Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
uvc_video.c
Go to the documentation of this file.
1 /*
2  * uvc_video.c -- USB Video Class driver - Video handling
3  *
4  * Copyright (C) 2005-2010
5  * Laurent Pinchart ([email protected])
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/usb.h>
19 #include <linux/videodev2.h>
20 #include <linux/vmalloc.h>
21 #include <linux/wait.h>
22 #include <linux/atomic.h>
23 #include <asm/unaligned.h>
24 
25 #include <media/v4l2-common.h>
26 
27 #include "uvcvideo.h"
28 
29 /* ------------------------------------------------------------------------
30  * UVC Controls
31  */
32 
33 static int __uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
34  __u8 intfnum, __u8 cs, void *data, __u16 size,
35  int timeout)
36 {
38  unsigned int pipe;
39 
40  pipe = (query & 0x80) ? usb_rcvctrlpipe(dev->udev, 0)
41  : usb_sndctrlpipe(dev->udev, 0);
42  type |= (query & 0x80) ? USB_DIR_IN : USB_DIR_OUT;
43 
44  return usb_control_msg(dev->udev, pipe, query, type, cs << 8,
45  unit << 8 | intfnum, data, size, timeout);
46 }
47 
48 static const char *uvc_query_name(__u8 query)
49 {
50  switch (query) {
51  case UVC_SET_CUR:
52  return "SET_CUR";
53  case UVC_GET_CUR:
54  return "GET_CUR";
55  case UVC_GET_MIN:
56  return "GET_MIN";
57  case UVC_GET_MAX:
58  return "GET_MAX";
59  case UVC_GET_RES:
60  return "GET_RES";
61  case UVC_GET_LEN:
62  return "GET_LEN";
63  case UVC_GET_INFO:
64  return "GET_INFO";
65  case UVC_GET_DEF:
66  return "GET_DEF";
67  default:
68  return "<invalid>";
69  }
70 }
71 
72 int uvc_query_ctrl(struct uvc_device *dev, __u8 query, __u8 unit,
73  __u8 intfnum, __u8 cs, void *data, __u16 size)
74 {
75  int ret;
76 
77  ret = __uvc_query_ctrl(dev, query, unit, intfnum, cs, data, size,
79  if (ret != size) {
80  uvc_printk(KERN_ERR, "Failed to query (%s) UVC control %u on "
81  "unit %u: %d (exp. %u).\n", uvc_query_name(query), cs,
82  unit, ret, size);
83  return -EIO;
84  }
85 
86  return 0;
87 }
88 
89 static void uvc_fixup_video_ctrl(struct uvc_streaming *stream,
91 {
92  struct uvc_format *format = NULL;
93  struct uvc_frame *frame = NULL;
94  unsigned int i;
95 
96  for (i = 0; i < stream->nformats; ++i) {
97  if (stream->format[i].index == ctrl->bFormatIndex) {
98  format = &stream->format[i];
99  break;
100  }
101  }
102 
103  if (format == NULL)
104  return;
105 
106  for (i = 0; i < format->nframes; ++i) {
107  if (format->frame[i].bFrameIndex == ctrl->bFrameIndex) {
108  frame = &format->frame[i];
109  break;
110  }
111  }
112 
113  if (frame == NULL)
114  return;
115 
116  if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) ||
117  (ctrl->dwMaxVideoFrameSize == 0 &&
118  stream->dev->uvc_version < 0x0110))
119  ctrl->dwMaxVideoFrameSize =
121 
122  if (!(format->flags & UVC_FMT_FLAG_COMPRESSED) &&
123  stream->dev->quirks & UVC_QUIRK_FIX_BANDWIDTH &&
124  stream->intf->num_altsetting > 1) {
125  u32 interval;
126  u32 bandwidth;
127 
128  interval = (ctrl->dwFrameInterval > 100000)
129  ? ctrl->dwFrameInterval
130  : frame->dwFrameInterval[0];
131 
132  /* Compute a bandwidth estimation by multiplying the frame
133  * size by the number of video frames per second, divide the
134  * result by the number of USB frames (or micro-frames for
135  * high-speed devices) per second and add the UVC header size
136  * (assumed to be 12 bytes long).
137  */
138  bandwidth = frame->wWidth * frame->wHeight / 8 * format->bpp;
139  bandwidth *= 10000000 / interval + 1;
140  bandwidth /= 1000;
141  if (stream->dev->udev->speed == USB_SPEED_HIGH)
142  bandwidth /= 8;
143  bandwidth += 12;
144 
145  /* The bandwidth estimate is too low for many cameras. Don't use
146  * maximum packet sizes lower than 1024 bytes to try and work
147  * around the problem. According to measurements done on two
148  * different camera models, the value is high enough to get most
149  * resolutions working while not preventing two simultaneous
150  * VGA streams at 15 fps.
151  */
152  bandwidth = max_t(u32, bandwidth, 1024);
153 
155  }
156 }
157 
158 static int uvc_get_video_ctrl(struct uvc_streaming *stream,
159  struct uvc_streaming_control *ctrl, int probe, __u8 query)
160 {
161  __u8 *data;
162  __u16 size;
163  int ret;
164 
165  size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
166  if ((stream->dev->quirks & UVC_QUIRK_PROBE_DEF) &&
167  query == UVC_GET_DEF)
168  return -EIO;
169 
170  data = kmalloc(size, GFP_KERNEL);
171  if (data == NULL)
172  return -ENOMEM;
173 
174  ret = __uvc_query_ctrl(stream->dev, query, 0, stream->intfnum,
176  size, uvc_timeout_param);
177 
178  if ((query == UVC_GET_MIN || query == UVC_GET_MAX) && ret == 2) {
179  /* Some cameras, mostly based on Bison Electronics chipsets,
180  * answer a GET_MIN or GET_MAX request with the wCompQuality
181  * field only.
182  */
183  uvc_warn_once(stream->dev, UVC_WARN_MINMAX, "UVC non "
184  "compliance - GET_MIN/MAX(PROBE) incorrectly "
185  "supported. Enabling workaround.\n");
186  memset(ctrl, 0, sizeof *ctrl);
187  ctrl->wCompQuality = le16_to_cpup((__le16 *)data);
188  ret = 0;
189  goto out;
190  } else if (query == UVC_GET_DEF && probe == 1 && ret != size) {
191  /* Many cameras don't support the GET_DEF request on their
192  * video probe control. Warn once and return, the caller will
193  * fall back to GET_CUR.
194  */
195  uvc_warn_once(stream->dev, UVC_WARN_PROBE_DEF, "UVC non "
196  "compliance - GET_DEF(PROBE) not supported. "
197  "Enabling workaround.\n");
198  ret = -EIO;
199  goto out;
200  } else if (ret != size) {
201  uvc_printk(KERN_ERR, "Failed to query (%u) UVC %s control : "
202  "%d (exp. %u).\n", query, probe ? "probe" : "commit",
203  ret, size);
204  ret = -EIO;
205  goto out;
206  }
207 
208  ctrl->bmHint = le16_to_cpup((__le16 *)&data[0]);
209  ctrl->bFormatIndex = data[2];
210  ctrl->bFrameIndex = data[3];
211  ctrl->dwFrameInterval = le32_to_cpup((__le32 *)&data[4]);
212  ctrl->wKeyFrameRate = le16_to_cpup((__le16 *)&data[8]);
213  ctrl->wPFrameRate = le16_to_cpup((__le16 *)&data[10]);
214  ctrl->wCompQuality = le16_to_cpup((__le16 *)&data[12]);
215  ctrl->wCompWindowSize = le16_to_cpup((__le16 *)&data[14]);
216  ctrl->wDelay = le16_to_cpup((__le16 *)&data[16]);
217  ctrl->dwMaxVideoFrameSize = get_unaligned_le32(&data[18]);
218  ctrl->dwMaxPayloadTransferSize = get_unaligned_le32(&data[22]);
219 
220  if (size == 34) {
221  ctrl->dwClockFrequency = get_unaligned_le32(&data[26]);
222  ctrl->bmFramingInfo = data[30];
223  ctrl->bPreferedVersion = data[31];
224  ctrl->bMinVersion = data[32];
225  ctrl->bMaxVersion = data[33];
226  } else {
227  ctrl->dwClockFrequency = stream->dev->clock_frequency;
228  ctrl->bmFramingInfo = 0;
229  ctrl->bPreferedVersion = 0;
230  ctrl->bMinVersion = 0;
231  ctrl->bMaxVersion = 0;
232  }
233 
234  /* Some broken devices return null or wrong dwMaxVideoFrameSize and
235  * dwMaxPayloadTransferSize fields. Try to get the value from the
236  * format and frame descriptors.
