Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
messenger.c
Go to the documentation of this file.
2 
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16 
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22 
23 /*
24  * Ceph uses the messenger to exchange ceph_msg messages with other
25  * hosts in the system. The messenger provides ordered and reliable
26  * delivery. We tolerate TCP disconnects by reconnecting (with
27  * exponential backoff) in the case of a fault (disconnection, bad
28  * crc, protocol error). Acks allow sent messages to be discarded by
29  * the sender.
30  */
31 
32 /*
33  * We track the state of the socket on a given connection using
34  * values defined below. The transition to a new socket state is
35  * handled by a function which verifies we aren't coming from an
36  * unexpected state.
37  *
38  * --------
39  * | NEW* | transient initial state
40  * --------
41  * | con_sock_state_init()
42  * v
43  * ----------
44  * | CLOSED | initialized, but no socket (and no
45  * ---------- TCP connection)
46  * ^ \
47  * | \ con_sock_state_connecting()
48  * | ----------------------
49  * | \
50  * + con_sock_state_closed() \
51  * |+--------------------------- \
52  * | \ \ \
53  * | ----------- \ \
54  * | | CLOSING | socket event; \ \
55  * | ----------- await close \ \
56  * | ^ \ |
57  * | | \ |
58  * | + con_sock_state_closing() \ |
59  * | / \ | |
60  * | / --------------- | |
61  * | / \ v v
62  * | / --------------
63  * | / -----------------| CONNECTING | socket created, TCP
64  * | | / -------------- connect initiated
65  * | | | con_sock_state_connected()
66  * | | v
67  * -------------
68  * | CONNECTED | TCP connection established
69  * -------------
70  *
71  * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72  */
73 
74 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
79 
80 /*
81  * connection states
82  */
83 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
84 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
89 
90 /*
91  * ceph_connection flag bits
92  */
93 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
94  * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
99 
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104 
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108 
109 /*
110  * When skipping (ignoring) a block of input we read it into a "skip
111  * buffer," which is this many bytes in size.
112  */
113 #define SKIP_BUF_SIZE 1024
114 
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118 
119 /*
120  * Nicely render a sockaddr as a string. An array of formatted
121  * strings is used, to approximate reentrancy.
122  */
123 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
124 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
127 
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130 
131 static struct page *zero_page; /* used in certain error cases */
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135  int i;
136  char *s;
137  struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138  struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139 
140  i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141  s = addr_str[i];
142 
143  switch (ss->ss_family) {
144  case AF_INET:
145  snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146  ntohs(in4->sin_port));
147  break;
148 
149  case AF_INET6:
150  snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151  ntohs(in6->sin6_port));
152  break;
153 
154  default:
155  snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156  ss->ss_family);
157  }
158 
159  return s;
160 }
162 
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165  memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166  ceph_encode_addr(&msgr->my_enc_addr);
167 }
168 
169 /*
170  * work queue for all reading and writing to/from the socket.
171  */
172 static struct workqueue_struct *ceph_msgr_wq;
174 void _ceph_msgr_exit(void)
175 {
176  if (ceph_msgr_wq) {
177  destroy_workqueue(ceph_msgr_wq);
178  ceph_msgr_wq = NULL;
179  }
180 
181  BUG_ON(zero_page == NULL);
182  kunmap(zero_page);
183  page_cache_release(zero_page);
184  zero_page = NULL;
185 }
187 int ceph_msgr_init(void)
188 {
189  BUG_ON(zero_page != NULL);
190  zero_page = ZERO_PAGE(0);
191  page_cache_get(zero_page);
192 
193  ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194  if (ceph_msgr_wq)
195  return 0;
196 
197  pr_err("msgr_init failed to create workqueue\n");
198  _ceph_msgr_exit();
199 
200  return -ENOMEM;
201 }
204 void ceph_msgr_exit(void)
205 {
206  BUG_ON(ceph_msgr_wq == NULL);
207 
208  _ceph_msgr_exit();
209 }
212 void ceph_msgr_flush(void)
213 {
214  flush_workqueue(ceph_msgr_wq);
215 }
217 
218 /* Connection socket state transition functions */
219 
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222  int old_state;
223 
224  old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225  if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226  printk("%s: unexpected old state %d\n", __func__, old_state);
227  dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
229 }
230 
231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233  int old_state;
234 
236  if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237  printk("%s: unexpected old state %d\n", __func__, old_state);
238  dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
240 }
241 
242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244  int old_state;
245 
246  old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247  if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248  printk("%s: unexpected old state %d\n", __func__, old_state);
249  dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
251 }
252 
253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255  int old_state;
256 
257  old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258  if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259  old_state != CON_SOCK_STATE_CONNECTED &&
260  old_state != CON_SOCK_STATE_CLOSING))
261  printk("%s: unexpected old state %d\n", __func__, old_state);
262  dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
264 }
265 
266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268  int old_state;
269 
270  old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271  if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272  old_state != CON_SOCK_STATE_CLOSING &&
273  old_state != CON_SOCK_STATE_CONNECTING &&
274  old_state != CON_SOCK_STATE_CLOSED))
275  printk("%s: unexpected old state %d\n", __func__, old_state);
276  dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
278 }
279 
280 /*
281  * socket callback functions
282  */
283 
284 /* data available on socket, or listen socket received a connect */
285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287  struct ceph_connection *con = sk->sk_user_data;
288  if (atomic_read(&con->msgr->stopping)) {
289  return;
290  }
291 
292  if (sk->sk_state != TCP_CLOSE_WAIT) {
293  dout("%s on %p state = %lu, queueing work\n", __func__,
294  con, con->state);
295  queue_con(con);
296  }
297 }
298 
299 /* socket has buffer space for writing */
300 static void ceph_sock_write_space(struct sock *sk)
301 {
302  struct ceph_connection *con = sk->sk_user_data;
303 
304  /* only queue to workqueue if there is data we want to write,
305  * and there is sufficient space in the socket buffer to accept
306  * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
307  * doesn't get called again until try_write() fills the socket
308  * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309  * and net/core/stream.c:sk_stream_write_space().
310  */
311  if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312  if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313  dout("%s %p queueing write work\n", __func__, con);
314  clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315  queue_con(con);
316  }
317  } else {
318  dout("%s %p nothing to write\n", __func__, con);
319  }
320 }
321 
322 /* socket's state has changed */
323 static void ceph_sock_state_change(struct sock *sk)
324 {
325  struct ceph_connection *con = sk->sk_user_data;
326 
327  dout("%s %p state = %lu sk_state = %u\n", __func__,
328  con, con->state, sk->sk_state);
329 
330  switch (sk->sk_state) {
331  case TCP_CLOSE:
332  dout("%s TCP_CLOSE\n", __func__);
333  case TCP_CLOSE_WAIT:
334  dout("%s TCP_CLOSE_WAIT\n", __func__);
335  con_sock_state_closing(con);
337  queue_con(con);
338  break;
339  case TCP_ESTABLISHED:
340  dout("%s TCP_ESTABLISHED\n", __func__);
341  con_sock_state_connected(con);
342  queue_con(con);
343  break;
344  default: /* Everything else is uninteresting */
345  break;
346  }
347 }
348 
349 /*
350  * set up socket callbacks
351  */
352 static void set_sock_callbacks(struct socket *sock,
353  struct ceph_connection *con)
354 {
355  struct sock *sk = sock->sk;
356  sk->sk_user_data = con;
357  sk->sk_data_ready = ceph_sock_data_ready;
358  sk->sk_write_space = ceph_sock_write_space;
359  sk->sk_state_change = ceph_sock_state_change;
360 }
361 
362 
363 /*
364  * socket helpers
365  */
366 
367 /*
368  * initiate connection to a remote socket.
369  */
370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372  struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373  struct socket *sock;
374  int ret;
375 
376  BUG_ON(con->sock);
377  ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378  IPPROTO_TCP, &sock);
379  if (ret)
380  return ret;
381  sock->sk->sk_allocation = GFP_NOFS;
382 
383 #ifdef CONFIG_LOCKDEP
384  lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386 
387  set_sock_callbacks(sock, con);
388 
389  dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390 
391  con_sock_state_connecting(con);
392  ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393  O_NONBLOCK);
394  if (ret == -EINPROGRESS) {
395  dout("connect %s EINPROGRESS sk_state = %u\n",
396  ceph_pr_addr(&con->peer_addr.in_addr),
397  sock->sk->sk_state);
398  } else if (ret < 0) {
399  pr_err("connect %s error %d\n",
400  ceph_pr_addr(&con->peer_addr.in_addr), ret);
401  sock_release(sock);
402  con->error_msg = "connect error";
403 
404  return ret;
405  }
406  con->sock = sock;
407  return 0;
408 }
409 
410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412  struct kvec iov = {buf, len};
413  struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414  int r;
415 
416  r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417  if (r == -EAGAIN)
418  r = 0;
419  return r;
420 }
421 
422 /*
423  * write something. @more is true if caller will be sending more data
424  * shortly.
425  */
426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427  size_t kvlen, size_t len, int more)
428 {
429  struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430  int r;
431 
432  if (more)
433  msg.msg_flags |= MSG_MORE;
434  else
435  msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
436 
437  r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438  if (r == -EAGAIN)
439  r = 0;
440  return r;
441 }
442 
443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444  int offset, size_t size, int more)
445 {
446  int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447  int ret;
448 
449  ret = kernel_sendpage(sock, page, offset, size, flags);
450  if (ret == -EAGAIN)
451  ret = 0;
452 
453  return ret;
454 }
455 
456 
457 /*
458  * Shutdown/close the socket for the given connection.
459  */
460 static int con_close_socket(struct ceph_connection *con)
461 {
462  int rc = 0;
463 
464  dout("con_close_socket on %p sock %p\n", con, con->sock);
465  if (con->sock) {
466  rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467  sock_release(con->sock);
468  con->sock = NULL;
469  }
470 
471  /*
472  * Forcibly clear the SOCK_CLOSED flag. It gets set
473  * independent of the connection mutex, and we could have
474  * received a socket close event before we had the chance to
475  * shut the socket down.
476  */
478 
479  con_sock_state_closed(con);
480  return rc;
481 }
482 
483 /*
484  * Reset a connection. Discard all incoming and outgoing messages
485  * and clear *_seq state.
