCTRL_GPIXFMT_RGB888;
263  break;
264  case 32:
265  gsctrl |= GSCTRL_GPIXFMT_ARGB8888;
266  break;
267  }
268  }
269 
270  /* setup resolution */
271  gsctrl &= ~(FMsk(GSCTRL_GSWIDTH) | FMsk(GSCTRL_GSHEIGHT));
272  gsctrl |= Gsctrl_Width(info->var.xres) |
273  Gsctrl_Height(info->var.yres);
274  write_reg_dly(gsctrl, GSCTRL);
275 
276  gsadr &= ~(FMsk(GSADR_SRCSTRIDE));
277  gsadr |= Gsadr_Srcstride(info->var.xres * info->var.bits_per_pixel /
278  (8 * 16) - 1);
279  write_reg_dly(gsadr, GSADR);
280 
281  /* setup timings */
282  var->pixclock = mbxfb_get_pixclock(info->var.pixclock, &div);
283 
286 
287  hbps = var->hsync_len;
288  has = hbps + var->left_margin;
289  hfps = has + var->xres;
290  ht = hfps + var->right_margin;
291 
292  vbps = var->vsync_len;
293  vas = vbps + var->upper_margin;
294  vfps = vas + var->yres;
295  vt = vfps + var->lower_margin;
296 
297  write_reg_dly((Dht01_Hbps(hbps) | Dht01_Ht(ht)), DHT01);
298  write_reg_dly((Dht02_Hlbs(has) | Dht02_Has(has)), DHT02);
299  write_reg_dly((Dht03_Hfps(hfps) | Dht03_Hrbs(hfps)), DHT03);
300  write_reg_dly((Dhdet_Hdes(has) | Dhdet_Hdef(hfps)), DHDET);
301 
302  write_reg_dly((Dvt01_Vbps(vbps) | Dvt01_Vt(vt)), DVT01);
303  write_reg_dly((Dvt02_Vtbs(vas) | Dvt02_Vas(vas)), DVT02);
304  write_reg_dly((Dvt03_Vfps(vfps) | Dvt03_Vbbs(vfps)), DVT03);
305  write_reg_dly((Dvdet_Vdes(vas) | Dvdet_Vdef(vfps)), DVDET);
307 
309 
311 
312  return 0;
313 }
314 
315 static int mbxfb_blank(int blank, struct fb_info *info)
316 {
317  switch (blank) {
318  case FB_BLANK_POWERDOWN:
321  case FB_BLANK_NORMAL:
325  break;
326  case FB_BLANK_UNBLANK:
329  break;
330  }
331  return 0;
332 }
333 
334 static int mbxfb_setupOverlay(struct mbxfb_overlaySetup *set)
335 {
336  u32 vsctrl, vscadr, vsadr;
337  u32 sssize, spoctrl, shctrl;
338  u32 vubase, vvbase;
339  u32 vovrclk;
340 
341  if (set->scaled_width==0 || set->scaled_height==0)
342  return -EINVAL;
343 
344  /* read registers which have reserved bits
345  * so we can write them back as-is. */
346  vovrclk = readl(VOVRCLK);
347  vsctrl = readl(VSCTRL);
348  vscadr = readl(VSCADR);
349  vubase = readl(VUBASE);
350  vvbase = readl(VVBASE);
351  shctrl = readl(SHCTRL);
352 
353  spoctrl = readl(SPOCTRL);
354  sssize = readl(SSSIZE);
355 
356  vsctrl &= ~( FMsk(VSCTRL_VSWIDTH) |
360  VSCTRL_COSITED );
361  vsctrl |= Vsctrl_Width(set->width) | Vsctrl_Height(set->height) |
363 
364  vscadr &= ~(VSCADR_STR_EN | FMsk(VSCADR_VBASE_ADR) );
365  vubase &= ~(VUBASE_UVHALFSTR | FMsk(VUBASE_UBASE_ADR));
366  vvbase &= ~(FMsk(VVBASE_VBASE_ADR));
367 
368  switch (set->fmt) {
369  case MBXFB_FMT_YUV16:
370  vsctrl |= VSCTRL_VPIXFMT_YUV12;
371 
372  set->Y_stride = ((set->width) + 0xf ) & ~0xf;
373  break;
374  case MBXFB_FMT_YUV12:
375  vsctrl |= VSCTRL_VPIXFMT_YUV12;