237  */
238  uvc_fixup_video_ctrl(stream, ctrl);
239  ret = 0;
240 
241 out:
242  kfree(data);
243  return ret;
244 }
245 
246 static int uvc_set_video_ctrl(struct uvc_streaming *stream,
247  struct uvc_streaming_control *ctrl, int probe)
248 {
249  __u8 *data;
250  __u16 size;
251  int ret;
252 
253  size = stream->dev->uvc_version >= 0x0110 ? 34 : 26;
254  data = kzalloc(size, GFP_KERNEL);
255  if (data == NULL)
256  return -ENOMEM;
257 
258  *(__le16 *)&data[0] = cpu_to_le16(ctrl->bmHint);
259  data[2] = ctrl->bFormatIndex;
260  data[3] = ctrl->bFrameIndex;
261  *(__le32 *)&data[4] = cpu_to_le32(ctrl->dwFrameInterval);
262  *(__le16 *)&data[8] = cpu_to_le16(ctrl->wKeyFrameRate);
263  *(__le16 *)&data[10] = cpu_to_le16(ctrl->wPFrameRate);
264  *(__le16 *)&data[12] = cpu_to_le16(ctrl->wCompQuality);
265  *(__le16 *)&data[14] = cpu_to_le16(ctrl->wCompWindowSize);
266  *(__le16 *)&data[16] = cpu_to_le16(ctrl->wDelay);
267  put_unaligned_le32(ctrl->dwMaxVideoFrameSize, &data[18]);
269 
270  if (size == 34) {
271  put_unaligned_le32(ctrl->dwClockFrequency, &data[26]);
272  data[30] = ctrl->bmFramingInfo;
273  data[31] = ctrl->bPreferedVersion;
274  data[32] = ctrl->bMinVersion;
275  data[33] = ctrl->bMaxVersion;
276  }
277 
278  ret = __uvc_query_ctrl(stream->dev, UVC_SET_CUR, 0, stream->intfnum,
280  size, uvc_timeout_param);
281  if (ret != size) {
282  uvc_printk(KERN_ERR, "Failed to set UVC %s control : "
283  "%d (exp. %u).\n", probe ? "probe" : "commit",
284  ret, size);
285  ret = -EIO;
286  }
287 
288  kfree(data);
289  return ret;
290 }
291 
292 int uvc_probe_video(struct uvc_streaming *stream,
293  struct uvc_streaming_control *probe)
294 {
295  struct uvc_streaming_control probe_min, probe_max;
297  unsigned int i;
298  int ret;
299 
300  /* Perform probing. The device should adjust the requested values
301  * according to its capabilities. However, some devices, namely the
302  * first generation UVC Logitech webcams, don't implement the Video
303  * Probe control properly, and just return the needed bandwidth. For
304  * that reason, if the needed bandwidth exceeds the maximum available
305  * bandwidth, try to lower the quality.
306  */
307  ret = uvc_set_video_ctrl(stream, probe, 1);
308  if (ret < 0)
309  goto done;
310 
311  /* Get the minimum and maximum values for compression settings. */
312  if (!(stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX)) {
313  ret = uvc_get_video_ctrl(stream, &probe_min, 1, UVC_GET_MIN);
314  if (ret < 0)
315  goto done;
316  ret = uvc_get_video_ctrl(stream, &probe_max, 1, UVC_GET_MAX);
317  if (ret < 0)
318  goto done;
319 
320  probe->wCompQuality = probe_max.wCompQuality;
321  }
322 
323  for (i = 0; i < 2; ++i) {
324  ret = uvc_set_video_ctrl(stream, probe, 1);
325  if (ret < 0)
326  goto done;
327  ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
328  if (ret < 0)
329  goto done;
330 
331  if (stream->intf->num_altsetting == 1)
332  break;
333 
334  bandwidth = probe->dwMaxPayloadTransferSize;
335  if (bandwidth <= stream->maxpsize)
336  break;
337 
338  if (stream->dev->quirks & UVC_QUIRK_PROBE_MINMAX) {
339  ret = -ENOSPC;
340  goto done;
341  }
342 
343  /* TODO: negotiate compression parameters */
344  probe->wKeyFrameRate = probe_min.wKeyFrameRate;
345  probe->wPFrameRate = probe_min.wPFrameRate;
346  probe->wCompQuality = probe_max.wCompQuality;
347  probe->wCompWindowSize = probe_min.wCompWindowSize;
348  }
349 
350 done:
351  return ret;
352 }
353 
354 static int uvc_commit_video(struct uvc_streaming *stream,
355  struct uvc_streaming_control *probe)
356 {
357  return uvc_set_video_ctrl(stream, probe, 0);
358 }
359 
360 /* -----------------------------------------------------------------------------
361  * Clocks and timestamps
362  */
363 
364 static void
365 uvc_video_clock_decode(struct uvc_streaming *stream, struct uvc_buffer *buf,
366  const __u8 *data, int len)
367 {
368  struct uvc_clock_sample *sample;
369  unsigned int header_size;
370  bool has_pts = false;
371  bool has_scr = false;
372  unsigned long flags;
373  struct timespec ts;
374  u16 host_sof;
375  u16 dev_sof;
376 
377  switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
379  header_size = 12;
380  has_pts = true;
381  has_scr = true;
382  break;
383  case UVC_STREAM_PTS:
384  header_size = 6;
385  has_pts = true;
386  break;
387  case UVC_STREAM_SCR:
388  header_size = 8;
389  has_scr = true;
390  break;
391  default:
392  header_size = 2;
393  break;
394  }
395 
396  /* Check for invalid headers. */
397  if (len < header_size)
398  return;
399 
400  /* Extract the timestamps:
401  *
402  * - store the frame PTS in the buffer structure
403  * - if the SCR field is present, retrieve the host SOF counter and
404  * kernel timestamps and store them with the SCR STC and SOF fields
405  * in the ring buffer
406  */
407  if (has_pts && buf != NULL)
408  buf->pts = get_unaligned_le32(&data[2]);
409 
410  if (!has_scr)
411  return;
412 
413  /* To limit the amount of data, drop SCRs with an SOF identical to the
414  * previous one.
415  */
416  dev_sof = get_unaligned_le16(&data[header_size - 2]);
417  if (dev_sof == stream->clock.last_sof)
418  return;
419 
420  stream->clock.last_sof = dev_sof;
421 
422  host_sof = usb_get_current_frame_number(stream->dev->udev);
423  ktime_get_ts(&ts);
424 
425  /* The UVC specification allows device implementations that can't obtain
426  * the USB frame number to keep their own frame counters as long as they
427  * match the size and frequency of the frame number associated with USB
428  * SOF tokens. The SOF values sent by such devices differ from the USB
429  * SOF tokens by a fixed offset that needs to be estimated and accounted
430  * for to make timestamp recovery as accurate as possible.
431  *
432  * The offset is estimated the first time a device SOF value is received
433  * as the difference between the host and device SOF values. As the two
434  * SOF values can differ slightly due to transmission delays, consider
435  * that the offset is null if the difference is not higher than 10 ms
436  * (negative differences can not happen and are thus considered as an
437  * offset). The video commit control wDelay field should be used to
438  * compute a dynamic threshold instead of using a fixed 10 ms value, but
439  * devices don't report reliable wDelay values.
440  *
441  * See uvc_video_clock_host_sof() for an explanation regarding why only
442  * the 8 LSBs of the delta are kept.
443  */
444  if (stream->clock.sof_offset == (u16)-1) {
445  u16 delta_sof = (host_sof - dev_sof) & 255;
446  if (delta_sof >= 10)
447  stream->clock.sof_offset = delta_sof;
448  else
449  stream->clock.sof_offset = 0;
450  }
451 
452  dev_sof = (dev_sof + stream->clock.sof_offset) & 2047;
453 
454  spin_lock_irqsave(&stream->clock.lock, flags);
455 
456  sample = &stream->clock.samples[stream->clock.head];
457  sample->dev_stc = get_unaligned_le32(&data[header_size - 6]);
458  sample->dev_sof = dev_sof;
459  sample->host_sof = host_sof;
460  sample->host_ts = ts;
461 
462  /* Update the sliding window head and count. */
463  stream->clock.head = (stream->clock.head + 1) % stream->clock.size;
464 
465  if (stream->clock.count < stream->clock.size)
466  stream->clock.count++;
467 
468  spin_unlock_irqrestore(&stream->clock.lock, flags);
469 }
470 
471 static void uvc_video_clock_reset(struct uvc_streaming *stream)
472 {
473  struct uvc_clock *clock = &stream->clock;
474 
475  clock->head = 0;
476  clock->count = 0;
477  clock->last_sof = -1;
478  clock->sof_offset = -1;
479 }
480 
481 static int uvc_video_clock_init(struct uvc_streaming *stream)
482 {
483  struct uvc_clock *clock = &stream->clock;
484 
485  spin_lock_init(&clock->lock);
486  clock->size = 32;
487 
488  clock->samples = kmalloc(clock->size * sizeof(*clock->samples),
489  GFP_KERNEL);
490  if (clock->samples == NULL)
491  return -ENOMEM;
492 
493  uvc_video_clock_reset(stream);
494 
495  return 0;
496 }
497 
498 static void uvc_video_clock_cleanup(struct uvc_streaming *stream)
499 {
500  kfree(stream->clock.samples);
501  stream->clock.samples = NULL;
502 }
503 
504 /*
505  * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
506  *
507  * Host SOF counters reported by usb_get_current_frame_number() usually don't
508  * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
509  * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
510  * controller and its configuration.
