Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nvm.c
Go to the documentation of this file.
1 /*******************************************************************************
2 
3  Intel PRO/1000 Linux driver
4  Copyright(c) 1999 - 2012 Intel Corporation.
5 
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9 
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13  more details.
14 
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21 
22  Contact Information:
23  Linux NICS <[email protected]>
24  e1000-devel Mailing List <[email protected]>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 #include "e1000.h"
30 
38 static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
39 {
40  *eecd = *eecd | E1000_EECD_SK;
41  ew32(EECD, *eecd);
42  e1e_flush();
43  udelay(hw->nvm.delay_usec);
44 }
45 
53 static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
54 {
55  *eecd = *eecd & ~E1000_EECD_SK;
56  ew32(EECD, *eecd);
57  e1e_flush();
58  udelay(hw->nvm.delay_usec);
59 }
60 
71 static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
72 {
73  struct e1000_nvm_info *nvm = &hw->nvm;
74  u32 eecd = er32(EECD);
75  u32 mask;
76 
77  mask = 0x01 << (count - 1);
78  if (nvm->type == e1000_nvm_eeprom_spi)
79  eecd |= E1000_EECD_DO;
80 
81  do {
82  eecd &= ~E1000_EECD_DI;
83 
84  if (data & mask)
85  eecd |= E1000_EECD_DI;
86 
87  ew32(EECD, eecd);
88  e1e_flush();
89 
90  udelay(nvm->delay_usec);
91 
92  e1000_raise_eec_clk(hw, &eecd);
93  e1000_lower_eec_clk(hw, &eecd);
94 
95  mask >>= 1;
96  } while (mask);
97 
98  eecd &= ~E1000_EECD_DI;
99  ew32(EECD, eecd);
100 }
101 
113 static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
114 {
115  u32 eecd;
116  u32 i;
117  u16 data;
118 
119  eecd = er32(EECD);
120 
121  eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
122  data = 0;
123 
124  for (i = 0; i < count; i++) {
125  data <<= 1;
126  e1000_raise_eec_clk(hw, &eecd);
127 
128  eecd = er32(EECD);
129 
130  eecd &= ~E1000_EECD_DI;
131  if (eecd & E1000_EECD_DO)
132  data |= 1;
133 
134  e1000_lower_eec_clk(hw, &eecd);
135  }
136 
137  return data;
138 }
139 
148 s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
149 {
150  u32 attempts = 100000;
151  u32 i, reg = 0;
152 
153  for (i = 0; i < attempts; i++) {
154  if (ee_reg == E1000_NVM_POLL_READ)
155  reg = er32(EERD);
156  else
157  reg = er32(EEWR);
158 
159  if (reg & E1000_NVM_RW_REG_DONE)
160  return 0;
161 
162  udelay(5);
163  }
164 
165  return -E1000_ERR_NVM;
166 }
167 
177 {
178  u32 eecd = er32(EECD);
180 
181  ew32(EECD, eecd | E1000_EECD_REQ);
182  eecd = er32(EECD);
183 
184  while (timeout) {
185  if (eecd & E1000_EECD_GNT)
186  break;
187  udelay(5);
188  eecd = er32(EECD);
189  timeout--;
190  }
191 
192  if (!timeout) {
193  eecd &= ~E1000_EECD_REQ;
194  ew32(EECD, eecd);
195  e_dbg("Could not acquire NVM grant\n");
196  return -E1000_ERR_NVM;
197  }
198 
199  return 0;
200 }
201 
208 static void e1000_standby_nvm(struct e1000_hw *hw)
209 {
210  struct e1000_nvm_info *nvm = &hw->nvm;
211  u32 eecd = er32(EECD);
212 
213  if (nvm->type == e1000_nvm_eeprom_spi) {
214  /* Toggle CS to flush commands */
215  eecd |= E1000_EECD_CS;
216  ew32(EECD, eecd);
217  e1e_flush();
218  udelay(nvm->delay_usec);
219  eecd &= ~E1000_EECD_CS;
220  ew32(EECD, eecd);
221  e1e_flush();
222  udelay(nvm->delay_usec);
223  }
224 }
225 
232 static void e1000_stop_nvm(struct e1000_hw *hw)
233 {
234  u32 eecd;
235 
236  eecd = er32(EECD);
237  if (hw->nvm.type == e1000_nvm_eeprom_spi) {
238  /* Pull CS high */
239  eecd |= E1000_EECD_CS;
240  e1000_lower_eec_clk(hw, &eecd);
241  }
242 }
243 
250 void e1000e_release_nvm(struct e1000_hw *hw)
251 {
252  u32 eecd;
253 
254  e1000_stop_nvm(hw);
255 
256  eecd = er32(EECD);
257  eecd &= ~E1000_EECD_REQ;
258  ew32(EECD, eecd);
259 }
260 
267 static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw)
268 {
269  struct e1000_nvm_info *nvm = &hw->nvm;
270  u32 eecd = er32(EECD);
271  u8 spi_stat_reg;
272 
273  if (nvm->type == e1000_nvm_eeprom_spi) {
275 
276  /* Clear SK and CS */
277  eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
278  ew32(EECD, eecd);
279  e1e_flush();
280  udelay(1);
281 
282  /*
283  * Read "Status Register" repeatedly until the LSB is cleared.