376 
377  set->Y_stride = ((set->width) + 0xf ) & ~0xf;
378  vubase |= VUBASE_UVHALFSTR;
379 
380  break;
381  case MBXFB_FMT_UY0VY1:
382  vsctrl |= VSCTRL_VPIXFMT_UY0VY1;
383  set->Y_stride = (set->width*2 + 0xf ) & ~0xf;
384  break;
385  case MBXFB_FMT_VY0UY1:
386  vsctrl |= VSCTRL_VPIXFMT_VY0UY1;
387  set->Y_stride = (set->width*2 + 0xf ) & ~0xf;
388  break;
389  case MBXFB_FMT_Y0UY1V:
390  vsctrl |= VSCTRL_VPIXFMT_Y0UY1V;
391  set->Y_stride = (set->width*2 + 0xf ) & ~0xf;
392  break;
393  case MBXFB_FMT_Y0VY1U:
394  vsctrl |= VSCTRL_VPIXFMT_Y0VY1U;
395  set->Y_stride = (set->width*2 + 0xf ) & ~0xf;
396  break;
397  default:
398  return -EINVAL;
399  }
400 
401  /* VSCTRL has the bits which sets the Video Pixel Format.
402  * When passing from a packed to planar format,
403  * if we write VSCTRL first, VVBASE and VUBASE would
404  * be zero if we would not set them here. (And then,
405  * the chips hangs and only a reset seems to fix it).
406  *
407  * If course, the values calculated here have no meaning
408  * for packed formats.
409  */
410  set->UV_stride = ((set->width/2) + 0x7 ) & ~0x7;
411  set->U_offset = set->height * set->Y_stride;
412  set->V_offset = set->U_offset +
413  set->height * set->UV_stride;
414  vubase |= Vubase_Ubase_Adr(
415  (0x60000 + set->mem_offset + set->U_offset)>>3);
416  vvbase |= Vvbase_Vbase_Adr(
417  (0x60000 + set->mem_offset + set->V_offset)>>3);
418 
419 
420  vscadr |= Vscadr_Vbase_Adr((0x60000 + set->mem_offset)>>4);
421 
422  if (set->enable)
423  vscadr |= VSCADR_STR_EN;
424 
425 
426  vsadr = Vsadr_Srcstride((set->Y_stride)/16-1) |
427  Vsadr_Xstart(set->x) | Vsadr_Ystart(set->y);
428 
429  sssize &= ~(FMsk(SSSIZE_SC_WIDTH) | FMsk(SSSIZE_SC_HEIGHT));
430  sssize = Sssize_Sc_Width(set->scaled_width-1) |
431  Sssize_Sc_Height(set->scaled_height-1);
432 
433  spoctrl &= ~(SPOCTRL_H_SC_BP | SPOCTRL_V_SC_BP |
436  spoctrl |= Spoctrl_Vpitch((set->height<<11)/set->scaled_height);
437 
438  /* Bypass horiz/vert scaler when same size */
439  if (set->scaled_width == set->width)
440  spoctrl |= SPOCTRL_H_SC_BP;
441  if (set->scaled_height == set->height)
442  spoctrl |= SPOCTRL_V_SC_BP;
443 
444  shctrl &= ~(FMsk(SHCTRL_HPITCH) | SHCTRL_HDECIM);
445  shctrl |= Shctrl_Hpitch((set->width<<11)/set->scaled_width);
446 
447  /* Video plane registers */
448  write_reg(vsctrl, VSCTRL);
449  write_reg(vscadr, VSCADR);
450  write_reg(vubase, VUBASE);
451  write_reg(vvbase, VVBASE);
452  write_reg(vsadr, VSADR);
453 
454  /* Video scaler registers */
455  write_reg(sssize, SSSIZE);
456  write_reg(spoctrl, SPOCTRL);
457  write_reg(shctrl, SHCTRL);
458 
459  /* Clock */
460  if (set->enable)
461  vovrclk |= 1;
462  else
463  vovrclk &= ~1;
464 
465  write_reg(vovrclk, VOVRCLK);
466 
467  return 0;
468 }
469 