511  *
512  * We thus need to recover the SOF value corresponding to the host frame number.
513  * As the device and host frame numbers are sampled in a short interval, the
514  * difference between their values should be equal to a small delta plus an
515  * integer multiple of 256 caused by the host frame number limited precision.
516  *
517  * To obtain the recovered host SOF value, compute the small delta by masking
518  * the high bits of the host frame counter and device SOF difference and add it
519  * to the device SOF value.
520  */
521 static u16 uvc_video_clock_host_sof(const struct uvc_clock_sample *sample)
522 {
523  /* The delta value can be negative. */
524  s8 delta_sof;
525 
526  delta_sof = (sample->host_sof - sample->dev_sof) & 255;
527 
528  return (sample->dev_sof + delta_sof) & 2047;
529 }
530 
531 /*
532  * uvc_video_clock_update - Update the buffer timestamp
533  *
534  * This function converts the buffer PTS timestamp to the host clock domain by
535  * going through the USB SOF clock domain and stores the result in the V4L2
536  * buffer timestamp field.
537  *
538  * The relationship between the device clock and the host clock isn't known.
539  * However, the device and the host share the common USB SOF clock which can be
540  * used to recover that relationship.
541  *
542  * The relationship between the device clock and the USB SOF clock is considered
543  * to be linear over the clock samples sliding window and is given by
544  *
545  * SOF = m * PTS + p
546  *
547  * Several methods to compute the slope (m) and intercept (p) can be used. As
548  * the clock drift should be small compared to the sliding window size, we
549  * assume that the line that goes through the points at both ends of the window
550  * is a good approximation. Naming those points P1 and P2, we get
551  *
552  * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
553  * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
554  *
555  * or
556  *
557  * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1)
558  *
559  * to avoid loosing precision in the division. Similarly, the host timestamp is
560  * computed with
561  *
562  * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2)
563  *
564  * SOF values are coded on 11 bits by USB. We extend their precision with 16
565  * decimal bits, leading to a 11.16 coding.
566  *
567  * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
568  * be normalized using the nominal device clock frequency reported through the
569  * UVC descriptors.
570  *
571  * Both the PTS/STC and SOF counters roll over, after a fixed but device
572  * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
573  * sliding window size is smaller than the rollover period, differences computed
574  * on unsigned integers will produce the correct result. However, the p term in
575  * the linear relations will be miscomputed.
576  *
577  * To fix the issue, we subtract a constant from the PTS and STC values to bring
578  * PTS to half the 32 bit STC range. The sliding window STC values then fit into
579  * the 32 bit range without any rollover.
580  *
581  * Similarly, we add 2048 to the device SOF values to make sure that the SOF
582  * computed by (1) will never be smaller than 0. This offset is then compensated
583  * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
584  * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
585  * lower than 4096, and the host SOF counters can have rolled over to 2048. This
586  * case is handled by subtracting 2048 from the SOF value if it exceeds the host
587  * SOF value at the end of the sliding window.
588  *
589  * Finally we subtract a constant from the host timestamps to bring the first
590  * timestamp of the sliding window to 1s.
591  */
593  struct v4l2_buffer *v4l2_buf,
594  struct uvc_buffer *buf)
595 {
596  struct uvc_clock *clock = &stream->clock;
597  struct uvc_clock_sample *first;
598  struct uvc_clock_sample *last;
599  unsigned long flags;
600  struct timespec ts;
601  u32 delta_stc;
602  u32 y1, y2;
603  u32 x1, x2;
604  u32 mean;
605  u32 sof;
606  u32 div;
607  u32 rem;
608  u64 y;
609 
610  spin_lock_irqsave(&clock->lock, flags);
611 
612  if (clock->count < clock->size)
613  goto done;
614 
615  first = &clock->samples[clock->head];
616  last = &clock->samples[(clock->head - 1) % clock->size];
617 
618  /* First step, PTS to SOF conversion. */
619  delta_stc = buf->pts - (1UL << 31);
620  x1 = first->dev_stc - delta_stc;
621  x2 = last->dev_stc - delta_stc;
622  if (x1 == x2)
623  goto done;
624 
625  y1 = (first->dev_sof + 2048) << 16;
626  y2 = (last->dev_sof + 2048) << 16;
627  if (y2 < y1)
628  y2 += 2048 << 16;
629 
630  y = (u64)(y2 - y1) * (1ULL << 31) + (u64)y1 * (u64)x2
631  - (u64)y2 * (u64)x1;
632  y = div_u64(y, x2 - x1);
633 
634  sof = y;
635 
636  uvc_trace(UVC_TRACE_CLOCK, "%s: PTS %u y %llu.%06llu SOF %u.%06llu "
637  "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n",
638  stream->dev->name, buf->pts,
639  y >> 16, div_u64((y & 0xffff) * 1000000, 65536),
640  sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
641  x1, x2, y1, y2, clock->sof_offset);
642 
643  /* Second step, SOF to host clock conversion. */
644  x1 = (uvc_video_clock_host_sof(first) + 2048) << 16;
645  x2 = (uvc_video_clock_host_sof(last) + 2048) << 16;
646  if (x2 < x1)
647  x2 += 2048 << 16;
648  if (x1 == x2)
649  goto done;
650 
651  ts = timespec_sub(last->host_ts, first->host_ts);
652  y1 = NSEC_PER_SEC;
653  y2 = (ts.tv_sec + 1) * NSEC_PER_SEC + ts.tv_nsec;
654 
655  /* Interpolated and host SOF timestamps can wrap around at slightly
656  * different times. Handle this by adding or removing 2048 to or from
657  * the computed SOF value to keep it close to the SOF samples mean
658  * value.
659  */
660  mean = (x1 + x2) / 2;
661  if (mean - (1024 << 16) > sof)
662  sof += 2048 << 16;
663  else if (sof > mean + (1024 << 16))
664  sof -= 2048 << 16;
665 
666  y = (u64)(y2 - y1) * (u64)sof + (u64)y1 * (u64)x2
667  - (u64)y2 * (u64)x1;
668  y = div_u64(y, x2 - x1);
669 
670  div = div_u64_rem(y, NSEC_PER_SEC, &rem);
671  ts.tv_sec = first->host_ts.tv_sec - 1 + div;
672  ts.tv_nsec = first->host_ts.tv_nsec + rem;
673  if (ts.tv_nsec >= NSEC_PER_SEC) {
674  ts.tv_sec++;
675  ts.tv_nsec -= NSEC_PER_SEC;
676  }
677 
678  uvc_trace(UVC_TRACE_CLOCK, "%s: SOF %u.%06llu y %llu ts %lu.%06lu "
679  "buf ts %lu.%06lu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n",
680  stream->dev->name,
681  sof >> 16, div_u64(((u64)sof & 0xffff) * 1000000LLU, 65536),
682  y, ts.tv_sec, ts.tv_nsec / NSEC_PER_USEC,
683  v4l2_buf->timestamp.tv_sec, v4l2_buf->timestamp.tv_usec,
684  x1, first->host_sof, first->dev_sof,
685  x2, last->host_sof, last->dev_sof, y1, y2);
686 
687  /* Update the V4L2 buffer. */
688  v4l2_buf->timestamp.tv_sec = ts.tv_sec;
689  v4l2_buf->timestamp.tv_usec = ts.tv_nsec / NSEC_PER_USEC;
690 
691 done:
692  spin_unlock_irqrestore(&stream->clock.lock, flags);
693 }
694 
695 /* ------------------------------------------------------------------------
696  * Stream statistics
697  */
698 
699 static void uvc_video_stats_decode(struct uvc_streaming *stream,
700  const __u8 *data, int len)
701 {
702  unsigned int header_size;
703  bool has_pts = false;
704  bool has_scr = false;
705  u16 uninitialized_var(scr_sof);
706  u32 uninitialized_var(scr_stc);
707  u32 uninitialized_var(pts);
708 
709  if (stream->stats.stream.nb_frames == 0 &&
710  stream->stats.frame.nb_packets == 0)
711  ktime_get_ts(&stream->stats.stream.start_ts);
712 
713  switch (data[1] & (UVC_STREAM_PTS | UVC_STREAM_SCR)) {
715  header_size = 12;
716  has_pts = true;
717  has_scr = true;
718  break;
719  case UVC_STREAM_PTS:
720  header_size = 6;
721  has_pts = true;
722  break;
723  case UVC_STREAM_SCR:
724  header_size = 8;
725  has_scr = true;
726  break;
727  default:
728  header_size = 2;
729  break;
730  }
731 
732  /* Check for invalid headers. */
733  if (len < header_size || data[0] < header_size) {
734  stream->stats.frame.nb_invalid++;
735  return;
736  }
737 
738  /* Extract the timestamps. */
739  if (has_pts)
740  pts = get_unaligned_le32(&data[2]);
741 
742  if (has_scr) {
743  scr_stc = get_unaligned_le32(&data[header_size - 6]);
744  scr_sof = get_unaligned_le16(&data[header_size - 2]);
745  }
746 
747  /* Is PTS constant through the whole frame ? */
748  if (has_pts && stream->stats.frame.nb_pts) {
749  if (stream->stats.frame.pts != pts) {
750  stream->stats.frame.nb_pts_diffs++;
751  stream->stats.frame.last_pts_diff =
752  stream->stats.frame.nb_packets;
753  }
754  }
755 
756  if (has_pts) {
757  stream->stats.frame.nb_pts++;
758  stream->stats.frame.pts = pts;
759  }
760 
761  /* Do all frames have a PTS in their first non-empty packet, or before
762  * their first empty packet ?