486  */
487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489  list_del_init(&msg->list_head);
490  BUG_ON(msg->con == NULL);
491  msg->con->ops->put(msg->con);
492  msg->con = NULL;
493 
494  ceph_msg_put(msg);
495 }
496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498  while (!list_empty(head)) {
499  struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500  list_head);
501  ceph_msg_remove(msg);
502  }
503 }
504 
505 static void reset_connection(struct ceph_connection *con)
506 {
507  /* reset connection, out_queue, msg_ and connect_seq */
508  /* discard existing out_queue and msg_seq */
509  ceph_msg_remove_list(&con->out_queue);
510  ceph_msg_remove_list(&con->out_sent);
511 
512  if (con->in_msg) {
513  BUG_ON(con->in_msg->con != con);
514  con->in_msg->con = NULL;
515  ceph_msg_put(con->in_msg);
516  con->in_msg = NULL;
517  con->ops->put(con);
518  }
519 
520  con->connect_seq = 0;
521  con->out_seq = 0;
522  if (con->out_msg) {
523  ceph_msg_put(con->out_msg);
524  con->out_msg = NULL;
525  }
526  con->in_seq = 0;
527  con->in_seq_acked = 0;
528 }
529 
530 /*
531  * mark a peer down. drop any open connections.
532  */
533 void ceph_con_close(struct ceph_connection *con)
534 {
535  mutex_lock(&con->mutex);
536  dout("con_close %p peer %s\n", con,
537  ceph_pr_addr(&con->peer_addr.in_addr));
538  con->state = CON_STATE_CLOSED;
539 
540  clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
545 
546  reset_connection(con);
547  con->peer_global_seq = 0;
548  cancel_delayed_work(&con->work);
549  con_close_socket(con);
550  mutex_unlock(&con->mutex);
551 }
553 
554 /*
555  * Reopen a closed connection, with a new peer address.
556  */
557 void ceph_con_open(struct ceph_connection *con,
558  __u8 entity_type, __u64 entity_num,
559  struct ceph_entity_addr *addr)
560 {
561  mutex_lock(&con->mutex);
562  dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
563 
564  BUG_ON(con->state != CON_STATE_CLOSED);
565  con->state = CON_STATE_PREOPEN;
566 
567  con->peer_name.type = (__u8) entity_type;
568  con->peer_name.num = cpu_to_le64(entity_num);
569 
570  memcpy(&con->peer_addr, addr, sizeof(*addr));
571  con->delay = 0; /* reset backoff memory */
572  mutex_unlock(&con->mutex);
573  queue_con(con);
574 }
576 
577 /*
578  * return true if this connection ever successfully opened
579  */
580 bool ceph_con_opened(struct ceph_connection *con)
581 {
582  return con->connect_seq > 0;
583 }
584 
585 /*
586  * initialize a new connection.
587  */
588 void ceph_con_init(struct ceph_connection *con, void *private,
589  const struct ceph_connection_operations *ops,
590  struct ceph_messenger *msgr)
591 {
592  dout("con_init %p\n", con);
593  memset(con, 0, sizeof(*con));
594  con->private = private;
595  con->ops = ops;
596  con->msgr = msgr;
597 
598  con_sock_state_init(con);
599 
600  mutex_init(&con->mutex);
601  INIT_LIST_HEAD(&con->out_queue);
602  INIT_LIST_HEAD(&con->out_sent);
603  INIT_DELAYED_WORK(&con->work, con_work);
604 
605  con->state = CON_STATE_CLOSED;
606 }
608 
609 
610 /*
611  * We maintain a global counter to order connection attempts. Get
612  * a unique seq greater than @gt.
613  */
614 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
615 {
616  u32 ret;
617 
618  spin_lock(&msgr->global_seq_lock);
619  if (msgr->global_seq < gt)
620  msgr->global_seq = gt;
621  ret = ++msgr->global_seq;
622  spin_unlock(&msgr->global_seq_lock);
623  return ret;
624 }
625 
626 static void con_out_kvec_reset(struct ceph_connection *con)
627 {
628  con->out_kvec_left = 0;
629  con->out_kvec_bytes = 0;
630  con->out_kvec_cur = &con->out_kvec[0];
631 }
632 
633 static void con_out_kvec_add(struct ceph_connection *con,
634  size_t size, void *data)
635 {
636  int index;
637 
638  index = con->out_kvec_left;
639  BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
640 
641  con->out_kvec[index].iov_len = size;
642  con->out_kvec[index].iov_base = data;
643  con->out_kvec_left++;
644  con->out_kvec_bytes += size;
645 }
646 
647 #ifdef CONFIG_BLOCK
648 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
649 {
650  if (!bio) {
651  *iter = NULL;
652  *seg = 0;
653  return;
654  }
655  *iter = bio;
656  *seg = bio->bi_idx;
657 }
658 
659 static void iter_bio_next(struct bio **bio_iter, int *seg)
660 {
661  if (*bio_iter == NULL)
662  return;
663 
664  BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
665 
666  (*seg)++;
667  if (*seg == (*bio_iter)->bi_vcnt)
668  init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
669 }
670 #endif
671 
672 static void prepare_write_message_data(struct ceph_connection *con)
673 {
674  struct ceph_msg *msg = con->out_msg;
675 
676  BUG_ON(!msg);
677  BUG_ON(!msg->hdr.data_len);
678 
679  /* initialize page iterator */
680  con->out_msg_pos.page = 0;
681  if (msg->pages)
682  con->out_msg_pos.page_pos = msg->page_alignment;
683  else
684  con->out_msg_pos.page_pos = 0;
685 #ifdef CONFIG_BLOCK
686  if (msg->bio)
687  init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
688 #endif
689  con->out_msg_pos.data_pos = 0;
690  con->out_msg_pos.did_page_crc = false;
691  con->out_more = 1; /* data + footer will follow */
692 }
693 
694 /*
695  * Prepare footer for currently outgoing message, and finish things
696  * off. Assumes out_kvec* are already valid.. we just add on to the end.
697  */
698 static void prepare_write_message_footer(struct ceph_connection *con)
699 {
700  struct ceph_msg *m = con->out_msg;
701  int v = con->out_kvec_left;
702 
703  m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
704 
705  dout("prepare_write_message_footer %p\n", con);
706  con->out_kvec_is_msg = true;
707  con->out_kvec[v].iov_base = &m->footer;
708  con->out_kvec[v].iov_len = sizeof(m->footer);
709  con->out_kvec_bytes += sizeof(m->footer);
710  con->out_kvec_left++;
711  con->out_more = m->more_to_follow;
712  con->out_msg_done = true;
713 }
714 
715 /*
716  * Prepare headers for the next outgoing message.
717  */
718 static void prepare_write_message(struct ceph_connection *con)
719 {
720  struct ceph_msg *m;
721  u32 crc;
722 
723  con_out_kvec_reset(con);
724  con->out_kvec_is_msg = true;
725  con->out_msg_done = false;
726 
727  /* Sneak an ack in there first? If we can get it into the same
728  * TCP packet that's a good thing. */
729  if (con->in_seq > con->in_seq_acked) {
730  con->in_seq_acked = con->in_seq;
731  con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
733  con_out_kvec_add(con, sizeof (con->out_temp_ack),
734  &con->out_temp_ack);
735  }
736 
737  BUG_ON(list_empty(&con->out_queue));
738  m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
739  con->out_msg = m;
740  BUG_ON(m->con != con);
741 
742  /* put message on sent list */
743  ceph_msg_get(m);
744  list_move_tail(&m->list_head, &con->out_sent);
745 
746  /*
747  * only assign outgoing seq # if we haven't sent this message
748  * yet. if it is requeued, resend with it's original seq.
749  */
750  if (m->needs_out_seq) {
751  m->hdr.seq = cpu_to_le64(++con->out_seq);
752  m->needs_out_seq = false;
753  }
754 #ifdef CONFIG_BLOCK
755  else
756  m->bio_iter = NULL;
757 #endif
758 
759  dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
760  m, con->out_seq, le16_to_cpu(m->hdr.type),
761  le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
762  le32_to_cpu(m->hdr.data_len),
763  m->nr_pages);
764  BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
765 
766  /* tag + hdr + front + middle */
767  con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
768  con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
769  con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
770 
771  if (m->middle)
772  con_out_kvec_add(con, m->middle->vec.iov_len,
773  m->middle->vec.iov_base);
774 
775  /* fill in crc (except data pages), footer */
776  crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
777  con->out_msg->hdr.crc = cpu_to_le32(crc);
778  con->out_msg->footer.flags = 0;
779 
780  crc = crc32c(0, m->front.iov_base, m->front.iov_len);
781  con->out_msg->footer.front_crc = cpu_to_le32(crc);
782  if (m->middle) {
783  crc = crc32c(0, m->middle->vec.iov_base,
784  m->middle->vec.iov_len);
785  con->out_msg->footer.middle_crc = cpu_to_le32(crc);
786  } else
787  con->out_msg->footer.middle_crc = 0;
788  dout("%s front_crc %u middle_crc %u\n", __func__,
789  le32_to_cpu(con->out_msg->footer.front_crc),
790  le32_to_cpu(con->out_msg->footer.middle_crc));
791 
792  /* is there a data payload? */
793  con->out_msg->footer.data_crc = 0;
794  if (m->hdr.data_len)
795  prepare_write_message_data(con);
796  else
797  /* no, queue up footer too and be done */
798  prepare_write_message_footer(con);
799 
801 }
802 
803 /*
804  * Prepare an ack.
805  */
806 static void prepare_write_ack(struct ceph_connection *con)
807 {
808  dout("prepare_write_ack %p %llu -> %llu\n", con,
809  con->in_seq_acked, con->in_seq);
810  con->in_seq_acked = con->in_seq;
811 
812  con_out_kvec_reset(con);
813 
814  con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
815 
817  con_out_kvec_add(con, sizeof (con->out_temp_ack),
818  &con->out_temp_ack);
819 
820  con->out_more = 1; /* more will follow.. eventually.. */
822 }
823 
824 /*
825  * Prepare to write keepalive byte.
826  */
827 static void prepare_write_keepalive(struct ceph_connection *con)
828 {
829  dout("prepare_write_keepalive %p\n", con);
830  con_out_kvec_reset(con);
831  con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
833 }
834 
835 /*
836  * Connection negotiation.