470 static int mbxfb_ioctl_planeorder(struct mbxfb_planeorder *porder)
471 {
472  unsigned long gscadr, vscadr;
473 
474  if (porder->bottom == porder->top)
475  return -EINVAL;
476 
477  gscadr = readl(GSCADR);
478  vscadr = readl(VSCADR);
479 
480  gscadr &= ~(FMsk(GSCADR_BLEND_POS));
481  vscadr &= ~(FMsk(VSCADR_BLEND_POS));
482 
483  switch (porder->bottom) {
485  gscadr |= GSCADR_BLEND_GFX;
486  break;
487  case MBXFB_PLANE_VIDEO:
488  vscadr |= VSCADR_BLEND_GFX;
489  break;
490  default:
491  return -EINVAL;
492  }
493 
494  switch (porder->top) {
496  gscadr |= GSCADR_BLEND_VID;
497  break;
498  case MBXFB_PLANE_VIDEO:
499  vscadr |= GSCADR_BLEND_VID;
500  break;
501  default:
502  return -EINVAL;
503  }
504 
505  write_reg_dly(vscadr, VSCADR);
506  write_reg_dly(gscadr, GSCADR);
507 
508  return 0;
509 
510 }
511 
512 static int mbxfb_ioctl_alphactl(struct mbxfb_alphaCtl *alpha)
513 {
514  unsigned long vscadr, vbbase, vcmsk;
515  unsigned long gscadr, gbbase, gdrctrl;
516 
517  vbbase = Vbbase_Glalpha(alpha->overlay_global_alpha) |
519 
520  gbbase = Gbbase_Glalpha(alpha->graphics_global_alpha) |
522 
523  vcmsk = readl(VCMSK);
524  vcmsk &= ~(FMsk(VCMSK_COLKEY_M));
525  vcmsk |= Vcmsk_colkey_m(alpha->overlay_colorkey_mask);
526 
527  gdrctrl = readl(GDRCTRL);
528  gdrctrl &= ~(FMsk(GDRCTRL_COLKEYM));
529  gdrctrl |= Gdrctrl_Colkeym(alpha->graphics_colorkey_mask);
530 
531  vscadr = readl(VSCADR);
533 
534  gscadr = readl(GSCADR);
536 
537  switch (alpha->overlay_colorkey_mode) {
539  break;
541  vscadr |= VSCADR_COLKEY_EN;
542  break;
545  break;
546  default:
547  return -EINVAL;
548  }
549 
550  switch (alpha->overlay_blend_mode) {
552  vscadr |= VSCADR_BLEND_NONE;
553  break;
555  vscadr |= VSCADR_BLEND_GLOB;
556  break;
558  vscadr |= VSCADR_BLEND_PIX;
559  break;
560  default:
561  return -EINVAL;
562  }
563 
564  switch (alpha->graphics_colorkey_mode) {
566  break;
568  gscadr |= GSCADR_COLKEY_EN;
569  break;
572  break;
573  default:
574  return -EINVAL;
575  }
576 
577  switch (alpha->graphics_blend_mode) {
579  gscadr |= GSCADR_BLEND_NONE;
580  break;
582  gscadr |= GSCADR_BLEND_GLOB;
583  break;
585  gscadr |= GSCADR_BLEND_PIX;
586  break;
587  default:
588  return -EINVAL;
589  }
590 
591  write_reg_dly(vbbase, VBBASE);
592  write_reg_dly(gbbase, GBBASE);
593  write_reg_dly(vcmsk, VCMSK);
594  write_reg_dly(gdrctrl, GDRCTRL);
595  write_reg_dly(gscadr, GSCADR);
596  write_reg_dly(vscadr, VSCADR);
597 
598  return 0;
599 }
600 
601 static int mbxfb_ioctl(struct fb_info *info, unsigned int cmd,
602  unsigned long arg)
603 {
604  struct mbxfb_overlaySetup setup;
605  struct mbxfb_planeorder porder;
606  struct mbxfb_alphaCtl alpha;
607  struct mbxfb_reg reg;
608  int res;
609  __u32 tmp;
610 
611  switch (cmd)
612  {
613  case MBXFB_IOCX_OVERLAY:
614  if (copy_from_user(&setup, (void __user*)arg,
615  sizeof(struct mbxfb_overlaySetup)))
616  return -EFAULT;
617 
618  res = mbxfb_setupOverlay(&setup);
619  if (res)
620  return res;
621 
622  if (copy_to_user((void __user*)arg, &setup,
623  sizeof(struct mbxfb_overlaySetup)))
624  return -EFAULT;
625 
626  return 0;
627 
629  if (copy_from_user(&porder, (void __user*)arg,
630  sizeof(struct mbxfb_planeorder)))
631  return -EFAULT;
632 
633  return mbxfb_ioctl_planeorder(&porder);
634 
635  case MBXFB_IOCS_ALPHA:
636  if (copy_from_user(&alpha, (void __user*)arg,
637  sizeof(struct mbxfb_alphaCtl)))
638  return -EFAULT;
639 
640  return mbxfb_ioctl_alphactl(&alpha);
641 
642  case MBXFB_IOCS_REG:
643  if (copy_from_user(&reg, (void __user*)arg,
644  sizeof(struct mbxfb_reg)))
645  return -EFAULT;
646 
647  if (reg.addr >= 0x10000) /* regs are from 0x3fe0000 to 0x3feffff */
648  return -EINVAL;
649 
650  tmp = readl(virt_base_2700 + reg.addr);
651  tmp &= ~reg.mask;
652  tmp |= reg.val & reg.mask;
653  writel(tmp, virt_base_2700 + reg.addr);
654 
655  return 0;
656  case MBXFB_IOCX_REG:
657  if (copy_from_user(&reg, (void __user*)arg,
658  sizeof(struct mbxfb_reg)))
659  return -EFAULT;
660 
661  if (reg.addr >= 0x10000) /* regs are from 0x3fe0000 to 0x3feffff */
662  return -EINVAL;
663  reg.val = readl(virt_base_2700 + reg.addr);
664 
665  if (copy_to_user((void __user*)arg, &reg,
666  sizeof(struct mbxfb_reg)))
667  return -EFAULT;
668 
669  return 0;
670  }
671  return -EINVAL;
672 }
673 
674 static struct fb_ops mbxfb_ops = {
675  .owner = THIS_MODULE,
676  .fb_check_var = mbxfb_check_var,
677  .fb_set_par = mbxfb_set_par,
678  .fb_setcolreg = mbxfb_setcolreg,
679  .fb_fillrect = cfb_fillrect,
680  .fb_copyarea = cfb_copyarea,
681  .fb_imageblit = cfb_imageblit,
682  .fb_blank = mbxfb_blank,
683  .fb_ioctl = mbxfb_ioctl,
684 };
685 
686 /*
687  Enable external SDRAM controller. Assume that all clocks are active
688  by now.
689 */
690 static void __devinit setup_memc(struct fb_info *fbi)
691 {
692  unsigned long tmp;
693  int i;
694 
695  /* FIXME: use platform specific parameters */
696  /* setup SDRAM controller */
698  LMCFG_LMA_TS),
699  LMCFG);
700 
702 
703  /* setup SDRAM timings */
705  Lmtim_Trc(9) | Lmtim_Tdpl(2)),
706  LMTIM);
707  /* setup SDRAM refresh rate */
708  write_reg_dly(0xc2b, LMREFRESH);
709  /* setup SDRAM type parameters */
712  LMTYPE);
713  /* enable memory controller */
715  /* perform dummy reads */
716  for ( i = 0; i < 16; i++ ) {
717  tmp = readl(fbi->screen_base);
718  }
719 }
720 
721 static void enable_clocks(struct fb_info *fbi)
722 {
723  /* enable clocks */
726  write_reg_dly(0x00000000, CLKSLEEP);
727 
728  /* PLL output = (Frefclk * M) / (N * 2^P )
729  *
730  * M: 0x17, N: 0x3, P: 0x0 == 100 Mhz!