763  */
764  if (stream->stats.frame.size == 0) {
765  if (len > header_size)
766  stream->stats.frame.has_initial_pts = has_pts;
767  if (len == header_size && has_pts)
768  stream->stats.frame.has_early_pts = true;
769  }
770 
771  /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
772  if (has_scr && stream->stats.frame.nb_scr) {
773  if (stream->stats.frame.scr_stc != scr_stc)
774  stream->stats.frame.nb_scr_diffs++;
775  }
776 
777  if (has_scr) {
778  /* Expand the SOF counter to 32 bits and store its value. */
779  if (stream->stats.stream.nb_frames > 0 ||
780  stream->stats.frame.nb_scr > 0)
781  stream->stats.stream.scr_sof_count +=
782  (scr_sof - stream->stats.stream.scr_sof) % 2048;
783  stream->stats.stream.scr_sof = scr_sof;
784 
785  stream->stats.frame.nb_scr++;
786  stream->stats.frame.scr_stc = scr_stc;
787  stream->stats.frame.scr_sof = scr_sof;
788 
789  if (scr_sof < stream->stats.stream.min_sof)
790  stream->stats.stream.min_sof = scr_sof;
791  if (scr_sof > stream->stats.stream.max_sof)
792  stream->stats.stream.max_sof = scr_sof;
793  }
794 
795  /* Record the first non-empty packet number. */
796  if (stream->stats.frame.size == 0 && len > header_size)
797  stream->stats.frame.first_data = stream->stats.frame.nb_packets;
798 
799  /* Update the frame size. */
800  stream->stats.frame.size += len - header_size;
801 
802  /* Update the packets counters. */
803  stream->stats.frame.nb_packets++;
804  if (len > header_size)
805  stream->stats.frame.nb_empty++;
806 
807  if (data[1] & UVC_STREAM_ERR)
808  stream->stats.frame.nb_errors++;
809 }
810 
811 static void uvc_video_stats_update(struct uvc_streaming *stream)
812 {
813  struct uvc_stats_frame *frame = &stream->stats.frame;
814 
815  uvc_trace(UVC_TRACE_STATS, "frame %u stats: %u/%u/%u packets, "
816  "%u/%u/%u pts (%searly %sinitial), %u/%u scr, "
817  "last pts/stc/sof %u/%u/%u\n",
818  stream->sequence, frame->first_data,
819  frame->nb_packets - frame->nb_empty, frame->nb_packets,
820  frame->nb_pts_diffs, frame->last_pts_diff, frame->nb_pts,
821  frame->has_early_pts ? "" : "!",
822  frame->has_initial_pts ? "" : "!",
823  frame->nb_scr_diffs, frame->nb_scr,
824  frame->pts, frame->scr_stc, frame->scr_sof);
825 
826  stream->stats.stream.nb_frames++;
827  stream->stats.stream.nb_packets += stream->stats.frame.nb_packets;
828  stream->stats.stream.nb_empty += stream->stats.frame.nb_empty;
829  stream->stats.stream.nb_errors += stream->stats.frame.nb_errors;
830  stream->stats.stream.nb_invalid += stream->stats.frame.nb_invalid;
831 
832  if (frame->has_early_pts)
833  stream->stats.stream.nb_pts_early++;
834  if (frame->has_initial_pts)
835  stream->stats.stream.nb_pts_initial++;
836  if (frame->last_pts_diff <= frame->first_data)
837  stream->stats.stream.nb_pts_constant++;
838  if (frame->nb_scr >= frame->nb_packets - frame->nb_empty)
839  stream->stats.stream.nb_scr_count_ok++;
840  if (frame->nb_scr_diffs + 1 == frame->nb_scr)
841  stream->stats.stream.nb_scr_diffs_ok++;
842 
843  memset(&stream->stats.frame, 0, sizeof(stream->stats.frame));
844 }
845 
846 size_t uvc_video_stats_dump(struct uvc_streaming *stream, char *buf,
847  size_t size)
848 {
849  unsigned int scr_sof_freq;
850  unsigned int duration;
851  struct timespec ts;
852  size_t count = 0;
853 
854  ts.tv_sec = stream->stats.stream.stop_ts.tv_sec
855  - stream->stats.stream.start_ts.tv_sec;
856  ts.tv_nsec = stream->stats.stream.stop_ts.tv_nsec
857  - stream->stats.stream.start_ts.tv_nsec;
858  if (ts.tv_nsec < 0) {
859  ts.tv_sec--;
860  ts.tv_nsec += 1000000000;
861  }
862 
863  /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
864  * frequency this will not overflow before more than 1h.
865  */
866  duration = ts.tv_sec * 1000 + ts.tv_nsec / 1000000;
867  if (duration != 0)
868  scr_sof_freq = stream->stats.stream.scr_sof_count * 1000
869  / duration;
870  else
871  scr_sof_freq = 0;
872 
873  count += scnprintf(buf + count, size - count,
874  "frames: %u\npackets: %u\nempty: %u\n"
875  "errors: %u\ninvalid: %u\n",
876  stream->stats.stream.nb_frames,
877  stream->stats.stream.nb_packets,
878  stream->stats.stream.nb_empty,
879  stream->stats.stream.nb_errors,
880  stream->stats.stream.nb_invalid);
881  count += scnprintf(buf + count, size - count,
882  "pts: %u early, %u initial, %u ok\n",
883  stream->stats.stream.nb_pts_early,
884  stream->stats.stream.nb_pts_initial,
885  stream->stats.stream.nb_pts_constant);
886  count += scnprintf(buf + count, size - count,
887  "scr: %u count ok, %u diff ok\n",
888  stream->stats.stream.nb_scr_count_ok,
889  stream->stats.stream.nb_scr_diffs_ok);
890  count += scnprintf(buf + count, size - count,
891  "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
892  stream->stats.stream.min_sof,
893  stream->stats.stream.max_sof,
894  scr_sof_freq / 1000, scr_sof_freq % 1000);
895 
896  return count;
897 }
898 
899 static void uvc_video_stats_start(struct uvc_streaming *stream)
900 {
901  memset(&stream->stats, 0, sizeof(stream->stats));
902  stream->stats.stream.min_sof = 2048;
903 }
904 
905 static void uvc_video_stats_stop(struct uvc_streaming *stream)
906 {
907  ktime_get_ts(&stream->stats.stream.stop_ts);
908 }
909 
910 /* ------------------------------------------------------------------------
911  * Video codecs
912  */
913 
914 /* Video payload decoding is handled by uvc_video_decode_start(),
915  * uvc_video_decode_data() and uvc_video_decode_end().
916  *
917  * uvc_video_decode_start is called with URB data at the start of a bulk or
918  * isochronous payload. It processes header data and returns the header size
919  * in bytes if successful. If an error occurs, it returns a negative error
920  * code. The following error codes have special meanings.
921  *
922  * - EAGAIN informs the caller that the current video buffer should be marked
923  * as done, and that the function should be called again with the same data
924  * and a new video buffer. This is used when end of frame conditions can be
925  * reliably detected at the beginning of the next frame only.
926  *
927  * If an error other than -EAGAIN is returned, the caller will drop the current
928  * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
929  * made until the next payload. -ENODATA can be used to drop the current
930  * payload if no other error code is appropriate.
931  *
932  * uvc_video_decode_data is called for every URB with URB data. It copies the
933  * data to the video buffer.
934  *
935  * uvc_video_decode_end is called with header data at the end of a bulk or
936  * isochronous payload. It performs any additional header data processing and
937  * returns 0 or a negative error code if an error occurred. As header data have
938  * already been processed by uvc_video_decode_start, this functions isn't
939  * required to perform sanity checks a second time.