284  * The EEPROM will signal that the command has been completed
285  * by clearing bit 0 of the internal status register. If it's
286  * not cleared within 'timeout', then error out.
287  */
288  while (timeout) {
289  e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
290  hw->nvm.opcode_bits);
291  spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8);
292  if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
293  break;
294 
295  udelay(5);
296  e1000_standby_nvm(hw);
297  timeout--;
298  }
299 
300  if (!timeout) {
301  e_dbg("SPI NVM Status error\n");
302  return -E1000_ERR_NVM;
303  }
304  }
305 
306  return 0;
307 }
308 
318 s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
319 {
320  struct e1000_nvm_info *nvm = &hw->nvm;
321  u32 i, eerd = 0;
322  s32 ret_val = 0;
323 
324  /*
325  * A check for invalid values: offset too large, too many words,
326  * too many words for the offset, and not enough words.
327  */
328  if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
329  (words == 0)) {
330  e_dbg("nvm parameter(s) out of bounds\n");
331  return -E1000_ERR_NVM;
332  }
333 
334  for (i = 0; i < words; i++) {
335  eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) +
337 
338  ew32(EERD, eerd);
340  if (ret_val)
341  break;
342 
343  data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA);
344  }
345 
346  return ret_val;
347 }
348 
361 s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
362 {
363  struct e1000_nvm_info *nvm = &hw->nvm;
364  s32 ret_val;
365  u16 widx = 0;
366 
367  /*
368  * A check for invalid values: offset too large, too many words,
369  * and not enough words.
370  */
371  if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
372  (words == 0)) {
373  e_dbg("nvm parameter(s) out of bounds\n");
374  return -E1000_ERR_NVM;
375  }
376 
377  ret_val = nvm->ops.acquire(hw);
378  if (ret_val)
379  return ret_val;
380 
381  while (widx < words) {
382  u8 write_opcode = NVM_WRITE_OPCODE_SPI;
383 
384  ret_val = e1000_ready_nvm_eeprom(hw);
385  if (ret_val)
386  goto release;
387 
388  e1000_standby_nvm(hw);
389 
390  /* Send the WRITE ENABLE command (8 bit opcode) */
391  e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
392  nvm->opcode_bits);
393 
394  e1000_standby_nvm(hw);
395 
396  /*
397  * Some SPI eeproms use the 8th address bit embedded in the
398  * opcode
399  */
400  if ((nvm->address_bits == 8) && (offset >= 128))
401  write_opcode |= NVM_A8_OPCODE_SPI;
402 
403  /* Send the Write command (8-bit opcode + addr) */
404  e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
405  e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
406  nvm->address_bits);
407 
408  /* Loop to allow for up to whole page write of eeprom */
409  while (widx < words) {
410  u16 word_out = data[widx];
411  word_out = (word_out >> 8) | (word_out << 8);
412  e1000_shift_out_eec_bits(hw, word_out, 16);
413  widx++;
414 
415  if ((((offset + widx) * 2) % nvm->page_size) == 0) {
416  e1000_standby_nvm(hw);
417  break;
418  }
419  }
420  }
421 
422  usleep_range(10000, 20000);
423 release:
424  nvm->ops.release(hw);
425 
426  return ret_val;
427 }
428 
439  u32 pba_num_size)
440 {
441  s32 ret_val;
442  u16 nvm_data;
443  u16 pba_ptr;
444  u16 offset;
445  u16 length;
446 
447  if (pba_num == NULL) {
448  e_dbg("PBA string buffer was null\n");
450  }
451 
452  ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
453  if (ret_val) {
454  e_dbg("NVM Read Error\n");
455  return ret_val;
456  }
457 
458  ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr);
459  if (ret_val) {
460  e_dbg("NVM Read Error\n");
461  return ret_val;
462  }
463 
464  /*
465  * if nvm_data is not ptr guard the PBA must be in legacy format which