731  * M: 0xb, N: 0x1, P: 0x1 == 71 Mhz
732  * */
733  write_reg_dly((Core_Pll_M(0xb) | Core_Pll_N(0x1) | Core_Pll_P(0x1) |
734  CORE_PLL_EN),
735  COREPLL);
736 
737  write_reg_dly((Disp_Pll_M(0x1b) | Disp_Pll_N(0x7) | Disp_Pll_P(0x1) |
738  DISP_PLL_EN),
739  DISPPLL);
740 
741  write_reg_dly(0x00000000, VOVRCLK);
744  write_reg_dly(0x00000001, M24CLK);
745  write_reg_dly(0x00000001, MBXCLK);
747  write_reg_dly(0x00000001, PIXCLKDIV);
748 }
749 
750 static void __devinit setup_graphics(struct fb_info *fbi)
751 {
752  unsigned long gsctrl;
753  unsigned long vscadr;
754 
755  gsctrl = GSCTRL_GAMMA_EN | Gsctrl_Width(fbi->var.xres) |
756  Gsctrl_Height(fbi->var.yres);
757  switch (fbi->var.bits_per_pixel) {
758  case 16:
759  if (fbi->var.green.length == 5)
760  gsctrl |= GSCTRL_GPIXFMT_ARGB1555;
761  else
762  gsctrl |= GSCTRL_GPIXFMT_RGB565;
763  break;
764  case 24:
765  gsctrl |= GSCTRL_GPIXFMT_RGB888;
766  break;
767  case 32:
768  gsctrl |= GSCTRL_GPIXFMT_ARGB8888;
769  break;
770  }
771 
772  write_reg_dly(gsctrl, GSCTRL);
773  write_reg_dly(0x00000000, GBBASE);
774  write_reg_dly(0x00ffffff, GDRCTRL);
776  write_reg_dly(0x00000000, GPLUT);
777 
778  vscadr = readl(VSCADR);
779  vscadr &= ~(FMsk(VSCADR_BLEND_POS) | FMsk(VSCADR_BLEND_M));
781  write_reg_dly(vscadr, VSCADR);
782 }
783 
784 static void __devinit setup_display(struct fb_info *fbi)
785 {
786  unsigned long dsctrl = 0;
787 
788  dsctrl = DSCTRL_BLNK_POL;
789  if (fbi->var.sync & FB_SYNC_HOR_HIGH_ACT)
790  dsctrl |= DSCTRL_HS_POL;
791  if (fbi->var.sync & FB_SYNC_VERT_HIGH_ACT)
792  dsctrl |= DSCTRL_VS_POL;
793  write_reg_dly(dsctrl, DSCTRL);
794  write_reg_dly(0xd0303010, DMCTRL);
796 }
797 
798 static void __devinit enable_controller(struct fb_info *fbi)
799 {
800  u32 svctrl, shctrl;
801 
803 
804  /* setup a timeout, raise drive strength */
805  write_reg_dly(0xffffff0c, SYSCFG);
806 
807  enable_clocks(fbi);
808  setup_memc(fbi);
809  setup_graphics(fbi);
810  setup_display(fbi);
811 
812  shctrl = readl(SHCTRL);
813  shctrl &= ~(FMsk(SHCTRL_HINITIAL));
814  shctrl |= Shctrl_Hinitial(4<<11);
815  writel(shctrl, SHCTRL);
816 
817  svctrl = Svctrl_Initial1(1<<10) | Svctrl_Initial2(1<<10);
818  writel(svctrl, SVCTRL);
819 
821  , SPOCTRL);
822 
823  /* Those coefficients are good for scaling up. For scaling
824  * down, the application has to calculate them. */
825  write_reg(0xff000100, VSCOEFF0);
826  write_reg(0xfdfcfdfe, VSCOEFF1);
827  write_reg(0x170d0500, VSCOEFF2);
828  write_reg(0x3d372d22, VSCOEFF3);
829  write_reg(0x00000040, VSCOEFF4);
830 
831  write_reg(0xff010100, HSCOEFF0);
832  write_reg(0x00000000, HSCOEFF1);
833  write_reg(0x02010000, HSCOEFF2);
834  write_reg(0x01020302, HSCOEFF3);
835  write_reg(0xf9fbfe00, HSCOEFF4);
836  write_reg(0xfbf7f6f7, HSCOEFF5);
837  write_reg(0x1c110700, HSCOEFF6);
838  write_reg(0x3e393127, HSCOEFF7);
839  write_reg(0x00000040, HSCOEFF8);
840 
841 }
842 
843 #ifdef CONFIG_PM
844 /*
845  * Power management hooks. Note that we won't be called from IRQ context,
846  * unlike the blank functions above, so we may sleep.