940  *
941  * For isochronous transfers where a payload is always transferred in a single
942  * URB, the three functions will be called in a row.
943  *
944  * To let the decoder process header data and update its internal state even
945  * when no video buffer is available, uvc_video_decode_start must be prepared
946  * to be called with a NULL buf parameter. uvc_video_decode_data and
947  * uvc_video_decode_end will never be called with a NULL buffer.
948  */
949 static int uvc_video_decode_start(struct uvc_streaming *stream,
950  struct uvc_buffer *buf, const __u8 *data, int len)
951 {
952  __u8 fid;
953 
954  /* Sanity checks:
955  * - packet must be at least 2 bytes long
956  * - bHeaderLength value must be at least 2 bytes (see above)
957  * - bHeaderLength value can't be larger than the packet size.
958  */
959  if (len < 2 || data[0] < 2 || data[0] > len) {
960  stream->stats.frame.nb_invalid++;
961  return -EINVAL;
962  }
963 
964  fid = data[1] & UVC_STREAM_FID;
965 
966  /* Increase the sequence number regardless of any buffer states, so
967  * that discontinuous sequence numbers always indicate lost frames.
968  */
969  if (stream->last_fid != fid) {
970  stream->sequence++;
971  if (stream->sequence)
972  uvc_video_stats_update(stream);
973  }
974 
975  uvc_video_clock_decode(stream, buf, data, len);
976  uvc_video_stats_decode(stream, data, len);
977 
978  /* Store the payload FID bit and return immediately when the buffer is
979  * NULL.
980  */
981  if (buf == NULL) {
982  stream->last_fid = fid;
983  return -ENODATA;
984  }
985 
986  /* Mark the buffer as bad if the error bit is set. */
987  if (data[1] & UVC_STREAM_ERR) {
988  uvc_trace(UVC_TRACE_FRAME, "Marking buffer as bad (error bit "
989  "set).\n");
990  buf->error = 1;
991  }
992 
993  /* Synchronize to the input stream by waiting for the FID bit to be
994  * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
995  * stream->last_fid is initialized to -1, so the first isochronous
996  * frame will always be in sync.
997  *
998  * If the device doesn't toggle the FID bit, invert stream->last_fid
999  * when the EOF bit is set to force synchronisation on the next packet.
1000  */
1001  if (buf->state != UVC_BUF_STATE_ACTIVE) {
1002  struct timespec ts;
1003 
1004  if (fid == stream->last_fid) {
1005  uvc_trace(UVC_TRACE_FRAME, "Dropping payload (out of "
1006  "sync).\n");
1007  if ((stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID) &&
1008  (data[1] & UVC_STREAM_EOF))
1009  stream->last_fid ^= UVC_STREAM_FID;
1010  return -ENODATA;
1011  }
1012 
1014  ktime_get_ts(&ts);
1015  else
1017 
1018  buf->buf.v4l2_buf.sequence = stream->sequence;
1019  buf->buf.v4l2_buf.timestamp.tv_sec = ts.tv_sec;
1020  buf->buf.v4l2_buf.timestamp.tv_usec =
1021  ts.tv_nsec / NSEC_PER_USEC;
1022 
1023  /* TODO: Handle PTS and SCR. */
1024  buf->state = UVC_BUF_STATE_ACTIVE;
1025  }
1026 
1027  /* Mark the buffer as done if we're at the beginning of a new frame.
1028  * End of frame detection is better implemented by checking the EOF
1029  * bit (FID bit toggling is delayed by one frame compared to the EOF
1030  * bit), but some devices don't set the bit at end of frame (and the
1031  * last payload can be lost anyway). We thus must check if the FID has
1032  * been toggled.
1033  *
1034  * stream->last_fid is initialized to -1, so the first isochronous
1035  * frame will never trigger an end of frame detection.
1036  *
1037  * Empty buffers (bytesused == 0) don't trigger end of frame detection
1038  * as it doesn't make sense to return an empty buffer. This also
1039  * avoids detecting end of frame conditions at FID toggling if the
1040  * previous payload had the EOF bit set.
1041  */
1042  if (fid != stream->last_fid && buf->bytesused != 0) {
1043  uvc_trace(UVC_TRACE_FRAME, "Frame complete (FID bit "
1044  "toggled).\n");
1045  buf->state = UVC_BUF_STATE_READY;
1046  return -EAGAIN;
1047  }
1048 
1049  stream->last_fid = fid;
1050 
1051  return data[0];
1052 }
1053 
1054 static void uvc_video_decode_data(struct uvc_streaming *stream,
1055  struct uvc_buffer *buf, const __u8 *data, int len)
1056 {
1057  unsigned int maxlen, nbytes;
1058  void *mem;
1059 
1060  if (len <= 0)
1061  return;
1062 
1063  /* Copy the video data to the buffer. */
1064  maxlen = buf->length - buf->bytesused;
1065  mem = buf->mem + buf->bytesused;
1066  nbytes = min((unsigned int)len, maxlen);
1067  memcpy(mem, data, nbytes);
1068  buf->bytesused += nbytes;
1069 
1070  /* Complete the current frame if the buffer size was exceeded. */
1071  if (len > maxlen) {
1072  uvc_trace(UVC_TRACE_FRAME, "Frame complete (overflow).\n");
1073  buf->state = UVC_BUF_STATE_READY;
1074  }
1075 }
1076 
1077 static void uvc_video_decode_end(struct uvc_streaming *stream,
1078  struct uvc_buffer *buf, const __u8 *data, int len)
1079 {
1080  /* Mark the buffer as done if the EOF marker is set. */
1081  if (data[1] & UVC_STREAM_EOF && buf->bytesused != 0) {
1082  uvc_trace(UVC_TRACE_FRAME, "Frame complete (EOF found).\n");
1083  if (data[0] == len)
1084  uvc_trace(UVC_TRACE_FRAME, "EOF in empty payload.\n");
1085  buf->state = UVC_BUF_STATE_READY;
1086  if (stream->dev->quirks & UVC_QUIRK_STREAM_NO_FID)
1087  stream->last_fid ^= UVC_STREAM_FID;
1088  }
1089 }
1090 
1091 /* Video payload encoding is handled by uvc_video_encode_header() and
1092  * uvc_video_encode_data(). Only bulk transfers are currently supported.
1093  *
1094  * uvc_video_encode_header is called at the start of a payload. It adds header
1095  * data to the transfer buffer and returns the header size. As the only known
1096  * UVC output device transfers a whole frame in a single payload, the EOF bit
1097  * is always set in the header.
1098  *
1099  * uvc_video_encode_data is called for every URB and copies the data from the
1100  * video buffer to the transfer buffer.
1101  */
1102 static int uvc_video_encode_header(struct uvc_streaming *stream,
1103  struct uvc_buffer *buf, __u8 *data, int len)
1104 {
1105  data[0] = 2; /* Header length */
1106  data[1] = UVC_STREAM_EOH | UVC_STREAM_EOF
1107  | (stream->last_fid & UVC_STREAM_FID);
1108  return 2;
1109 }
1110 
1111 static int uvc_video_encode_data(struct uvc_streaming *stream,
1112  struct uvc_buffer *buf, __u8 *data, int len)
1113 {
1114  struct uvc_video_queue *queue = &stream->queue;
1115  unsigned int nbytes;
1116  void *mem;
1117 
1118  /* Copy video data to the URB buffer. */
1119  mem = buf->mem + queue->buf_used;
1120  nbytes = min((unsigned int)len, buf->bytesused - queue->buf_used);
1121  nbytes = min(stream->bulk.max_payload_size - stream->bulk.payload_size,
1122  nbytes);
1123  memcpy(data, mem, nbytes);
1124 
1125  queue->buf_used += nbytes;
1126 
1127  return nbytes;
1128 }
1129 
1130 /* ------------------------------------------------------------------------
1131  * URB handling
1132  */
1133 
1134 /*
1135  * Completion handler for video URBs.
