Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sock.h
Go to the documentation of this file.
1 /*
2  * INET An implementation of the TCP/IP protocol suite for the LINUX
3  * operating system. INET is implemented using the BSD Socket
4  * interface as the means of communication with the user level.
5  *
6  * Definitions for the AF_INET socket handler.
7  *
8  * Version: @(#)sock.h 1.0.4 05/13/93
9  *
10  * Authors: Ross Biro
11  * Fred N. van Kempen, <[email protected]>
12  * Corey Minyard <[email protected]>
13  * Florian La Roche <[email protected]>
14  *
15  * Fixes:
16  * Alan Cox : Volatiles in skbuff pointers. See
17  * skbuff comments. May be overdone,
18  * better to prove they can be removed
19  * than the reverse.
20  * Alan Cox : Added a zapped field for tcp to note
21  * a socket is reset and must stay shut up
22  * Alan Cox : New fields for options
23  * Pauline Middelink : identd support
24  * Alan Cox : Eliminate low level recv/recvfrom
25  * David S. Miller : New socket lookup architecture.
26  * Steve Whitehouse: Default routines for sock_ops
27  * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28  * protinfo be just a void pointer, as the
29  * protocol specific parts were moved to
30  * respective headers and ipv4/v6, etc now
31  * use private slabcaches for its socks
32  * Pedro Hortas : New flags field for socket options
33  *
34  *
35  * This program is free software; you can redistribute it and/or
36  * modify it under the terms of the GNU General Public License
37  * as published by the Free Software Foundation; either version
38  * 2 of the License, or (at your option) any later version.
39  */
40 #ifndef _SOCK_H
41 #define _SOCK_H
42 
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/bitops.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
57 #include <linux/memcontrol.h>
58 #include <linux/res_counter.h>
59 #include <linux/static_key.h>
60 #include <linux/aio.h>
61 #include <linux/sched.h>
62 
63 #include <linux/filter.h>
64 #include <linux/rculist_nulls.h>
65 #include <linux/poll.h>
66 
67 #include <linux/atomic.h>
68 #include <net/dst.h>
69 #include <net/checksum.h>
70 
71 struct cgroup;
72 struct cgroup_subsys;
73 #ifdef CONFIG_NET
74 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss);
75 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg);
76 #else
77 static inline
78 int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
79 {
80  return 0;
81 }
82 static inline
83 void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg)
84 {
85 }
86 #endif
87 /*
88  * This structure really needs to be cleaned up.
89  * Most of it is for TCP, and not used by any of
90  * the other protocols.
91  */
92 
93 /* Define this to get the SOCK_DBG debugging facility. */
94 #define SOCK_DEBUGGING
95 #ifdef SOCK_DEBUGGING
96 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
97  printk(KERN_DEBUG msg); } while (0)
98 #else
99 /* Validate arguments and do nothing */
100 static inline __printf(2, 3)
101 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
102 {
103 }
104 #endif
105 
106 /* This is the per-socket lock. The spinlock provides a synchronization
107  * between user contexts and software interrupt processing, whereas the
108  * mini-semaphore synchronizes multiple users amongst themselves.
109  */
110 typedef struct {
112  int owned;
114  /*
115  * We express the mutex-alike socket_lock semantics
116  * to the lock validator by explicitly managing
117  * the slock as a lock variant (in addition to
118  * the slock itself):
119  */
120 #ifdef CONFIG_DEBUG_LOCK_ALLOC
121  struct lockdep_map dep_map;
122 #endif
123 } socket_lock_t;
124 
125 struct sock;
126 struct proto;
127 struct net;
128 
151 struct sock_common {
152  /* skc_daddr and skc_rcv_saddr must be grouped :
153  * cf INET_MATCH() and INET_TW_MATCH()
154  */
157 
158  union {
159  unsigned int skc_hash;
161  };
162  unsigned short skc_family;
163  volatile unsigned char skc_state;
164  unsigned char skc_reuse;
166  union {
169  };
170  struct proto *skc_prot;
171 #ifdef CONFIG_NET_NS
172  struct net *skc_net;
173 #endif
174  /*
175  * fields between dontcopy_begin/dontcopy_end
176  * are not copied in sock_copy()
177  */
178  /* private: */
180  /* public: */
181  union {
184  };
187  /* private: */
189  /* public: */
190 };
191 
192 struct cg_proto;
265 struct sock {
266  /*
267  * Now struct inet_timewait_sock also uses sock_common, so please just
268  * don't add nothing before this first member (__sk_common) --acme
269  */
271 #define sk_node __sk_common.skc_node
272 #define sk_nulls_node __sk_common.skc_nulls_node
273 #define sk_refcnt __sk_common.skc_refcnt
274 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
275 
276 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
277 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
278 #define sk_hash __sk_common.skc_hash
279 #define sk_family __sk_common.skc_family
280 #define sk_state __sk_common.skc_state
281 #define sk_reuse __sk_common.skc_reuse
282 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
283 #define sk_bind_node __sk_common.skc_bind_node
284 #define sk_prot __sk_common.skc_prot
285 #define sk_net __sk_common.skc_net
288  /*
289  * The backlog queue is special, it is always used with
290  * the per-socket spinlock held and requires low latency
291  * access. Therefore we special case it's implementation.