847  */
849 {
850  /* make frame buffer memory enter self-refresh mode */
853  ; /* empty statement */
854 
855  /* reset the device, since it's initial state is 'mostly sleeping' */
857  return 0;
858 }
859 
860 static int mbxfb_resume(struct platform_device *dev)
861 {
862  struct fb_info *fbi = platform_get_drvdata(dev);
863 
864  enable_clocks(fbi);
865 /* setup_graphics(fbi); */
866 /* setup_display(fbi); */
867 
869  return 0;
870 }
871 #else
872 #define mbxfb_suspend NULL
873 #define mbxfb_resume NULL
874 #endif
875 
876 /* debugfs entries */
877 #ifndef CONFIG_FB_MBX_DEBUG
878 #define mbxfb_debugfs_init(x) do {} while(0)
879 #define mbxfb_debugfs_remove(x) do {} while(0)
880 #endif
881 
882 #define res_size(_r) (((_r)->end - (_r)->start) + 1)
883 
884 static int __devinit mbxfb_probe(struct platform_device *dev)
885 {
886  int ret;
887  struct fb_info *fbi;
888  struct mbxfb_info *mfbi;
889  struct mbxfb_platform_data *pdata;
890 
891  dev_dbg(&dev->dev, "mbxfb_probe\n");
892 
893  pdata = dev->dev.platform_data;
894  if (!pdata) {
895  dev_err(&dev->dev, "platform data is required\n");
896  return -EINVAL;
897  }
898 
899  fbi = framebuffer_alloc(sizeof(struct mbxfb_info), &dev->dev);
900  if (fbi == NULL) {
901  dev_err(&dev->dev, "framebuffer_alloc failed\n");
902  return -ENOMEM;
903  }
904 
905  mfbi = fbi->par;
906  fbi->pseudo_palette = mfbi->pseudo_palette;
907 
908 
909  if (pdata->probe)
910  mfbi->platform_probe = pdata->probe;
911  if (pdata->remove)
912  mfbi->platform_remove = pdata->remove;
913 
916 
917  if (!mfbi->fb_res || !mfbi->reg_res) {
918  dev_err(&dev->dev, "no resources found\n");
919  ret = -ENODEV;
920  goto err1;
921  }
922 
923  mfbi->fb_req = request_mem_region(mfbi->fb_res->start,
924  res_size(mfbi->fb_res), dev->name);
925  if (mfbi->fb_req == NULL) {
926  dev_err(&dev->dev, "failed to claim framebuffer memory\n");
927  ret = -EINVAL;
928  goto err1;
929  }
930  mfbi->fb_phys_addr = mfbi->fb_res->start;
931 
932  mfbi->reg_req = request_mem_region(mfbi->reg_res->start,
933  res_size(mfbi->reg_res), dev->name);
934  if (mfbi->reg_req == NULL) {
935  dev_err(&dev->dev, "failed to claim Marathon registers\n");
936  ret = -EINVAL;
937  goto err2;
938  }
939  mfbi->reg_phys_addr = mfbi->reg_res->start;
940 
941  mfbi->reg_virt_addr = devm_ioremap_nocache(&dev->dev,
942  mfbi->reg_phys_addr,
943  res_size(mfbi->reg_req));
944  if (!mfbi->reg_virt_addr) {
945  dev_err(&dev->dev, "failed to ioremap Marathon registers\n");
946  ret = -EINVAL;
947  goto err3;
948  }
949  virt_base_2700 = mfbi->reg_virt_addr;
950 