837  */
838 
839 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
840  int *auth_proto)
841 {
842  struct ceph_auth_handshake *auth;
843 
844  if (!con->ops->get_authorizer) {
845  con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
846  con->out_connect.authorizer_len = 0;
847  return NULL;
848  }
849 
850  /* Can't hold the mutex while getting authorizer */
851  mutex_unlock(&con->mutex);
852  auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
853  mutex_lock(&con->mutex);
854 
855  if (IS_ERR(auth))
856  return auth;
857  if (con->state != CON_STATE_NEGOTIATING)
858  return ERR_PTR(-EAGAIN);
859 
862  return auth;
863 }
864 
865 /*
866  * We connected to a peer and are saying hello.
867  */
868 static void prepare_write_banner(struct ceph_connection *con)
869 {
870  con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
871  con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
872  &con->msgr->my_enc_addr);
873 
874  con->out_more = 0;
876 }
877 
878 static int prepare_write_connect(struct ceph_connection *con)
879 {
880  unsigned int global_seq = get_global_seq(con->msgr, 0);
881  int proto;
882  int auth_proto;
883  struct ceph_auth_handshake *auth;
884 
885  switch (con->peer_name.type) {
887  proto = CEPH_MONC_PROTOCOL;
888  break;
890  proto = CEPH_OSDC_PROTOCOL;
891  break;
893  proto = CEPH_MDSC_PROTOCOL;
894  break;
895  default:
896  BUG();
897  }
898 
899  dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
900  con->connect_seq, global_seq, proto);
901 
902  con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
904  con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
905  con->out_connect.global_seq = cpu_to_le32(global_seq);
906  con->out_connect.protocol_version = cpu_to_le32(proto);
907  con->out_connect.flags = 0;
908 
909  auth_proto = CEPH_AUTH_UNKNOWN;
910  auth = get_connect_authorizer(con, &auth_proto);
911  if (IS_ERR(auth))
912  return PTR_ERR(auth);
913 
914  con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
915  con->out_connect.authorizer_len = auth ?
916  cpu_to_le32(auth->authorizer_buf_len) : 0;
917 
918  con_out_kvec_add(con, sizeof (con->out_connect),
919  &con->out_connect);
920  if (auth && auth->authorizer_buf_len)
921  con_out_kvec_add(con, auth->authorizer_buf_len,
922  auth->authorizer_buf);
923 
924  con->out_more = 0;
926 
927  return 0;
928 }
929 
930 /*
931  * write as much of pending kvecs to the socket as we can.
932  * 1 -> done
933  * 0 -> socket full, but more to do
934  * <0 -> error
935  */
936 static int write_partial_kvec(struct ceph_connection *con)
937 {
938  int ret;
939 
940  dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
941  while (con->out_kvec_bytes > 0) {
942  ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
943  con->out_kvec_left, con->out_kvec_bytes,
944  con->out_more);
945  if (ret <= 0)
946  goto out;
947  con->out_kvec_bytes -= ret;
948  if (con->out_kvec_bytes == 0)
949  break; /* done */
950 
951  /* account for full iov entries consumed */
952  while (ret >= con->out_kvec_cur->iov_len) {
953  BUG_ON(!con->out_kvec_left);
954  ret -= con->out_kvec_cur->iov_len;
955  con->out_kvec_cur++;
956  con->out_kvec_left--;
957  }
958  /* and for a partially-consumed entry */
959  if (ret) {
960  con->out_kvec_cur->iov_len -= ret;
961  con->out_kvec_cur->iov_base += ret;
962  }
963  }
964  con->out_kvec_left = 0;
965  con->out_kvec_is_msg = false;
966  ret = 1;
967 out:
968  dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
969  con->out_kvec_bytes, con->out_kvec_left, ret);
970  return ret; /* done! */
971 }
972 
973 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
974  size_t len, size_t sent, bool in_trail)
975 {
976  struct ceph_msg *msg = con->out_msg;
977 
978  BUG_ON(!msg);
979  BUG_ON(!sent);
980 
981  con->out_msg_pos.data_pos += sent;
982  con->out_msg_pos.page_pos += sent;
983  if (sent < len)
984  return;
985 
986  BUG_ON(sent != len);
987  con->out_msg_pos.page_pos = 0;
988  con->out_msg_pos.page++;
989  con->out_msg_pos.did_page_crc = false;
990  if (in_trail)
991  list_move_tail(&page->lru,
992  &msg->trail->head);
993  else if (msg->pagelist)
994  list_move_tail(&page->lru,
995  &msg->pagelist->head);
996 #ifdef CONFIG_BLOCK
997  else if (msg->bio)
998  iter_bio_next(&msg->bio_iter, &msg->bio_seg);
999 #endif
1000 }
1001 
1002 /*
1003  * Write as much message data payload as we can. If we finish, queue
1004  * up the footer.
1005  * 1 -> done, footer is now queued in out_kvec[].
1006  * 0 -> socket full, but more to do
1007  * <0 -> error
1008  */
1009 static int write_partial_msg_pages(struct ceph_connection *con)
1010 {
1011  struct ceph_msg *msg = con->out_msg;
1012  unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1013  size_t len;
1014  bool do_datacrc = !con->msgr->nocrc;
1015  int ret;
1016  int total_max_write;
1017  bool in_trail = false;
1018  const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1019  const size_t trail_off = data_len - trail_len;
1020 
1021  dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1022  con, msg, con->out_msg_pos.page, msg->nr_pages,
1023  con->out_msg_pos.page_pos);
1024 
1025  /*
1026  * Iterate through each page that contains data to be
1027  * written, and send as much as possible for each.
1028  *
1029  * If we are calculating the data crc (the default), we will
1030  * need to map the page. If we have no pages, they have
1031  * been revoked, so use the zero page.
1032  */
1033  while (data_len > con->out_msg_pos.data_pos) {
1034  struct page *page = NULL;
1035  int max_write = PAGE_SIZE;
1036  int bio_offset = 0;
1037 
1038  in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1039  if (!in_trail)
1040  total_max_write = trail_off - con->out_msg_pos.data_pos;
1041 
1042  if (in_trail) {
1043  total_max_write = data_len - con->out_msg_pos.data_pos;
1044 
1045  page = list_first_entry(&msg->trail->head,
1046  struct page, lru);
1047  } else if (msg->pages) {
1048  page = msg->pages[con->out_msg_pos.page];
1049  } else if (msg->pagelist) {
1050  page = list_first_entry(&msg->pagelist->head,
1051  struct page, lru);
1052 #ifdef CONFIG_BLOCK
1053  } else if (msg->bio) {
1054  struct bio_vec *bv;
1055 
1056  bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1057  page = bv->bv_page;
1058  bio_offset = bv->bv_offset;
1059  max_write = bv->bv_len;
1060 #endif
1061  } else {
1062  page = zero_page;
1063  }
1064  len = min_t(int, max_write - con->out_msg_pos.page_pos,
1065  total_max_write);
1066 
1067  if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1068  void *base;
1069  u32 crc = le32_to_cpu(msg->footer.data_crc);
1070  char *kaddr;
1071 
1072  kaddr = kmap(page);
1073  BUG_ON(kaddr == NULL);
1074  base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1075  crc = crc32c(crc, base, len);
1076  kunmap(page);
1077  msg->footer.data_crc = cpu_to_le32(crc);
1078  con->out_msg_pos.did_page_crc = true;
1079  }
1080  ret = ceph_tcp_sendpage(con->sock, page,
1081  con->out_msg_pos.page_pos + bio_offset,
1082  len, 1);
1083  if (ret <= 0)
1084  goto out;
1085 
1086  out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1087  }
1088 
1089  dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1090 
1091  /* prepare and queue up footer, too */
1092  if (!do_datacrc)
1093  msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1094  con_out_kvec_reset(con);
1095  prepare_write_message_footer(con);
1096  ret = 1;
1097 out:
1098  return ret;
1099 }
1100 
1101 /*
1102  * write some zeros
1103  */
1104 static int write_partial_skip(struct ceph_connection *con)
1105 {
1106  int ret;
1107 
1108  while (con->out_skip > 0) {
1109  size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1110 
1111  ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1112  if (ret <= 0)
1113  goto out;
1114  con->out_skip -= ret;
1115  }
1116  ret = 1;
1117 out:
1118  return ret;
1119 }
1120 
1121 /*
1122  * Prepare to read connection handshake, or an ack.
1123  */
1124 static void prepare_read_banner(struct ceph_connection *con)
1125 {
1126  dout("prepare_read_banner %p\n", con);
1127  con->in_base_pos = 0;
1128 }
1129 
1130 static void prepare_read_connect(struct ceph_connection *con)
1131 {
1132  dout("prepare_read_connect %p\n", con);
1133  con->in_base_pos = 0;
1134 }
1135 
1136 static void prepare_read_ack(struct ceph_connection *con)
1137 {
1138  dout("prepare_read_ack %p\n", con);
1139  con->in_base_pos = 0;
1140 }
1141 
1142 static void prepare_read_tag(struct ceph_connection *con)
1143 {
1144  dout("prepare_read_tag %p\n", con);
1145  con->in_base_pos = 0;
1146  con->in_tag = CEPH_MSGR_TAG_READY;
1147 }
1148 
1149 /*
1150  * Prepare to read a message.