1136  */
1137 static void uvc_video_decode_isoc(struct urb *urb, struct uvc_streaming *stream,
1138  struct uvc_buffer *buf)
1139 {
1140  u8 *mem;
1141  int ret, i;
1142 
1143  for (i = 0; i < urb->number_of_packets; ++i) {
1144  if (urb->iso_frame_desc[i].status < 0) {
1145  uvc_trace(UVC_TRACE_FRAME, "USB isochronous frame "
1146  "lost (%d).\n", urb->iso_frame_desc[i].status);
1147  /* Mark the buffer as faulty. */
1148  if (buf != NULL)
1149  buf->error = 1;
1150  continue;
1151  }
1152 
1153  /* Decode the payload header. */
1154  mem = urb->transfer_buffer + urb->iso_frame_desc[i].offset;
1155  do {
1156  ret = uvc_video_decode_start(stream, buf, mem,
1157  urb->iso_frame_desc[i].actual_length);
1158  if (ret == -EAGAIN)
1159  buf = uvc_queue_next_buffer(&stream->queue,
1160  buf);
1161  } while (ret == -EAGAIN);
1162 
1163  if (ret < 0)
1164  continue;
1165 
1166  /* Decode the payload data. */
1167  uvc_video_decode_data(stream, buf, mem + ret,
1168  urb->iso_frame_desc[i].actual_length - ret);
1169 
1170  /* Process the header again. */
1171  uvc_video_decode_end(stream, buf, mem,
1172  urb->iso_frame_desc[i].actual_length);
1173 
1174  if (buf->state == UVC_BUF_STATE_READY) {
1175  if (buf->length != buf->bytesused &&
1176  !(stream->cur_format->flags &
1178  buf->error = 1;
1179 
1180  buf = uvc_queue_next_buffer(&stream->queue, buf);
1181  }
1182  }
1183 }
1184 
1185 static void uvc_video_decode_bulk(struct urb *urb, struct uvc_streaming *stream,
1186  struct uvc_buffer *buf)
1187 {
1188  u8 *mem;
1189  int len, ret;
1190 
1191  /*
1192  * Ignore ZLPs if they're not part of a frame, otherwise process them
1193  * to trigger the end of payload detection.
1194  */
1195  if (urb->actual_length == 0 && stream->bulk.header_size == 0)
1196  return;
1197 
1198  mem = urb->transfer_buffer;
1199  len = urb->actual_length;
1200  stream->bulk.payload_size += len;
1201 
1202  /* If the URB is the first of its payload, decode and save the
1203  * header.
1204  */
1205  if (stream->bulk.header_size == 0 && !stream->bulk.skip_payload) {
1206  do {
1207  ret = uvc_video_decode_start(stream, buf, mem, len);
1208  if (ret == -EAGAIN)
1209  buf = uvc_queue_next_buffer(&stream->queue,
1210  buf);
1211  } while (ret == -EAGAIN);
1212 
1213  /* If an error occurred skip the rest of the payload. */
1214  if (ret < 0 || buf == NULL) {
1215  stream->bulk.skip_payload = 1;
1216  } else {
1217  memcpy(stream->bulk.header, mem, ret);
1218  stream->bulk.header_size = ret;
1219 
1220  mem += ret;
1221  len -= ret;
1222  }
1223  }
1224 
1225  /* The buffer queue might have been cancelled while a bulk transfer
1226  * was in progress, so we can reach here with buf equal to NULL. Make
1227  * sure buf is never dereferenced if NULL.
1228  */
1229 
1230  /* Process video data. */
1231  if (!stream->bulk.skip_payload && buf != NULL)
1232  uvc_video_decode_data(stream, buf, mem, len);
1233 
1234  /* Detect the payload end by a URB smaller than the maximum size (or
1235  * a payload size equal to the maximum) and process the header again.
1236  */
1237  if (urb->actual_length < urb->transfer_buffer_length ||
1238  stream->bulk.payload_size >= stream->bulk.max_payload_size) {
1239  if (!stream->bulk.skip_payload && buf != NULL) {
1240  uvc_video_decode_end(stream, buf, stream->bulk.header,
1241  stream->bulk.payload_size);
1242  if (buf->state == UVC_BUF_STATE_READY)
1243  buf = uvc_queue_next_buffer(&stream->queue,
1244  buf);
1245  }
1246 
1247  stream->bulk.header_size = 0;
1248  stream->bulk.skip_payload = 0;
1249  stream->bulk.payload_size = 0;
1250  }
1251 }
1252 
1253 static void uvc_video_encode_bulk(struct urb *urb, struct uvc_streaming *stream,
1254  struct uvc_buffer *buf)
1255 {
1256  u8 *mem = urb->transfer_buffer;
1257  int len = stream->urb_size, ret;
1258 
1259  if (buf == NULL) {
1260  urb->transfer_buffer_length = 0;
1261  return;
1262  }
1263 
1264  /* If the URB is the first of its payload, add the header. */
1265  if (stream->bulk.header_size == 0) {
1266  ret = uvc_video_encode_header(stream, buf, mem, len);
1267  stream->bulk.header_size = ret;
1268  stream->bulk.payload_size += ret;
1269  mem += ret;
1270  len -= ret;
1271  }
1272 
1273  /* Process video data. */
1274  ret = uvc_video_encode_data(stream, buf, mem, len);
1275 
1276  stream->bulk.payload_size += ret;
1277  len -= ret;
1278 
1279  if (buf->bytesused == stream->queue.buf_used ||
1280  stream->bulk.payload_size == stream->bulk.max_payload_size) {
1281  if (buf->bytesused == stream->queue.buf_used) {
1282  stream->queue.buf_used = 0;
1283  buf->state = UVC_BUF_STATE_READY;
1284  buf->buf.v4l2_buf.sequence = ++stream->sequence;
1285  uvc_queue_next_buffer(&stream->queue, buf);
1286  stream->last_fid ^= UVC_STREAM_FID;
1287  }
1288 
1289  stream->bulk.header_size = 0;
1290  stream->bulk.payload_size = 0;
1291  }
1292 
1293  urb->transfer_buffer_length = stream->urb_size - len;
1294 }
1295 
1296 static void uvc_video_complete(struct urb *urb)
1297 {
1298  struct uvc_streaming *stream = urb->context;
1299  struct uvc_video_queue *queue = &stream->queue;
1300  struct uvc_buffer *buf = NULL;
1301  unsigned long flags;
1302  int ret;
1303 
1304  switch (urb->status) {
1305  case 0:
1306  break;
1307 
1308  default:
1309  uvc_printk(KERN_WARNING, "Non-zero status (%d) in video "
1310  "completion handler.\n", urb->status);
1311 
1312  case -ENOENT: /* usb_kill_urb() called. */
1313  if (stream->frozen)
1314  return;
1315 
1316  case -ECONNRESET: /* usb_unlink_urb() called. */
1317  case -ESHUTDOWN: /* The endpoint is being disabled. */
1318  uvc_queue_cancel(queue, urb->status == -ESHUTDOWN);
1319  return;
1320  }
1321 
1322  spin_lock_irqsave(&queue->irqlock, flags);
1323  if (!list_empty(&queue->irqqueue))
1324  buf = list_first_entry(&queue->irqqueue, struct uvc_buffer,
1325  queue);
1326  spin_unlock_irqrestore(&queue->irqlock, flags);
1327 
1328  stream->decode(urb, stream, buf);
1329 
1330  if ((ret = usb_submit_urb(urb, GFP_ATOMIC)) < 0) {
1331  uvc_printk(KERN_ERR, "Failed to resubmit video URB (%d).\n",
1332  ret);
1333  }
1334 }
1335 
1336 /*
1337  * Free transfer buffers.
1338  */
1339 static void uvc_free_urb_buffers(struct uvc_streaming *stream)
1340 {
1341  unsigned int i;
1342 
1343  for (i = 0; i < UVC_URBS; ++i) {
1344  if (stream->urb_buffer[i]) {
1345 #ifndef CONFIG_DMA_NONCOHERENT
1346  usb_free_coherent(stream->dev->udev, stream->urb_size,
1347  stream->urb_buffer[i], stream->urb_dma[i]);
1348 #else
1349  kfree(stream->urb_buffer[i]);
1350 #endif
1351  stream->urb_buffer[i] = NULL;
1352  }
1353  }
1354 
1355  stream->urb_size = 0;
1356 }
1357 
1358 /*
1359  * Allocate transfer buffers. This function can be called with buffers
1360  * already allocated when resuming from suspend, in which case it will
1361  * return without touching the buffers.
1362  *
1363  * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1364  * system is too low on memory try successively smaller numbers of packets
1365  * until allocation succeeds.
1366  *
1367  * Return the number of allocated packets on success or 0 when out of memory.
1368  */
1369 static int uvc_alloc_urb_buffers(struct uvc_streaming *stream,
1370  unsigned int size, unsigned int psize, gfp_t gfp_flags)
1371 {
1372  unsigned int npackets;
1373  unsigned int i;
1374 
1375  /* Buffers are already allocated, bail out. */
1376  if (stream->urb_size)
1377  return stream->urb_size / psize;
1378 
1379  /* Compute the number of packets. Bulk endpoints might transfer UVC
1380  * payloads across multiple URBs.