466  * means pba_ptr is actually our second data word for the PBA number
467  * and we can decode it into an ascii string
468  */
469  if (nvm_data != NVM_PBA_PTR_GUARD) {
470  e_dbg("NVM PBA number is not stored as string\n");
471 
472  /* we will need 11 characters to store the PBA */
473  if (pba_num_size < 11) {
474  e_dbg("PBA string buffer too small\n");
475  return E1000_ERR_NO_SPACE;
476  }
477 
478  /* extract hex string from data and pba_ptr */
479  pba_num[0] = (nvm_data >> 12) & 0xF;
480  pba_num[1] = (nvm_data >> 8) & 0xF;
481  pba_num[2] = (nvm_data >> 4) & 0xF;
482  pba_num[3] = nvm_data & 0xF;
483  pba_num[4] = (pba_ptr >> 12) & 0xF;
484  pba_num[5] = (pba_ptr >> 8) & 0xF;
485  pba_num[6] = '-';
486  pba_num[7] = 0;
487  pba_num[8] = (pba_ptr >> 4) & 0xF;
488  pba_num[9] = pba_ptr & 0xF;
489 
490  /* put a null character on the end of our string */
491  pba_num[10] = '\0';
492 
493  /* switch all the data but the '-' to hex char */
494  for (offset = 0; offset < 10; offset++) {
495  if (pba_num[offset] < 0xA)
496  pba_num[offset] += '0';
497  else if (pba_num[offset] < 0x10)
498  pba_num[offset] += 'A' - 0xA;
499  }
500 
501  return 0;
502  }
503 
504  ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length);
505  if (ret_val) {
506  e_dbg("NVM Read Error\n");
507  return ret_val;
508  }
509 
510  if (length == 0xFFFF || length == 0) {
511  e_dbg("NVM PBA number section invalid length\n");
513  }
514  /* check if pba_num buffer is big enough */
515  if (pba_num_size < (((u32)length * 2) - 1)) {
516  e_dbg("PBA string buffer too small\n");
517  return -E1000_ERR_NO_SPACE;
518  }
519 
520  /* trim pba length from start of string */
521  pba_ptr++;
522  length--;
523 
524  for (offset = 0; offset < length; offset++) {
525  ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data);
526  if (ret_val) {
527  e_dbg("NVM Read Error\n");
528  return ret_val;
529  }
530  pba_num[offset * 2] = (u8)(nvm_data >> 8);
531  pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
532  }
533  pba_num[offset * 2] = '\0';
534 
535  return 0;
536 }
537 
547 {
548  u32 rar_high;
549  u32 rar_low;
550  u16 i;
551 
552  rar_high = er32(RAH(0));
553  rar_low = er32(RAL(0));
554 
555  for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
556  hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8));
557 
558  for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
559  hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8));
560 
561  for (i = 0; i < ETH_ALEN; i++)
562  hw->mac.addr[i] = hw->mac.perm_addr[i];
563 
564  return 0;
565 }
566 
575 {
576  s32 ret_val;
577  u16 checksum = 0;
578  u16 i, nvm_data;
579 
580  for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
581  ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
582  if (ret_val) {
583  e_dbg("NVM Read Error\n");
584  return ret_val;
585  }
586  checksum += nvm_data;
587  }
588 
589  if (checksum != (u16)NVM_SUM) {
590  e_dbg("NVM Checksum Invalid\n");
591  return -E1000_ERR_NVM;
592  }
593 
594  return 0;
595 }
596 
606 {
607  s32 ret_val;
608  u16 checksum = 0;
609  u16 i, nvm_data;
610 
611  for (i = 0; i < NVM_CHECKSUM_REG; i++) {
612  ret_val = e1000_read_nvm(hw, i, 1, &nvm_data);
613  if (ret_val) {
614  e_dbg("NVM Read Error while updating checksum.\n");
615  return ret_val;
616  }
617  checksum += nvm_data;
618  }
619  checksum = (u16)NVM_SUM - checksum;
620  ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum);
621  if (ret_val)
622  e_dbg("NVM Write Error while updating checksum.\n");
623 
624  return ret_val;
625 }
626 
635 {
636  u32 ctrl_ext;
637 
638  udelay(10);
639  ctrl_ext = er32(CTRL_EXT);
640  ctrl_ext |= E1000_CTRL_EXT_EE_RST;
641  ew32(CTRL_EXT, ctrl_ext);
642  e1e_flush();
643 }