1151  */
1152 static int prepare_read_message(struct ceph_connection *con)
1153 {
1154  dout("prepare_read_message %p\n", con);
1155  BUG_ON(con->in_msg != NULL);
1156  con->in_base_pos = 0;
1157  con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1158  return 0;
1159 }
1160 
1161 
1162 static int read_partial(struct ceph_connection *con,
1163  int end, int size, void *object)
1164 {
1165  while (con->in_base_pos < end) {
1166  int left = end - con->in_base_pos;
1167  int have = size - left;
1168  int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1169  if (ret <= 0)
1170  return ret;
1171  con->in_base_pos += ret;
1172  }
1173  return 1;
1174 }
1175 
1176 
1177 /*
1178  * Read all or part of the connect-side handshake on a new connection
1179  */
1180 static int read_partial_banner(struct ceph_connection *con)
1181 {
1182  int size;
1183  int end;
1184  int ret;
1185 
1186  dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1187 
1188  /* peer's banner */
1189  size = strlen(CEPH_BANNER);
1190  end = size;
1191  ret = read_partial(con, end, size, con->in_banner);
1192  if (ret <= 0)
1193  goto out;
1194 
1195  size = sizeof (con->actual_peer_addr);
1196  end += size;
1197  ret = read_partial(con, end, size, &con->actual_peer_addr);
1198  if (ret <= 0)
1199  goto out;
1200 
1201  size = sizeof (con->peer_addr_for_me);
1202  end += size;
1203  ret = read_partial(con, end, size, &con->peer_addr_for_me);
1204  if (ret <= 0)
1205  goto out;
1206 
1207 out:
1208  return ret;
1209 }
1210 
1211 static int read_partial_connect(struct ceph_connection *con)
1212 {
1213  int size;
1214  int end;
1215  int ret;
1216 
1217  dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1218 
1219  size = sizeof (con->in_reply);
1220  end = size;
1221  ret = read_partial(con, end, size, &con->in_reply);
1222  if (ret <= 0)
1223  goto out;
1224 
1225  size = le32_to_cpu(con->in_reply.authorizer_len);
1226  end += size;
1227  ret = read_partial(con, end, size, con->auth_reply_buf);
1228  if (ret <= 0)
1229  goto out;
1230 
1231  dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1232  con, (int)con->in_reply.tag,
1233  le32_to_cpu(con->in_reply.connect_seq),
1234  le32_to_cpu(con->in_reply.global_seq));
1235 out:
1236  return ret;
1237 
1238 }
1239 
1240 /*
1241  * Verify the hello banner looks okay.
1242  */
1243 static int verify_hello(struct ceph_connection *con)
1244 {
1246  pr_err("connect to %s got bad banner\n",
1247  ceph_pr_addr(&con->peer_addr.in_addr));
1248  con->error_msg = "protocol error, bad banner";
1249  return -1;
1250  }
1251  return 0;
1252 }
1253 
1254 static bool addr_is_blank(struct sockaddr_storage *ss)
1255 {
1256  switch (ss->ss_family) {
1257  case AF_INET:
1258  return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1259  case AF_INET6:
1260  return
1261  ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1262  ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1263  ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1264  ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1265  }
1266  return false;
1267 }
1268 
1269 static int addr_port(struct sockaddr_storage *ss)
1270 {
1271  switch (ss->ss_family) {
1272  case AF_INET:
1273  return ntohs(((struct sockaddr_in *)ss)->sin_port);
1274  case AF_INET6:
1275  return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1276  }
1277  return 0;
1278 }
1279 
1280 static void addr_set_port(struct sockaddr_storage *ss, int p)
1281 {
1282  switch (ss->ss_family) {
1283  case AF_INET:
1284  ((struct sockaddr_in *)ss)->sin_port = htons(p);
1285  break;
1286  case AF_INET6:
1287  ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1288  break;
1289  }
1290 }
1291 
1292 /*
1293  * Unlike other *_pton function semantics, zero indicates success.
1294  */
1295 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1296  char delim, const char **ipend)
1297 {
1298  struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1299  struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1300 
1301  memset(ss, 0, sizeof(*ss));
1302 
1303  if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1304  ss->ss_family = AF_INET;
1305  return 0;
1306  }
1307 
1308  if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1309  ss->ss_family = AF_INET6;
1310  return 0;
1311  }
1312 
1313  return -EINVAL;
1314 }
1315 
1316 /*
1317  * Extract hostname string and resolve using kernel DNS facility.
1318  */
1319 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1320 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1321  struct sockaddr_storage *ss, char delim, const char **ipend)
1322 {
1323  const char *end, *delim_p;
1324  char *colon_p, *ip_addr = NULL;
1325  int ip_len, ret;
1326 
1327  /*
1328  * The end of the hostname occurs immediately preceding the delimiter or
1329  * the port marker (':') where the delimiter takes precedence.
1330  */
1331  delim_p = memchr(name, delim, namelen);
1332  colon_p = memchr(name, ':', namelen);
1333 
1334  if (delim_p && colon_p)
1335  end = delim_p < colon_p ? delim_p : colon_p;
1336  else if (!delim_p && colon_p)
1337  end = colon_p;
1338  else {
1339  end = delim_p;
1340  if (!end) /* case: hostname:/ */
1341  end = name + namelen;
1342  }
1343 
1344  if (end <= name)
1345  return -EINVAL;
1346 
1347  /* do dns_resolve upcall */
1348  ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1349  if (ip_len > 0)
1350  ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1351  else
1352  ret = -ESRCH;
1353 
1354  kfree(ip_addr);
1355 
1356  *ipend = end;
1357 
1358  pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1359  ret, ret ? "failed" : ceph_pr_addr(ss));
1360 
1361  return ret;
1362 }
1363 #else
1364 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1365  struct sockaddr_storage *ss, char delim, const char **ipend)
1366 {
1367  return -EINVAL;
1368 }
1369 #endif
1370 
1371 /*
1372  * Parse a server name (IP or hostname). If a valid IP address is not found
1373  * then try to extract a hostname to resolve using userspace DNS upcall.
1374  */
1375 static int ceph_parse_server_name(const char *name, size_t namelen,
1376  struct sockaddr_storage *ss, char delim, const char **ipend)
1377 {
1378  int ret;
1379 
1380  ret = ceph_pton(name, namelen, ss, delim, ipend);
1381  if (ret)
1382  ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1383 
1384  return ret;
1385 }
1386 
1387 /*
1388  * Parse an ip[:port] list into an addr array. Use the default
1389  * monitor port if a port isn't specified.
1390  */
1391 int ceph_parse_ips(const char *c, const char *end,
1392  struct ceph_entity_addr *addr,
1393  int max_count, int *count)
1394 {
1395  int i, ret = -EINVAL;
1396  const char *p = c;
1397 
1398  dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1399  for (i = 0; i < max_count; i++) {
1400  const char *ipend;
1401  struct sockaddr_storage *ss = &addr[i].in_addr;
1402  int port;
1403  char delim = ',';
1404 
1405  if (*p == '[') {
1406  delim = ']';
1407  p++;
1408  }
1409 
1410  ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1411  if (ret)
1412  goto bad;
1413  ret = -EINVAL;
1414 
1415  p = ipend;
1416 
1417  if (delim == ']') {
1418  if (*p != ']') {
1419  dout("missing matching ']'\n");
1420  goto bad;
1421  }
1422  p++;
1423  }
1424 
1425  /* port? */
1426  if (p < end && *p == ':') {
1427  port = 0;
1428  p++;
1429  while (p < end && *p >= '0' && *p <= '9') {
1430  port = (port * 10) + (*p - '0');
1431  p++;
1432  }
1433  if (port > 65535 || port == 0)
1434  goto bad;
1435  } else {
1436  port = CEPH_MON_PORT;
1437  }
1438 
1439  addr_set_port(ss, port);
1440 
1441  dout("parse_ips got %s\n", ceph_pr_addr(ss));
1442 
1443  if (p == end)
1444  break;
1445  if (*p != ',')
1446  goto bad;
1447  p++;
1448  }
1449 
1450  if (p != end)
1451  goto bad;
1452 
1453  if (count)
1454  *count = i + 1;
1455  return 0;
1456 
1457 bad:
1458  pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1459  return ret;
1460 }
1462 
1463 static int process_banner(struct ceph_connection *con)
1464 {
1465  dout("process_banner on %p\n", con);
1466 
1467  if (verify_hello(con) < 0)
1468  return -1;
1469 
1470  ceph_decode_addr(&con->actual_peer_addr);
1471  ceph_decode_addr(&con->peer_addr_for_me);
1472 
1473  /*
1474  * Make sure the other end is who we wanted. note that the other
1475  * end may not yet know their ip address, so if it's 0.0.0.0, give
1476  * them the benefit of the doubt.
1477  */
1478  if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1479  sizeof(con->peer_addr)) != 0 &&
1480  !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1481  con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1482  pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1483  ceph_pr_addr(&con->peer_addr.in_addr),
1484  (int)le32_to_cpu(con->peer_addr.nonce),
1485  ceph_pr_addr(&con->actual_peer_addr.in_addr),
1486  (int)le32_to_cpu(con->actual_peer_addr.nonce));
1487  con->error_msg = "wrong peer at address";
1488  return -1;
1489  }
1490 
1491  /*
1492  * did we learn our address?
1493  */
1494  if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1495  int port = addr_port(&con->msgr->inst.addr.in_addr);
1496 
1497  memcpy(&con->msgr->inst.addr.in_addr,
1498  &con->peer_addr_for_me.in_addr,
1499  sizeof(con->peer_addr_for_me.in_addr));
1500  addr_set_port(&con->msgr->inst.addr.in_addr, port);
1501  encode_my_addr(con->msgr);
1502  dout("process_banner learned my addr is %s\n",
1503  ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1504  }
1505 
1506  return 0;
1507 }
1508 
1509 static void fail_protocol(struct ceph_connection *con)
1510 {
1511  reset_connection(con);
1513  con->state = CON_STATE_CLOSED;
1514 }
1515 
1516 static int process_connect(struct ceph_connection *con)
1517 {
1518  u64 sup_feat = con->msgr->supported_features;
1519  u64 req_feat = con->msgr->required_features;
1520  u64 server_feat = le64_to_cpu(con->in_reply.features);
1521  int ret;
1522 
1523  dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1524 
1525  switch (con->in_reply.tag) {
1527  pr_err("%s%lld %s feature set mismatch,"
1528  " my %llx < server's %llx, missing %llx\n",
1529  ENTITY_NAME(con->peer_name),
1530  ceph_pr_addr(&con->peer_addr.in_addr),
1531  sup_feat, server_feat, server_feat & ~sup_feat);
1532  con->error_msg = "missing required protocol features";
1533  fail_protocol(con);
1534  return -1;
1535 
1537  pr_err("%s%lld %s protocol version mismatch,"
1538  " my %d != server's %d\n",
1539  ENTITY_NAME(con->peer_name),
1540  ceph_pr_addr(&con->peer_addr.in_addr),
1541  le32_to_cpu(con->out_connect.protocol_version),
1542  le32_to_cpu(con->in_reply.protocol_version));
1543  con->error_msg = "protocol version mismatch";
1544  fail_protocol(con);
1545  return -1;
1546 
1548  con->auth_retry++;
1549  dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1550  con->auth_retry);
1551  if (con->auth_retry == 2) {
1552  con->error_msg = "connect authorization failure";
1553  return -1;
1554  }
1555  con->auth_retry = 1;
1556  con_out_kvec_reset(con);
1557  ret = prepare_write_connect(con);
1558  if (ret < 0)
1559  return ret;
1560  prepare_read_connect(con);
1561  break;
1562 
1564  /*
1565  * If we connected with a large connect_seq but the peer
1566  * has no record of a session with us (no connection, or
1567  * connect_seq == 0), they will send RESETSESION to indicate
1568  * that they must have reset their session, and may have
1569  * dropped messages.