1381  */
1382  npackets = DIV_ROUND_UP(size, psize);
1383  if (npackets > UVC_MAX_PACKETS)
1384  npackets = UVC_MAX_PACKETS;
1385 
1386  /* Retry allocations until one succeed. */
1387  for (; npackets > 1; npackets /= 2) {
1388  for (i = 0; i < UVC_URBS; ++i) {
1389  stream->urb_size = psize * npackets;
1390 #ifndef CONFIG_DMA_NONCOHERENT
1391  stream->urb_buffer[i] = usb_alloc_coherent(
1392  stream->dev->udev, stream->urb_size,
1393  gfp_flags | __GFP_NOWARN, &stream->urb_dma[i]);
1394 #else
1395  stream->urb_buffer[i] =
1396  kmalloc(stream->urb_size, gfp_flags | __GFP_NOWARN);
1397 #endif
1398  if (!stream->urb_buffer[i]) {
1399  uvc_free_urb_buffers(stream);
1400  break;
1401  }
1402  }
1403 
1404  if (i == UVC_URBS) {
1405  uvc_trace(UVC_TRACE_VIDEO, "Allocated %u URB buffers "
1406  "of %ux%u bytes each.\n", UVC_URBS, npackets,
1407  psize);
1408  return npackets;
1409  }
1410  }
1411 
1412  uvc_trace(UVC_TRACE_VIDEO, "Failed to allocate URB buffers (%u bytes "
1413  "per packet).\n", psize);
1414  return 0;
1415 }
1416 
1417 /*
1418  * Uninitialize isochronous/bulk URBs and free transfer buffers.
1419  */
1420 static void uvc_uninit_video(struct uvc_streaming *stream, int free_buffers)
1421 {
1422  struct urb *urb;
1423  unsigned int i;
1424 
1425  uvc_video_stats_stop(stream);
1426 
1427  for (i = 0; i < UVC_URBS; ++i) {
1428  urb = stream->urb[i];
1429  if (urb == NULL)
1430  continue;
1431 
1432  usb_kill_urb(urb);
1433  usb_free_urb(urb);
1434  stream->urb[i] = NULL;
1435  }
1436 
1437  if (free_buffers)
1438  uvc_free_urb_buffers(stream);
1439 }
1440 
1441 /*
1442  * Compute the maximum number of bytes per interval for an endpoint.
1443  */
1444 static unsigned int uvc_endpoint_max_bpi(struct usb_device *dev,
1445  struct usb_host_endpoint *ep)
1446 {
1447  u16 psize;
1448 
1449  switch (dev->speed) {
1450  case USB_SPEED_SUPER:
1451  return ep->ss_ep_comp.wBytesPerInterval;
1452  case USB_SPEED_HIGH:
1453  psize = usb_endpoint_maxp(&ep->desc);
1454  return (psize & 0x07ff) * (1 + ((psize >> 11) & 3));
1455  default:
1456  psize = usb_endpoint_maxp(&ep->desc);
1457  return psize & 0x07ff;
1458  }
1459 }
1460 
1461 /*
1462  * Initialize isochronous URBs and allocate transfer buffers. The packet size
1463  * is given by the endpoint.
1464  */
1465 static int uvc_init_video_isoc(struct uvc_streaming *stream,
1466  struct usb_host_endpoint *ep, gfp_t gfp_flags)
1467 {
1468  struct urb *urb;
1469  unsigned int npackets, i, j;
1470  u16 psize;
1471  u32 size;
1472 
1473  psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1474  size = stream->ctrl.dwMaxVideoFrameSize;
1475 
1476  npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1477  if (npackets == 0)
1478  return -ENOMEM;
1479 
1480  size = npackets * psize;
1481 
1482  for (i = 0; i < UVC_URBS; ++i) {
1483  urb = usb_alloc_urb(npackets, gfp_flags);
1484  if (urb == NULL) {
1485  uvc_uninit_video(stream, 1);
1486  return -ENOMEM;
1487  }
1488 
1489  urb->dev = stream->dev->udev;
1490  urb->context = stream;
1491  urb->pipe = usb_rcvisocpipe(stream->dev->udev,
1492  ep->desc.bEndpointAddress);
1493 #ifndef CONFIG_DMA_NONCOHERENT
1494  urb->transfer_flags = URB_ISO_ASAP | URB_NO_TRANSFER_DMA_MAP;
1495  urb->transfer_dma = stream->urb_dma[i];
1496 #else
1497  urb->transfer_flags = URB_ISO_ASAP;
1498 #endif
1499  urb->interval = ep->desc.bInterval;
1500  urb->transfer_buffer = stream->urb_buffer[i];
1501  urb->complete = uvc_video_complete;
1502  urb->number_of_packets = npackets;
1503  urb->transfer_buffer_length = size;
1504 
1505  for (j = 0; j < npackets; ++j) {
1506  urb->iso_frame_desc[j].offset = j * psize;
1507  urb->iso_frame_desc[j].length = psize;
1508  }
1509 
1510  stream->urb[i] = urb;
1511  }
1512 
1513  return 0;
1514 }
1515 
1516 /*
1517  * Initialize bulk URBs and allocate transfer buffers. The packet size is
1518  * given by the endpoint.
1519  */
1520 static int uvc_init_video_bulk(struct uvc_streaming *stream,
1521  struct usb_host_endpoint *ep, gfp_t gfp_flags)
1522 {
1523  struct urb *urb;
1524  unsigned int npackets, pipe, i;
1525  u16 psize;
1526  u32 size;
1527 
1528  psize = usb_endpoint_maxp(&ep->desc) & 0x7ff;
1529  size = stream->ctrl.dwMaxPayloadTransferSize;
1530  stream->bulk.max_payload_size = size;
1531 
1532  npackets = uvc_alloc_urb_buffers(stream, size, psize, gfp_flags);
1533  if (npackets == 0)
1534  return -ENOMEM;
1535 
1536  size = npackets * psize;
1537 
1538  if (usb_endpoint_dir_in(&ep->desc))
1539  pipe = usb_rcvbulkpipe(stream->dev->udev,
1540  ep->desc.bEndpointAddress);
1541  else
1542  pipe = usb_sndbulkpipe(stream->dev->udev,
1543  ep->desc.bEndpointAddress);
1544 
1545  if (stream->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1546  size = 0;
1547 
1548  for (i = 0; i < UVC_URBS; ++i) {
1549  urb = usb_alloc_urb(0, gfp_flags);
1550  if (urb == NULL) {
1551  uvc_uninit_video(stream, 1);
1552  return -ENOMEM;
1553  }
1554 
1555  usb_fill_bulk_urb(urb, stream->dev->udev, pipe,
1556  stream->urb_buffer[i], size, uvc_video_complete,
1557  stream);
1558 #ifndef CONFIG_DMA_NONCOHERENT
1559  urb->transfer_flags = URB_NO_TRANSFER_DMA_MAP;
1560  urb->transfer_dma = stream->urb_dma[i];
1561 #endif
1562 
1563  stream->urb[i] = urb;
1564  }
1565 
1566  return 0;
1567 }
1568 
1569 /*
1570  * Initialize isochronous/bulk URBs and allocate transfer buffers.
1571  */
1572 static int uvc_init_video(struct uvc_streaming *stream, gfp_t gfp_flags)
1573 {
1574  struct usb_interface *intf = stream->intf;
1575  struct usb_host_endpoint *ep;
1576  unsigned int i;
1577  int ret;
1578 
1579  stream->sequence = -1;
1580  stream->last_fid = -1;
1581  stream->bulk.header_size = 0;
1582  stream->bulk.skip_payload = 0;
1583  stream->bulk.payload_size = 0;
1584 
1585  uvc_video_stats_start(stream);
1586 
1587  if (intf->num_altsetting > 1) {
1588  struct usb_host_endpoint *best_ep = NULL;
1589  unsigned int best_psize = UINT_MAX;
1590  unsigned int bandwidth;
1591  unsigned int uninitialized_var(altsetting);
1592  int intfnum = stream->intfnum;
1593 
1594  /* Isochronous endpoint, select the alternate setting. */
1595  bandwidth = stream->ctrl.dwMaxPayloadTransferSize;
1596 
1597  if (bandwidth == 0) {
1598  uvc_trace(UVC_TRACE_VIDEO, "Device requested null "
1599  "bandwidth, defaulting to lowest.\n");
1600  bandwidth = 1;
1601  } else {
1602  uvc_trace(UVC_TRACE_VIDEO, "Device requested %u "
1603  "B/frame bandwidth.\n", bandwidth);
1604  }
1605 
1606  for (i = 0; i < intf->num_altsetting; ++i) {
1607  struct usb_host_interface *alts;
1608  unsigned int psize;
1609 
1610  alts = &intf->altsetting[i];
1611  ep = uvc_find_endpoint(alts,
1612  stream->header.bEndpointAddress);
1613  if (ep == NULL)
1614  continue;
1615 
1616  /* Check if the bandwidth is high enough. */
1617  psize = uvc_endpoint_max_bpi(stream->dev->udev, ep);
1618  if (psize >= bandwidth && psize <= best_psize) {
1619  altsetting = alts->desc.bAlternateSetting;
1620  best_psize = psize;
1621  best_ep = ep;
1622  }
1623  }
1624 
1625  if (best_ep == NULL) {
1626  uvc_trace(UVC_TRACE_VIDEO, "No fast enough alt setting "
1627  "for requested bandwidth.\n");
1628  return -EIO;
1629  }
1630 
1631  uvc_trace(UVC_TRACE_VIDEO, "Selecting alternate setting %u "
1632  "(%u B/frame bandwidth).\n", altsetting, best_psize);
1633 
1634  ret = usb_set_interface(stream->dev->udev, intfnum, altsetting);
1635  if (ret < 0)
1636  return ret;
1637 
1638  ret = uvc_init_video_isoc(stream, best_ep, gfp_flags);
1639  } else {
1640  /* Bulk endpoint, proceed to URB initialization. */
1641  ep = uvc_find_endpoint(&intf->altsetting[0],
1642  stream->header.bEndpointAddress);
1643  if (ep == NULL)
1644  return -EIO;
1645 
1646  ret = uvc_init_video_bulk(stream, ep, gfp_flags);
1647  }
1648 
1649  if (ret < 0)
1650  return ret;
1651 
1652  /* Submit the URBs. */
1653  for (i = 0; i < UVC_URBS; ++i) {
1654  ret = usb_submit_urb(stream->urb[i], gfp_flags);
1655  if (ret < 0) {
1656  uvc_printk(KERN_ERR, "Failed to submit URB %u "
1657  "(%d).\n", i, ret);
1658  uvc_uninit_video(stream, 1);
1659  return ret;
1660  }
1661  }
1662 
1663  return 0;
1664 }
1665 
1666 /* --------------------------------------------------------------------------
1667  * Suspend/resume
1668  */
1669 
1670 /*
1671  * Stop streaming without disabling the video queue.