292  * Note : rmem_alloc is in this structure to fill a hole
293  * on 64bit arches, not because its logically part of
294  * backlog.
295  */
296  struct {
298  int len;
299  struct sk_buff *head;
300  struct sk_buff *tail;
301  } sk_backlog;
302 #define sk_rmem_alloc sk_backlog.rmem_alloc
304 #ifdef CONFIG_RPS
305  __u32 sk_rxhash;
306 #endif
309 
312 
313 #ifdef CONFIG_NET_DMA
314  struct sk_buff_head sk_async_wait_queue;
315 #endif
316 
317 #ifdef CONFIG_XFRM
318  struct xfrm_policy *sk_policy[2];
319 #endif
320  unsigned long sk_flags;
329  unsigned int sk_shutdown : 2,
330  sk_no_check : 2,
331  sk_userlocks : 4,
332  sk_protocol : 8,
333  sk_type : 16;
340  unsigned int sk_gso_max_size;
343  unsigned long sk_lingertime;
347  int sk_err,
348  sk_err_soft;
349  unsigned short sk_ack_backlog;
350  unsigned short sk_max_ack_backlog;
352 #ifdef CONFIG_CGROUPS
353  __u32 sk_cgrp_prioidx;
354 #endif
355  struct pid *sk_peer_pid;
356  const struct cred *sk_peer_cred;
359  void *sk_protinfo;
362  struct socket *sk_socket;
368 #ifdef CONFIG_SECURITY
369  void *sk_security;
370 #endif
373  struct cg_proto *sk_cgrp;
375  void (*sk_data_ready)(struct sock *sk, int bytes);
376  void (*sk_write_space)(struct sock *sk);
378  int (*sk_backlog_rcv)(struct sock *sk,
379  struct sk_buff *skb);
380  void (*sk_destruct)(struct sock *sk);
381 };
382 
383 /*
384  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
385  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
386  * on a socket means that the socket will reuse everybody else's port
387  * without looking at the other's sk_reuse value.
388  */
389 
390 #define SK_NO_REUSE 0
391 #define SK_CAN_REUSE 1
392 #define SK_FORCE_REUSE 2
393 
394 static inline int sk_peek_offset(struct sock *sk, int flags)
395 {
396  if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0))
397  return sk->sk_peek_off;
398  else
399  return 0;
400 }
401 
402 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
403 {
404  if (sk->sk_peek_off >= 0) {
405  if (sk->sk_peek_off >= val)
406  sk->sk_peek_off -= val;
407  else
408  sk->sk_peek_off = 0;
409  }
410 }
411 
412 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
413 {
414  if (sk->sk_peek_off >= 0)
415  sk->sk_peek_off += val;
416 }
417 
418 /*
419  * Hashed lists helper routines
420  */
421 static inline struct sock *sk_entry(const struct hlist_node *node)
422 {
423  return hlist_entry(node, struct sock, sk_node);
424 }
425 
426 static inline struct sock *__sk_head(const struct hlist_head *head)
427 {
428  return hlist_entry(head->first, struct sock, sk_node);
429 }
430 
431 static inline struct sock *sk_head(const struct hlist_head *head)
432 {
433  return hlist_empty(head) ? NULL : __sk_head(head);
434 }
435 
436 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
437 {
438  return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
439 }
440 
441 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
442 {
443  return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
444 }
445 
446 static inline struct sock *sk_next(const struct sock *sk)
447 {
448  return sk->sk_node.next ?
449  hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
450 }
451 
452 static inline struct sock *sk_nulls_next(const struct sock *sk)
453 {
454  return (!is_a_nulls(sk->sk_nulls_node.next)) ?