1570  */
1571  dout("process_connect got RESET peer seq %u\n",
1572  le32_to_cpu(con->in_reply.connect_seq));
1573  pr_err("%s%lld %s connection reset\n",
1574  ENTITY_NAME(con->peer_name),
1575  ceph_pr_addr(&con->peer_addr.in_addr));
1576  reset_connection(con);
1577  con_out_kvec_reset(con);
1578  ret = prepare_write_connect(con);
1579  if (ret < 0)
1580  return ret;
1581  prepare_read_connect(con);
1582 
1583  /* Tell ceph about it. */
1584  mutex_unlock(&con->mutex);
1585  pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1586  if (con->ops->peer_reset)
1587  con->ops->peer_reset(con);
1588  mutex_lock(&con->mutex);
1589  if (con->state != CON_STATE_NEGOTIATING)
1590  return -EAGAIN;
1591  break;
1592 
1594  /*
1595  * If we sent a smaller connect_seq than the peer has, try
1596  * again with a larger value.
1597  */
1598  dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1599  le32_to_cpu(con->out_connect.connect_seq),
1600  le32_to_cpu(con->in_reply.connect_seq));
1601  con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1602  con_out_kvec_reset(con);
1603  ret = prepare_write_connect(con);
1604  if (ret < 0)
1605  return ret;
1606  prepare_read_connect(con);
1607  break;
1608 
1610  /*
1611  * If we sent a smaller global_seq than the peer has, try
1612  * again with a larger value.
1613  */
1614  dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1615  con->peer_global_seq,
1616  le32_to_cpu(con->in_reply.global_seq));
1617  get_global_seq(con->msgr,
1618  le32_to_cpu(con->in_reply.global_seq));
1619  con_out_kvec_reset(con);
1620  ret = prepare_write_connect(con);
1621  if (ret < 0)
1622  return ret;
1623  prepare_read_connect(con);
1624  break;
1625 
1626  case CEPH_MSGR_TAG_READY:
1627  if (req_feat & ~server_feat) {
1628  pr_err("%s%lld %s protocol feature mismatch,"
1629  " my required %llx > server's %llx, need %llx\n",
1630  ENTITY_NAME(con->peer_name),
1631  ceph_pr_addr(&con->peer_addr.in_addr),
1632  req_feat, server_feat, req_feat & ~server_feat);
1633  con->error_msg = "missing required protocol features";
1634  fail_protocol(con);
1635  return -1;
1636  }
1637 
1639  con->state = CON_STATE_OPEN;
1640 
1641  con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1642  con->connect_seq++;
1643  con->peer_features = server_feat;
1644  dout("process_connect got READY gseq %d cseq %d (%d)\n",
1645  con->peer_global_seq,
1646  le32_to_cpu(con->in_reply.connect_seq),
1647  con->connect_seq);
1648  WARN_ON(con->connect_seq !=
1649  le32_to_cpu(con->in_reply.connect_seq));
1650 
1651  if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1652  set_bit(CON_FLAG_LOSSYTX, &con->flags);
1653 
1654  con->delay = 0; /* reset backoff memory */
1655 
1656  prepare_read_tag(con);
1657  break;
1658 
1659  case CEPH_MSGR_TAG_WAIT:
1660  /*
1661  * If there is a connection race (we are opening
1662  * connections to each other), one of us may just have
1663  * to WAIT. This shouldn't happen if we are the
1664  * client.
1665  */
1666  pr_err("process_connect got WAIT as client\n");
1667  con->error_msg = "protocol error, got WAIT as client";
1668  return -1;
1669 
1670  default:
1671  pr_err("connect protocol error, will retry\n");
1672  con->error_msg = "protocol error, garbage tag during connect";
1673  return -1;
1674  }
1675  return 0;
1676 }
1677 
1678 
1679 /*
1680  * read (part of) an ack
1681  */
1682 static int read_partial_ack(struct ceph_connection *con)
1683 {
1684  int size = sizeof (con->in_temp_ack);
1685  int end = size;
1686 
1687  return read_partial(con, end, size, &con->in_temp_ack);
1688 }
1689 
1690 
1691 /*
1692  * We can finally discard anything that's been acked.
1693  */
1694 static void process_ack(struct ceph_connection *con)
1695 {
1696  struct ceph_msg *m;
1697  u64 ack = le64_to_cpu(con->in_temp_ack);
1698  u64 seq;
1699 
1700  while (!list_empty(&con->out_sent)) {
1701  m = list_first_entry(&con->out_sent, struct ceph_msg,
1702  list_head);
1703  seq = le64_to_cpu(m->hdr.seq);
1704  if (seq > ack)
1705  break;
1706  dout("got ack for seq %llu type %d at %p\n", seq,
1707  le16_to_cpu(m->hdr.type), m);
1708  m->ack_stamp = jiffies;
1709  ceph_msg_remove(m);
1710  }
1711  prepare_read_tag(con);
1712 }
1713 
1714 
1715 
1716 
1717 static int read_partial_message_section(struct ceph_connection *con,
1718  struct kvec *section,
1719  unsigned int sec_len, u32 *crc)
1720 {
1721  int ret, left;
1722 
1723  BUG_ON(!section);
1724 
1725  while (section->iov_len < sec_len) {
1726  BUG_ON(section->iov_base == NULL);
1727  left = sec_len - section->iov_len;
1728  ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1729  section->iov_len, left);
1730  if (ret <= 0)
1731  return ret;
1732  section->iov_len += ret;
1733  }
1734  if (section->iov_len == sec_len)
1735  *crc = crc32c(0, section->iov_base, section->iov_len);
1736 
1737  return 1;
1738 }
1739 
1740 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1741 
1742 static int read_partial_message_pages(struct ceph_connection *con,
1743  struct page **pages,
1744  unsigned int data_len, bool do_datacrc)
1745 {
1746  void *p;
1747  int ret;
1748  int left;
1749 
1750  left = min((int)(data_len - con->in_msg_pos.data_pos),
1751  (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1752  /* (page) data */
1753  BUG_ON(pages == NULL);
1754  p = kmap(pages[con->in_msg_pos.page]);
1755  ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1756  left);
1757  if (ret > 0 && do_datacrc)
1758  con->in_data_crc =
1759  crc32c(con->in_data_crc,
1760  p + con->in_msg_pos.page_pos, ret);
1761  kunmap(pages[con->in_msg_pos.page]);
1762  if (ret <= 0)
1763  return ret;
1764  con->in_msg_pos.data_pos += ret;
1765  con->in_msg_pos.page_pos += ret;
1766  if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1767  con->in_msg_pos.page_pos = 0;
1768  con->in_msg_pos.page++;
1769  }
1770 
1771  return ret;
1772 }
1773 
1774 #ifdef CONFIG_BLOCK
1775 static int read_partial_message_bio(struct ceph_connection *con,
1776  struct bio **bio_iter, int *bio_seg,
1777  unsigned int data_len, bool do_datacrc)
1778 {
1779  struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1780  void *p;
1781  int ret, left;
1782 
1783  left = min((int)(data_len - con->in_msg_pos.data_pos),
1784  (int)(bv->bv_len - con->in_msg_pos.page_pos));
1785 
1786  p = kmap(bv->bv_page) + bv->bv_offset;
1787 
1788  ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1789  left);
1790  if (ret > 0 && do_datacrc)
1791  con->in_data_crc =
1792  crc32c(con->in_data_crc,
1793  p + con->in_msg_pos.page_pos, ret);
1794  kunmap(bv->bv_page);
1795  if (ret <= 0)
1796  return ret;
1797  con->in_msg_pos.data_pos += ret;
1798  con->in_msg_pos.page_pos += ret;
1799  if (con->in_msg_pos.page_pos == bv->bv_len) {
1800  con->in_msg_pos.page_pos = 0;
1801  iter_bio_next(bio_iter, bio_seg);
1802  }
1803 
1804  return ret;
1805 }
1806 #endif
1807 
1808 /*
1809  * read (part of) a message.