1672  *
1673  * To let userspace applications resume without trouble, we must not touch the
1674  * video buffers in any way. We mark the device as frozen to make sure the URB
1675  * completion handler won't try to cancel the queue when we kill the URBs.
1676  */
1678 {
1679  if (!uvc_queue_streaming(&stream->queue))
1680  return 0;
1681 
1682  stream->frozen = 1;
1683  uvc_uninit_video(stream, 0);
1684  usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1685  return 0;
1686 }
1687 
1688 /*
1689  * Reconfigure the video interface and restart streaming if it was enabled
1690  * before suspend.
1691  *
1692  * If an error occurs, disable the video queue. This will wake all pending
1693  * buffers, making sure userspace applications are notified of the problem
1694  * instead of waiting forever.
1695  */
1696 int uvc_video_resume(struct uvc_streaming *stream, int reset)
1697 {
1698  int ret;
1699 
1700  /* If the bus has been reset on resume, set the alternate setting to 0.
1701  * This should be the default value, but some devices crash or otherwise
1702  * misbehave if they don't receive a SET_INTERFACE request before any
1703  * other video control request.
1704  */
1705  if (reset)
1706  usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1707 
1708  stream->frozen = 0;
1709 
1710  uvc_video_clock_reset(stream);
1711 
1712  ret = uvc_commit_video(stream, &stream->ctrl);
1713  if (ret < 0) {
1714  uvc_queue_enable(&stream->queue, 0);
1715  return ret;
1716  }
1717 
1718  if (!uvc_queue_streaming(&stream->queue))
1719  return 0;
1720 
1721  ret = uvc_init_video(stream, GFP_NOIO);
1722  if (ret < 0)
1723  uvc_queue_enable(&stream->queue, 0);
1724 
1725  return ret;
1726 }
1727 
1728 /* ------------------------------------------------------------------------
1729  * Video device
1730  */
1731 
1732 /*
1733  * Initialize the UVC video device by switching to alternate setting 0 and
1734  * retrieve the default format.
1735  *
1736  * Some cameras (namely the Fuji Finepix) set the format and frame
1737  * indexes to zero. The UVC standard doesn't clearly make this a spec
1738  * violation, so try to silently fix the values if possible.
1739  *
1740  * This function is called before registering the device with V4L.
1741  */
1742 int uvc_video_init(struct uvc_streaming *stream)
1743 {
1744  struct uvc_streaming_control *probe = &stream->ctrl;
1745  struct uvc_format *format = NULL;
1746  struct uvc_frame *frame = NULL;
1747  unsigned int i;
1748  int ret;
1749 
1750  if (stream->nformats == 0) {
1751  uvc_printk(KERN_INFO, "No supported video formats found.\n");
1752  return -EINVAL;
1753  }
1754 
1755  atomic_set(&stream->active, 0);
1756 
1757  /* Initialize the video buffers queue. */
1758  ret = uvc_queue_init(&stream->queue, stream->type, !uvc_no_drop_param);
1759  if (ret)
1760  return ret;
1761 
1762  /* Alternate setting 0 should be the default, yet the XBox Live Vision
1763  * Cam (and possibly other devices) crash or otherwise misbehave if
1764  * they don't receive a SET_INTERFACE request before any other video
1765  * control request.
1766  */
1767  usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1768 
1769  /* Set the streaming probe control with default streaming parameters
1770  * retrieved from the device. Webcams that don't suport GET_DEF
1771  * requests on the probe control will just keep their current streaming
1772  * parameters.
1773  */
1774  if (uvc_get_video_ctrl(stream, probe, 1, UVC_GET_DEF) == 0)
1775  uvc_set_video_ctrl(stream, probe, 1);
1776 
1777  /* Initialize the streaming parameters with the probe control current
1778  * value. This makes sure SET_CUR requests on the streaming commit
1779  * control will always use values retrieved from a successful GET_CUR
1780  * request on the probe control, as required by the UVC specification.
1781  */
1782  ret = uvc_get_video_ctrl(stream, probe, 1, UVC_GET_CUR);
1783  if (ret < 0)
1784  return ret;
1785 
1786  /* Check if the default format descriptor exists. Use the first
1787  * available format otherwise.
1788  */
1789  for (i = stream->nformats; i > 0; --i) {
1790  format = &stream->format[i-1];
1791  if (format->index == probe->bFormatIndex)
1792  break;
1793  }
1794 
1795  if (format->nframes == 0) {
1796  uvc_printk(KERN_INFO, "No frame descriptor found for the "
1797  "default format.\n");
1798  return -EINVAL;
1799  }
1800 
1801  /* Zero bFrameIndex might be correct. Stream-based formats (including
1802  * MPEG-2 TS and DV) do not support frames but have a dummy frame
1803  * descriptor with bFrameIndex set to zero. If the default frame
1804  * descriptor is not found, use the first available frame.
1805  */
1806  for (i = format->nframes; i > 0; --i) {
1807  frame = &format->frame[i-1];
1808  if (frame->bFrameIndex == probe->bFrameIndex)
1809  break;
1810  }
1811 
1812  probe->bFormatIndex = format->index;
1813  probe->bFrameIndex = frame->bFrameIndex;
1814 
1815  stream->cur_format = format;
1816  stream->cur_frame = frame;
1817 
1818  /* Select the video decoding function */
1819  if (stream->type == V4L2_BUF_TYPE_VIDEO_CAPTURE) {
1820  if (stream->dev->quirks & UVC_QUIRK_BUILTIN_ISIGHT)
1821  stream->decode = uvc_video_decode_isight;
1822  else if (stream->intf->num_altsetting > 1)
1823  stream->decode = uvc_video_decode_isoc;
1824  else
1825  stream->decode = uvc_video_decode_bulk;
1826  } else {
1827  if (stream->intf->num_altsetting == 1)
1828  stream->decode = uvc_video_encode_bulk;
1829  else {
1830  uvc_printk(KERN_INFO, "Isochronous endpoints are not "
1831  "supported for video output devices.\n");
1832  return -EINVAL;
1833  }
1834  }
1835 
1836  return 0;
1837 }
1838 
1839 /*
1840  * Enable or disable the video stream.
1841  */
1842 int uvc_video_enable(struct uvc_streaming *stream, int enable)
1843 {
1844  int ret;
1845 
1846  if (!enable) {
1847  uvc_uninit_video(stream, 1);
1848  usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1849  uvc_queue_enable(&stream->queue, 0);
1850  uvc_video_clock_cleanup(stream);
1851  return 0;
1852  }
1853 
1854  ret = uvc_video_clock_init(stream);
1855  if (ret < 0)
1856  return ret;
1857 
1858  ret = uvc_queue_enable(&stream->queue, 1);
1859  if (ret < 0)
1860  goto error_queue;
1861 
1862  /* Commit the streaming parameters. */
1863  ret = uvc_commit_video(stream, &stream->ctrl);
1864  if (ret < 0)
1865  goto error_commit;
1866 
1867  ret = uvc_init_video(stream, GFP_KERNEL);
1868  if (ret < 0)
1869  goto error_video;
1870 
1871  return 0;
1872 
1873 error_video:
1874  usb_set_interface(stream->dev->udev, stream->intfnum, 0);
1875 error_commit:
1876  uvc_queue_enable(&stream->queue, 0);
1877 error_queue:
1878  uvc_video_clock_cleanup(stream);
1879 
1880  return ret;
1881 }