951  mfbi->fb_virt_addr = devm_ioremap_nocache(&dev->dev, mfbi->fb_phys_addr,
952  res_size(mfbi->fb_req));
953  if (!mfbi->fb_virt_addr) {
954  dev_err(&dev->dev, "failed to ioremap frame buffer\n");
955  ret = -EINVAL;
956  goto err3;
957  }
958 
959  fbi->screen_base = (char __iomem *)(mfbi->fb_virt_addr + 0x60000);
960  fbi->screen_size = pdata->memsize;
961  fbi->fbops = &mbxfb_ops;
962 
963  fbi->var = mbxfb_default;
964  fbi->fix = mbxfb_fix;
965  fbi->fix.smem_start = mfbi->fb_phys_addr + 0x60000;
966  fbi->fix.smem_len = pdata->memsize;
967  fbi->fix.line_length = mbxfb_default.xres_virtual *
968  mbxfb_default.bits_per_pixel / 8;
969 
970  ret = fb_alloc_cmap(&fbi->cmap, 256, 0);
971  if (ret < 0) {
972  dev_err(&dev->dev, "fb_alloc_cmap failed\n");
973  ret = -EINVAL;
974  goto err3;
975  }
976 
977  platform_set_drvdata(dev, fbi);
978 
979  printk(KERN_INFO "fb%d: mbx frame buffer device\n", fbi->node);
980 
981  if (mfbi->platform_probe)
982  mfbi->platform_probe(fbi);
983 
984  enable_controller(fbi);
985 
986  mbxfb_debugfs_init(fbi);
987 
988  ret = register_framebuffer(fbi);
989  if (ret < 0) {
990  dev_err(&dev->dev, "register_framebuffer failed\n");
991  ret = -EINVAL;
992  goto err6;
993  }
994 
995  return 0;
996 
997 err6:
998  fb_dealloc_cmap(&fbi->cmap);
999 err3:
1000  release_mem_region(mfbi->reg_res->start, res_size(mfbi->reg_res));
1001 err2:
1002  release_mem_region(mfbi->fb_res->start, res_size(mfbi->fb_res));
1003 err1:
1004  framebuffer_release(fbi);
1005 
1006  return ret;
1007 }
1008 
1009 static int __devexit mbxfb_remove(struct platform_device *dev)
1010 {
1011  struct fb_info *fbi = platform_get_drvdata(dev);
1012 
1014 
1015  mbxfb_debugfs_remove(fbi);
1016 
1017  if (fbi) {
1018  struct mbxfb_info *mfbi = fbi->par;
1019 
1021  if (mfbi) {
1022  if (mfbi->platform_remove)
1023  mfbi->platform_remove(fbi);
1024 
1025 
1026  if (mfbi->reg_req)
1027  release_mem_region(mfbi->reg_req->start,
1028  res_size(mfbi->reg_req));
1029  if (mfbi->fb_req)
1030  release_mem_region(mfbi->fb_req->start,
1031  res_size(mfbi->fb_req));
1032  }
1033  framebuffer_release(fbi);
1034  }
1035 
1036  return 0;
1037 }
1038 
1039 static struct platform_driver mbxfb_driver = {
1040  .probe = mbxfb_probe,
1041  .remove = __devexit_p(mbxfb_remove),
1042  .suspend = mbxfb_suspend,
1043  .resume = mbxfb_resume,
1044  .driver = {
1045  .name = "mbx-fb",
1046  },
1047 };
1048 
1049 module_platform_driver(mbxfb_driver);
1050 
1051 MODULE_DESCRIPTION("loadable framebuffer driver for Marathon device");
1052 MODULE_AUTHOR("Mike Rapoport, Compulab");
1053 MODULE_LICENSE("GPL");