1810  */
1811 static int read_partial_message(struct ceph_connection *con)
1812 {
1813  struct ceph_msg *m = con->in_msg;
1814  int size;
1815  int end;
1816  int ret;
1817  unsigned int front_len, middle_len, data_len;
1818  bool do_datacrc = !con->msgr->nocrc;
1819  u64 seq;
1820  u32 crc;
1821 
1822  dout("read_partial_message con %p msg %p\n", con, m);
1823 
1824  /* header */
1825  size = sizeof (con->in_hdr);
1826  end = size;
1827  ret = read_partial(con, end, size, &con->in_hdr);
1828  if (ret <= 0)
1829  return ret;
1830 
1831  crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1832  if (cpu_to_le32(crc) != con->in_hdr.crc) {
1833  pr_err("read_partial_message bad hdr "
1834  " crc %u != expected %u\n",
1835  crc, con->in_hdr.crc);
1836  return -EBADMSG;
1837  }
1838 
1839  front_len = le32_to_cpu(con->in_hdr.front_len);
1840  if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1841  return -EIO;
1842  middle_len = le32_to_cpu(con->in_hdr.middle_len);
1843  if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1844  return -EIO;
1845  data_len = le32_to_cpu(con->in_hdr.data_len);
1846  if (data_len > CEPH_MSG_MAX_DATA_LEN)
1847  return -EIO;
1848 
1849  /* verify seq# */
1850  seq = le64_to_cpu(con->in_hdr.seq);
1851  if ((s64)seq - (s64)con->in_seq < 1) {
1852  pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1853  ENTITY_NAME(con->peer_name),
1854  ceph_pr_addr(&con->peer_addr.in_addr),
1855  seq, con->in_seq + 1);
1856  con->in_base_pos = -front_len - middle_len - data_len -
1857  sizeof(m->footer);
1858  con->in_tag = CEPH_MSGR_TAG_READY;
1859  return 0;
1860  } else if ((s64)seq - (s64)con->in_seq > 1) {
1861  pr_err("read_partial_message bad seq %lld expected %lld\n",
1862  seq, con->in_seq + 1);
1863  con->error_msg = "bad message sequence # for incoming message";
1864  return -EBADMSG;
1865  }
1866 
1867  /* allocate message? */
1868  if (!con->in_msg) {
1869  int skip = 0;
1870 
1871  dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1872  con->in_hdr.front_len, con->in_hdr.data_len);
1873  ret = ceph_con_in_msg_alloc(con, &skip);
1874  if (ret < 0)
1875  return ret;
1876  if (skip) {
1877  /* skip this message */
1878  dout("alloc_msg said skip message\n");
1879  BUG_ON(con->in_msg);
1880  con->in_base_pos = -front_len - middle_len - data_len -
1881  sizeof(m->footer);
1882  con->in_tag = CEPH_MSGR_TAG_READY;
1883  con->in_seq++;
1884  return 0;
1885  }
1886 
1887  BUG_ON(!con->in_msg);
1888  BUG_ON(con->in_msg->con != con);
1889  m = con->in_msg;
1890  m->front.iov_len = 0; /* haven't read it yet */
1891  if (m->middle)
1892  m->middle->vec.iov_len = 0;
1893 
1894  con->in_msg_pos.page = 0;
1895  if (m->pages)
1896  con->in_msg_pos.page_pos = m->page_alignment;
1897  else
1898  con->in_msg_pos.page_pos = 0;
1899  con->in_msg_pos.data_pos = 0;
1900 
1901 #ifdef CONFIG_BLOCK
1902  if (m->bio)
1903  init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1904 #endif
1905  }
1906 
1907  /* front */
1908  ret = read_partial_message_section(con, &m->front, front_len,
1909  &con->in_front_crc);
1910  if (ret <= 0)
1911  return ret;
1912 
1913  /* middle */
1914  if (m->middle) {
1915  ret = read_partial_message_section(con, &m->middle->vec,
1916  middle_len,
1917  &con->in_middle_crc);
1918  if (ret <= 0)
1919  return ret;
1920  }
1921 
1922  /* (page) data */
1923  while (con->in_msg_pos.data_pos < data_len) {
1924  if (m->pages) {
1925  ret = read_partial_message_pages(con, m->pages,
1926  data_len, do_datacrc);
1927  if (ret <= 0)
1928  return ret;
1929 #ifdef CONFIG_BLOCK
1930  } else if (m->bio) {
1931  BUG_ON(!m->bio_iter);
1932  ret = read_partial_message_bio(con,
1933  &m->bio_iter, &m->bio_seg,
1934  data_len, do_datacrc);
1935  if (ret <= 0)
1936  return ret;
1937 #endif
1938  } else {
1939  BUG_ON(1);
1940  }
1941  }
1942 
1943  /* footer */
1944  size = sizeof (m->footer);
1945  end += size;
1946  ret = read_partial(con, end, size, &m->footer);
1947  if (ret <= 0)
1948  return ret;
1949 
1950  dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1951  m, front_len, m->footer.front_crc, middle_len,
1952  m->footer.middle_crc, data_len, m->footer.data_crc);
1953 
1954  /* crc ok? */
1955  if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1956  pr_err("read_partial_message %p front crc %u != exp. %u\n",
1957  m, con->in_front_crc, m->footer.front_crc);
1958  return -EBADMSG;
1959  }
1960  if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1961  pr_err("read_partial_message %p middle crc %u != exp %u\n",
1962  m, con->in_middle_crc, m->footer.middle_crc);
1963  return -EBADMSG;
1964  }
1965  if (do_datacrc &&
1966  (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1967  con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1968  pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1969  con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1970  return -EBADMSG;
1971  }
1972 
1973  return 1; /* done! */
1974 }
1975 
1976 /*
1977  * Process message. This happens in the worker thread. The callback should
1978  * be careful not to do anything that waits on other incoming messages or it
1979  * may deadlock.
1980  */
1981 static void process_message(struct ceph_connection *con)
1982 {
1983  struct ceph_msg *msg;
1984 
1985  BUG_ON(con->in_msg->con != con);
1986  con->in_msg->con = NULL;
1987  msg = con->in_msg;
1988  con->in_msg = NULL;
1989  con->ops->put(con);
1990 
1991  /* if first message, set peer_name */
1992  if (con->peer_name.type == 0)
1993  con->peer_name = msg->hdr.src;
1994 
1995  con->in_seq++;
1996  mutex_unlock(&con->mutex);
1997 
1998  dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1999  msg, le64_to_cpu(msg->hdr.seq),
2000  ENTITY_NAME(msg->hdr.src),
2001  le16_to_cpu(msg->hdr.type),
2002  ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2003  le32_to_cpu(msg->hdr.front_len),
2004  le32_to_cpu(msg->hdr.data_len),
2005  con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2006  con->ops->dispatch(con, msg);
2007 
2008  mutex_lock(&con->mutex);
2009 }
2010 
2011 
2012 /*
2013  * Write something to the socket. Called in a worker thread when the
2014  * socket appears to be writeable and we have something ready to send.
2015  */
2016 static int try_write(struct ceph_connection *con)
2017 {
2018  int ret = 1;
2019 
2020  dout("try_write start %p state %lu\n", con, con->state);
2021 
2022 more:
2023  dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2024 
2025  /* open the socket first? */
2026  if (con->state == CON_STATE_PREOPEN) {
2027  BUG_ON(con->sock);
2028  con->state = CON_STATE_CONNECTING;
2029 
2030  con_out_kvec_reset(con);
2031  prepare_write_banner(con);
2032  prepare_read_banner(con);
2033 
2034  BUG_ON(con->in_msg);
2035  con->in_tag = CEPH_MSGR_TAG_READY;
2036  dout("try_write initiating connect on %p new state %lu\n",
2037  con, con->state);
2038  ret = ceph_tcp_connect(con);
2039  if (ret < 0) {
2040  con->error_msg = "connect error";
2041  goto out;
2042  }
2043  }
2044 
2045 more_kvec:
2046  /* kvec data queued? */
2047  if (con->out_skip) {
2048  ret = write_partial_skip(con);
2049  if (ret <= 0)
2050  goto out;
2051  }
2052  if (con->out_kvec_left) {
2053  ret = write_partial_kvec(con);
2054  if (ret <= 0)
2055  goto out;
2056  }
2057 
2058  /* msg pages? */
2059  if (con->out_msg) {
2060  if (con->out_msg_done) {
2061  ceph_msg_put(con->out_msg);
2062  con->out_msg = NULL; /* we're done with this one */
2063  goto do_next;
2064  }
2065 
2066  ret = write_partial_msg_pages(con);
2067  if (ret == 1)
2068  goto more_kvec; /* we need to send the footer, too! */
2069  if (ret == 0)
2070  goto out;
2071  if (ret < 0) {
2072  dout("try_write write_partial_msg_pages err %d\n",
2073  ret);
2074  goto out;
2075  }
2076  }
2077 
2078 do_next:
2079  if (con->state == CON_STATE_OPEN) {
2080  /* is anything else pending? */
2081  if (!list_empty(&con->out_queue)) {
2082  prepare_write_message(con);
2083  goto more;
2084  }
2085  if (con->in_seq > con->in_seq_acked) {
2086  prepare_write_ack(con);
2087  goto more;
2088  }
2090  &con->flags)) {
2091  prepare_write_keepalive(con);
2092  goto more;
2093  }
2094  }
2095 
2096  /* Nothing to do! */
2098  dout("try_write nothing else to write.\n");
2099  ret = 0;
2100 out:
2101  dout("try_write done on %p ret %d\n", con, ret);
2102  return ret;
2103 }
2104 
2105 
2106 
2107 /*
2108  * Read what we can from the socket.
2109  */
2110 static int try_read(struct ceph_connection *con)
2111 {
2112  int ret = -1;
2113 
2114 more:
2115  dout("try_read start on %p state %lu\n", con, con->state);
2116  if (con->state != CON_STATE_CONNECTING &&
2117  con->state != CON_STATE_NEGOTIATING &&
2118  con->state != CON_STATE_OPEN)
2119  return 0;
2120 
2121  BUG_ON(!con->sock);
2122 
2123  dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2124  con->in_base_pos);
2125 
2126  if (con->state == CON_STATE_CONNECTING) {
2127  dout("try_read connecting\n");
2128  ret = read_partial_banner(con);
2129  if (ret <= 0)
2130  goto out;
2131  ret = process_banner(con);
2132  if (ret < 0)
2133  goto out;
2134 
2137 
2138  /*
2139  * Received banner is good, exchange connection info.
2140  * Do not reset out_kvec, as sending our banner raced
2141  * with receiving peer banner after connect completed.
2142  */
2143  ret = prepare_write_connect(con);
2144  if (ret < 0)
2145  goto out;
2146  prepare_read_connect(con);
2147 
2148  /* Send connection info before awaiting response */
2149  goto out;
2150  }
2151 
2152  if (con->state == CON_STATE_NEGOTIATING) {
2153  dout("try_read negotiating\n");
2154  ret = read_partial_connect(con);
2155  if (ret <= 0)
2156  goto out;
2157  ret = process_connect(con);
2158  if (ret < 0)
2159  goto out;
2160  goto more;
2161  }
2162 
2163  BUG_ON(con->state != CON_STATE_OPEN);
2164 
2165  if (con->in_base_pos < 0) {
2166  /*
2167  * skipping + discarding content.
2168  *
2169  * FIXME: there must be a better way to do this!
2170  */
2171  static char buf[SKIP_BUF_SIZE];
2172  int skip = min((int) sizeof (buf), -con->in_base_pos);
2173 
2174  dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2175  ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2176  if (ret <= 0)
2177  goto out;
2178  con->in_base_pos += ret;
2179  if (con->in_base_pos)
2180  goto more;
2181  }
2182  if (con->in_tag == CEPH_MSGR_TAG_READY) {
2183  /*
2184  * what's next?
2185  */
2186  ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2187  if (ret <= 0)
2188  goto out;
2189  dout("try_read got tag %d\n", (int)con->in_tag);
2190  switch (con->in_tag) {
2191  case CEPH_MSGR_TAG_MSG:
2192  prepare_read_message(con);
2193  break;
2194  case CEPH_MSGR_TAG_ACK:
2195  prepare_read_ack(con);
2196  break;
2197  case CEPH_MSGR_TAG_CLOSE:
2198  con_close_socket(con);
2199  con->state = CON_STATE_CLOSED;
2200  goto out;
2201  default:
2202  goto bad_tag;
2203  }
2204  }
2205  if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2206  ret = read_partial_message(con);
2207  if (ret <= 0) {
2208  switch (ret) {
2209  case -EBADMSG:
2210  con->error_msg = "bad crc";
2211  ret = -EIO;
2212  break;
2213  case -EIO:
2214  con->error_msg = "io error";
2215  break;
2216  }
2217  goto out;
2218  }
2219  if (con->in_tag == CEPH_MSGR_TAG_READY)
2220  goto more;
2221  process_message(con);
2222  if (con->state == CON_STATE_OPEN)
2223  prepare_read_tag(con);
2224  goto more;
2225  }
2226  if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2227  ret = read_partial_ack(con);
2228  if (ret <= 0)
2229  goto out;
2230  process_ack(con);
2231  goto more;
2232  }
2233 
2234 out:
2235  dout("try_read done on %p ret %d\n", con, ret);
2236  return ret;
2237 
2238 bad_tag:
2239  pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2240  con->error_msg = "protocol error, garbage tag";
2241  ret = -1;
2242  goto out;
2243 }
2244 
2245 
2246 /*
2247  * Atomically queue work on a connection. Bump @con reference to
2248  * avoid races with connection teardown.
2249  */
2250 static void queue_con(struct ceph_connection *con)
2251 {
2252  if (!con->ops->get(con)) {
2253  dout("queue_con %p ref count 0\n", con);
2254  return;
2255  }
2256 
2257  if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2258  dout("queue_con %p - already queued\n", con);
2259  con->ops->put(con);
2260  } else {
2261  dout("queue_con %p\n", con);
2262  }
2263 }
2264 
2265 /*
2266  * Do some work on a connection. Drop a connection ref when we're done.
2267  */
2268 static void con_work(struct work_struct *work)
2269 {
2270  struct ceph_connection *con = container_of(work, struct ceph_connection,
2271  work.work);
2272  int ret;
2273 
2274  mutex_lock(&con->mutex);
2275 restart:
2277  switch (con->state) {
2278  case CON_STATE_CONNECTING:
2279  con->error_msg = "connection failed";
2280  break;
2281  case CON_STATE_NEGOTIATING:
2282  con->error_msg = "negotiation failed";
2283  break;
2284  case CON_STATE_OPEN:
2285  con->error_msg = "socket closed";
2286  break;
2287  default:
2288  dout("unrecognized con state %d\n", (int)con->state);
2289  con->error_msg = "unrecognized con state";
2290  BUG();
2291  }
2292  goto fault;
2293  }
2294 
2296  dout("con_work %p backing off\n", con);
2297  if (queue_delayed_work(ceph_msgr_wq, &con->work,
2298  round_jiffies_relative(con->delay))) {
2299  dout("con_work %p backoff %lu\n", con, con->delay);
2300  mutex_unlock(&con->mutex);
2301  return;
2302  } else {
2303  dout("con_work %p FAILED to back off %lu\n", con,
2304  con->delay);
2305  set_bit(CON_FLAG_BACKOFF, &con->flags);
2306  }
2307  goto done;
2308  }
2309 
2310  if (con->state == CON_STATE_STANDBY) {
2311  dout("con_work %p STANDBY\n", con);
2312  goto done;
2313  }
2314  if (con->state == CON_STATE_CLOSED) {
2315  dout("con_work %p CLOSED\n", con);
2316  BUG_ON(con->sock);
2317  goto done;
2318  }
2319  if (con->state == CON_STATE_PREOPEN) {
2320  dout("con_work OPENING\n");
2321  BUG_ON(con->sock);
2322  }
2323 
2324  ret = try_read(con);
2325  if (ret == -EAGAIN)
2326  goto restart;
2327  if (ret < 0) {
2328  con->error_msg = "socket error on read";
2329  goto fault;
2330  }
2331 
2332  ret = try_write(con);
2333  if (ret == -EAGAIN)
2334  goto restart;
2335  if (ret < 0) {
2336  con->error_msg = "socket error on write";
2337  goto fault;
2338  }
2339 
2340 done:
2341  mutex_unlock(&con->mutex);
2342 done_unlocked:
2343  con->ops->put(con);
2344  return;
2345 
2346 fault:
2347  ceph_fault(con); /* error/fault path */
2348  goto done_unlocked;
2349 }
2350 
2351 
2352 /*
2353  * Generic error/fault handler. A retry mechanism is used with
2354  * exponential backoff
2355  */
2356 static void ceph_fault(struct ceph_connection *con)
2357  __releases(con->mutex)
2358 {
2359  pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2360  ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2361  dout("fault %p state %lu to peer %s\n",
2362  con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2363 
2364  BUG_ON(con->state != CON_STATE_CONNECTING &&
2365  con->state != CON_STATE_NEGOTIATING &&
2366  con->state != CON_STATE_OPEN);
2367 
2368  con_close_socket(con);
2369 
2370  if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2371  dout("fault on LOSSYTX channel, marking CLOSED\n");
2372  con->state = CON_STATE_CLOSED;
2373  goto out_unlock;
2374  }
2375 
2376  if (con->in_msg) {
2377  BUG_ON(con->in_msg->con != con);
2378  con->in_msg->con = NULL;
2379  ceph_msg_put(con->in_msg);
2380  con->in_msg = NULL;
2381  con->ops->put(con);
2382  }
2383 
2384  /* Requeue anything that hasn't been acked */
2385  list_splice_init(&con->out_sent, &con->out_queue);
2386 
2387  /* If there are no messages queued or keepalive pending, place
2388  * the connection in a STANDBY state */
2389  if (list_empty(&con->out_queue) &&
2391  dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2393  con->state = CON_STATE_STANDBY;
2394  } else {
2395  /* retry after a delay. */
2396  con->state = CON_STATE_PREOPEN;
2397  if (con->delay == 0)
2398  con->delay = BASE_DELAY_INTERVAL;
2399  else if (con->delay < MAX_DELAY_INTERVAL)
2400  con->delay *= 2;
2401  con->ops->get(con);
2402  if (queue_delayed_work(ceph_msgr_wq, &con->work,
2403  round_jiffies_relative(con->delay))) {
2404  dout("fault queued %p delay %lu\n", con, con->delay);
2405  } else {
2406  con->ops->put(con);
2407  dout("fault failed to queue %p delay %lu, backoff\n",
2408  con, con->delay);
2409  /*
2410  * In many cases we see a socket state change
2411  * while con_work is running and end up
2412  * queuing (non-delayed) work, such that we
2413  * can't backoff with a delay. Set a flag so
2414  * that when con_work restarts we schedule the
2415  * delay then.
2416  */
2417  set_bit(CON_FLAG_BACKOFF, &con->flags);
2418  }
2419  }
2420 
2421 out_unlock:
2422  mutex_unlock(&con->mutex);
2423  /*
2424  * in case we faulted due to authentication, invalidate our
2425  * current tickets so that we can get new ones.
2426  */
2427  if (con->auth_retry && con->ops->invalidate_authorizer) {
2428  dout("calling invalidate_authorizer()\n");
2429  con->ops->invalidate_authorizer(con);
2430  }
2431 
2432  if (con->ops->fault)
2433  con->ops->fault(con);
2434 }
2435 
2436 
2437 
2438 /*
2439  * initialize a new messenger instance
2440  */
2441 void ceph_messenger_init(struct ceph_messenger *msgr,
2442  struct ceph_entity_addr *myaddr,
2443  u32 supported_features,
2444  u32 required_features,
2445  bool nocrc)
2446 {
2447  msgr->supported_features = supported_features;
2448  msgr->required_features = required_features;
2449 
2451 
2452  if (myaddr)
2453  msgr->inst.addr = *myaddr;
2454 
2455  /* select a random nonce */
2456  msgr->inst.addr.type = 0;
2457  get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2458  encode_my_addr(msgr);
2459  msgr->nocrc = nocrc;
2460 
2461  atomic_set(&msgr->stopping, 0);
2462 
2463  dout("%s %p\n", __func__, msgr);
2464 }
2466 
2467 static void clear_standby(struct ceph_connection *con)
2468 {
2469  /* come back from STANDBY? */
2470  if (con->state == CON_STATE_STANDBY) {
2471  dout("clear_standby %p and ++connect_seq\n", con);
2472  con->state = CON_STATE_PREOPEN;
2473  con->connect_seq++;
2476  }
2477 }
2478 
2479 /*
2480  * Queue up an outgoing message on the given connection.
2481  */
2482 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2483 {
2484  /* set src+dst */
2485  msg->hdr.src = con->msgr->inst.name;
2486  BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2487  msg->needs_out_seq = true;
2488 
2489  mutex_lock(&con->mutex);
2490 
2491  if (con->state == CON_STATE_CLOSED) {
2492  dout("con_send %p closed, dropping %p\n", con, msg);
2493  ceph_msg_put(msg);
2494  mutex_unlock(&con->mutex);
2495  return;
2496  }
2497 
2498  BUG_ON(msg->con != NULL);
2499  msg->con = con->ops->get(con);
2500  BUG_ON(msg->con == NULL);
2501 
2502  BUG_ON(!list_empty(&msg->list_head));
2503  list_add_tail(&msg->list_head, &con->out_queue);
2504  dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2505  ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2506  ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2507  le32_to_cpu(msg->hdr.front_len),
2508  le32_to_cpu(msg->hdr.middle_len),
2509  le32_to_cpu(msg->hdr.data_len));
2510 
2511  clear_standby(con);
2512  mutex_unlock(&con->mutex);
2513 
2514  /* if there wasn't anything waiting to send before, queue
2515  * new work */
2517  queue_con(con);
2518 }
2520 
2521 /*
2522  * Revoke a message that was previously queued for send
2523  */
2524 void ceph_msg_revoke(struct ceph_msg *msg)
2525 {
2526  struct ceph_connection *con = msg->con;
2527 
2528  if (!con)
2529  return; /* Message not in our possession */
2530 
2531  mutex_lock(&con->mutex);
2532  if (!list_empty(&msg->list_head)) {
2533  dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2534  list_del_init(&msg->list_head);
2535  BUG_ON(msg->con == NULL);
2536  msg->con->ops->put(msg->con);
2537  msg->con = NULL;
2538  msg->hdr.seq = 0;
2539 
2540  ceph_msg_put(msg);
2541  }
2542  if (con->out_msg == msg) {
2543  dout("%s %p msg %p - was sending\n", __func__, con, msg);
2544  con->out_msg = NULL;
2545  if (con->out_kvec_is_msg) {
2546  con->out_skip = con->out_kvec_bytes;
2547  con->out_kvec_is_msg = false;
2548  }
2549  msg->hdr.seq = 0;
2550 
2551  ceph_msg_put(msg);
2552  }
2553  mutex_unlock(&con->mutex);
2554 }
2555 
2556 /*
2557  * Revoke a message that we may be reading data into
2558  */
2559 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2560 {
2561  struct ceph_connection *con;
2562 
2563  BUG_ON(msg == NULL);
2564  if (!msg->con) {
2565  dout("%s msg %p null con\n", __func__, msg);
2566 
2567  return; /* Message not in our possession */
2568  }
2569 
2570  con = msg->con;
2571  mutex_lock(&con->mutex);
2572  if (con->in_msg == msg) {
2573  unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2574  unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2575  unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2576 
2577  /* skip rest of message */
2578  dout("%s %p msg %p revoked\n", __func__, con, msg);
2579  con->in_base_pos = con->in_base_pos -
2580  sizeof(struct ceph_msg_header) -
2581  front_len -
2582  middle_len -
2583  data_len -
2584  sizeof(struct ceph_msg_footer);
2585  ceph_msg_put(con->in_msg);
2586  con->in_msg = NULL;
2587  con->in_tag = CEPH_MSGR_TAG_READY;
2588  con->in_seq++;
2589  } else {
2590  dout("%s %p in_msg %p msg %p no-op\n",
2591  __func__, con, con->in_msg, msg);
2592  }
2593  mutex_unlock(&con->mutex);
2594 }
2595 
2596 /*
2597  * Queue a keepalive byte to ensure the tcp connection is alive.
2598  */
2599 void ceph_con_keepalive(struct ceph_connection *con)
2600 {
2601  dout("con_keepalive %p\n", con);
2602  mutex_lock(&con->mutex);
2603  clear_standby(con);
2604  mutex_unlock(&con->mutex);
2607  queue_con(con);
2608 }
2610 
2611 
2612 /*
2613  * construct a new message with given type, size
2614  * the new msg has a ref count of 1.
2615  */
2616 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2617  bool can_fail)
2618 {
2619  struct ceph_msg *m;
2620 
2621  m = kmalloc(sizeof(*m), flags);
2622  if (m == NULL)
2623  goto out;
2624  kref_init(&m->kref);
2625 
2626  m->con = NULL;
2627  INIT_LIST_HEAD(&m->list_head);
2628 
2629  m->hdr.tid = 0;
2630  m->hdr.type = cpu_to_le16(type);
2631  m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2632  m->hdr.version = 0;
2633  m->hdr.front_len = cpu_to_le32(front_len);
2634  m->hdr.middle_len = 0;
2635  m->hdr.data_len = 0;
2636  m->hdr.data_off = 0;
2637  m->hdr.reserved = 0;
2638  m->footer.front_crc = 0;
2639  m->footer.middle_crc = 0;
2640  m->footer.data_crc = 0;
2641  m->footer.flags = 0;
2642  m->front_max = front_len;
2643  m->front_is_vmalloc = false;
2644  m->more_to_follow = false;
2645  m->ack_stamp = 0;
2646  m->pool = NULL;
2647 
2648  /* middle */
2649  m->middle = NULL;
2650 
2651  /* data */
2652  m->nr_pages = 0;
2653  m->page_alignment = 0;
2654  m->pages = NULL;
2655  m->pagelist = NULL;
2656  m->bio = NULL;
2657  m->bio_iter = NULL;
2658  m->bio_seg = 0;
2659  m->trail = NULL;
2660 
2661  /* front */
2662  if (front_len) {
2663  if (front_len > PAGE_CACHE_SIZE) {
2664  m->front.iov_base = __vmalloc(front_len, flags,
2665  PAGE_KERNEL);
2666  m->front_is_vmalloc = true;
2667  } else {
2668  m->front.iov_base = kmalloc(front_len, flags);
2669  }
2670  if (m->front.iov_base == NULL) {
2671  dout("ceph_msg_new can't allocate %d bytes\n",
2672  front_len);
2673  goto out2;
2674  }
2675  } else {
2676  m->front.iov_base = NULL;
2677  }
2678  m->front.iov_len = front_len;
2679 
2680  dout("ceph_msg_new %p front %d\n", m, front_len);
2681  return m;
2682 
2683 out2:
2684  ceph_msg_put(m);
2685 out:
2686  if (!can_fail) {
2687  pr_err("msg_new can't create type %d front %d\n", type,
2688  front_len);
2689  WARN_ON(1);
2690  } else {
2691  dout("msg_new can't create type %d front %d\n", type,
2692  front_len);
2693  }
2694  return NULL;
2695 }
2697 
2698 /*
2699  * Allocate "middle" portion of a message, if it is needed and wasn't
2700  * allocated by alloc_msg. This allows us to read a small fixed-size
2701  * per-type header in the front and then gracefully fail (i.e.,
2702  * propagate the error to the caller based on info in the front) when
2703  * the middle is too large.
2704  */
2705 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2706 {
2707  int type = le16_to_cpu(msg->hdr.type);
2708  int middle_len = le32_to_cpu(msg->hdr.middle_len);
2709 
2710  dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2711  ceph_msg_type_name(type), middle_len);
2712  BUG_ON(!middle_len);
2713  BUG_ON(msg->middle);
2714 
2715  msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2716  if (!msg->middle)
2717  return -ENOMEM;
2718  return 0;
2719 }
2720 
2721 /*
2722  * Allocate a message for receiving an incoming message on a
2723  * connection, and save the result in con->in_msg. Uses the
2724  * connection's private alloc_msg op if available.
2725  *
2726  * Returns 0 on success, or a negative error code.
2727  *
2728  * On success, if we set *skip = 1:
2729  * - the next message should be skipped and ignored.
2730  * - con->in_msg == NULL
2731  * or if we set *skip = 0:
2732  * - con->in_msg is non-null.
2733  * On error (ENOMEM, EAGAIN, ...),
2734  * - con->in_msg == NULL
2735  */
2736 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2737 {
2738  struct ceph_msg_header *hdr = &con->in_hdr;
2739  int type = le16_to_cpu(hdr->type);
2740  int front_len = le32_to_cpu(hdr->front_len);
2741  int middle_len = le32_to_cpu(hdr->middle_len);
2742  int ret = 0;
2743 
2744  BUG_ON(con->in_msg != NULL);
2745 
2746  if (con->ops->alloc_msg) {
2747  struct ceph_msg *msg;
2748 
2749  mutex_unlock(&con->mutex);
2750  msg = con->ops->alloc_msg(con, hdr, skip);
2751  mutex_lock(&con->mutex);
2752  if (con->state != CON_STATE_OPEN) {
2753  if (msg)
2754  ceph_msg_put(msg);
2755  return -EAGAIN;
2756  }
2757  con->in_msg = msg;
2758  if (con->in_msg) {
2759  con->in_msg->con = con->ops->get(con);
2760  BUG_ON(con->in_msg->con == NULL);
2761  }
2762  if (*skip) {
2763  con->in_msg = NULL;
2764  return 0;
2765  }
2766  if (!con->in_msg) {
2767  con->error_msg =
2768  "error allocating memory for incoming message";
2769  return -ENOMEM;
2770  }
2771  }
2772  if (!con->in_msg) {
2773  con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2774  if (!con->in_msg) {
2775  pr_err("unable to allocate msg type %d len %d\n",
2776  type, front_len);
2777  return -ENOMEM;
2778  }
2779  con->in_msg->con = con->ops->get(con);
2780  BUG_ON(con->in_msg->con == NULL);
2781  con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2782  }
2783  memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2784 
2785  if (middle_len && !con->in_msg->middle) {
2786  ret = ceph_alloc_middle(con, con->in_msg);
2787  if (ret < 0) {
2788  ceph_msg_put(con->in_msg);
2789  con->in_msg = NULL;
2790  }
2791  }
2792 
2793  return ret;
2794 }
2795 
2796 
2797 /*
2798  * Free a generically kmalloc'd message.
2799  */
2800 void ceph_msg_kfree(struct ceph_msg *m)
2801 {
2802  dout("msg_kfree %p\n", m);
2803  if (m->front_is_vmalloc)
2804  vfree(m->front.iov_base);
2805  else
2806  kfree(m->front.iov_base);
2807  kfree(m);
2808 }
2809 
2810 /*
2811  * Drop a msg ref. Destroy as needed.
2812  */
2813 void ceph_msg_last_put(struct kref *kref)
2814 {
2815  struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2816 
2817  dout("ceph_msg_put last one on %p\n", m);
2818  WARN_ON(!list_empty(&m->list_head));
2819 
2820  /* drop middle, data, if any */
2821  if (m->middle) {
2822  ceph_buffer_put(m->middle);
2823  m->middle = NULL;
2824  }
2825  m->nr_pages = 0;
2826  m->pages = NULL;
2827 
2828  if (m->pagelist) {
2830  kfree(m->pagelist);
2831  m->pagelist = NULL;
2832  }
2833 
2834  m->trail = NULL;
2835 
2836  if (m->pool)
2837  ceph_msgpool_put(m->pool, m);
2838  else
2839  ceph_msg_kfree(m);
2840 }
2843 void ceph_msg_dump(struct ceph_msg *msg)
2844 {
2845  pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2846  msg->front_max, msg->nr_pages);
2847  print_hex_dump(KERN_DEBUG, "header: ",
2848  DUMP_PREFIX_OFFSET, 16, 1,
2849  &msg->hdr, sizeof(msg->hdr), true);
2850  print_hex_dump(KERN_DEBUG, " front: ",
2851  DUMP_PREFIX_OFFSET, 16, 1,
2852  msg->front.iov_base, msg->front.iov_len, true);
2853  if (msg->middle)
2854  print_hex_dump(KERN_DEBUG, "middle: ",
2855  DUMP_PREFIX_OFFSET, 16, 1,
2856  msg->middle->vec.iov_base,
2857  msg->middle->vec.iov_len, true);
2858  print_hex_dump(KERN_DEBUG, "footer: ",
2859  DUMP_PREFIX_OFFSET, 16, 1,
2860  &msg->footer, sizeof(msg->footer), true);
2861 }