455  hlist_nulls_entry(sk->sk_nulls_node.next,
456  struct sock, sk_nulls_node) :
457  NULL;
458 }
459 
460 static inline bool sk_unhashed(const struct sock *sk)
461 {
462  return hlist_unhashed(&sk->sk_node);
463 }
464 
465 static inline bool sk_hashed(const struct sock *sk)
466 {
467  return !sk_unhashed(sk);
468 }
469 
470 static inline void sk_node_init(struct hlist_node *node)
471 {
472  node->pprev = NULL;
473 }
474 
475 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
476 {
477  node->pprev = NULL;
478 }
479 
480 static inline void __sk_del_node(struct sock *sk)
481 {
482  __hlist_del(&sk->sk_node);
483 }
484 
485 /* NB: equivalent to hlist_del_init_rcu */
486 static inline bool __sk_del_node_init(struct sock *sk)
487 {
488  if (sk_hashed(sk)) {
489  __sk_del_node(sk);
490  sk_node_init(&sk->sk_node);
491  return true;
492  }
493  return false;
494 }
495 
496 /* Grab socket reference count. This operation is valid only
497  when sk is ALREADY grabbed f.e. it is found in hash table
498  or a list and the lookup is made under lock preventing hash table
499  modifications.
500  */
501 
502 static inline void sock_hold(struct sock *sk)
503 {
504  atomic_inc(&sk->sk_refcnt);
505 }
506 
507 /* Ungrab socket in the context, which assumes that socket refcnt
508  cannot hit zero, f.e. it is true in context of any socketcall.
509  */
510 static inline void __sock_put(struct sock *sk)
511 {
512  atomic_dec(&sk->sk_refcnt);
513 }
514 
515 static inline bool sk_del_node_init(struct sock *sk)
516 {
517  bool rc = __sk_del_node_init(sk);
518 
519  if (rc) {
520  /* paranoid for a while -acme */
521  WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
522  __sock_put(sk);
523  }
524  return rc;
525 }
526 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
527 
528 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
529 {
530  if (sk_hashed(sk)) {
531  hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
532  return true;
533  }
534  return false;
535 }
536 
537 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
538 {
539  bool rc = __sk_nulls_del_node_init_rcu(sk);
540 
541  if (rc) {
542  /* paranoid for a while -acme */
543  WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
544  __sock_put(sk);
545  }
546  return rc;
547 }
548 
549 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
550 {
551  hlist_add_head(&sk->sk_node, list);
552 }
553 
554 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
555 {
556  sock_hold(sk);
557  __sk_add_node(sk, list);
558 }
559 
560 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
561 {
562  sock_hold(sk);
563  hlist_add_head_rcu(&sk->sk_node, list);
564 }
565 
566 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
567 {
568  hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
569 }
570 
571 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
572 {
573  sock_hold(sk);
574  __sk_nulls_add_node_rcu(sk, list);
575 }
576 
577 static inline void __sk_del_bind_node(struct sock *sk)
578 {
579  __hlist_del(&sk->sk_bind_node);
580 }
581 
582 static inline void sk_add_bind_node(struct sock *sk,
583  struct hlist_head *list)
584 {
585  hlist_add_head(&sk->sk_bind_node, list);
586 }
587 
588 #define sk_for_each(__sk, node, list) \
589  hlist_for_each_entry(__sk, node, list, sk_node)
590 #define sk_for_each_rcu(__sk, node, list) \
591  hlist_for_each_entry_rcu(__sk, node, list, sk_node)
592 #define sk_nulls_for_each(__sk, node, list) \
593  hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
594 #define sk_nulls_for_each_rcu(__sk, node, list) \
595  hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
596 #define sk_for_each_from(__sk, node) \
597  if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
598  hlist_for_each_entry_from(__sk, node, sk_node)
599 #define sk_nulls_for_each_from(__sk, node) \
600  if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
601  hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
602 #define sk_for_each_safe(__sk, node, tmp, list) \
603  hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
604 #define sk_for_each_bound(__sk, node, list) \
605  hlist_for_each_entry(__sk, node, list, sk_bind_node)
606 
607 static inline struct user_namespace *sk_user_ns(struct sock *sk)
608 {
609  /* Careful only use this in a context where these parameters
610  * can not change and must all be valid, such as recvmsg from
611  * userspace.
612  */
613  return sk->sk_socket->file->f_cred->user_ns;
614 }
615 
616 /* Sock flags */
627  SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
628  SOCK_DBG, /* %SO_DEBUG setting */
629  SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
630  SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
631  SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
632  SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
633  SOCK_MEMALLOC, /* VM depends on this socket for swapping */
634  SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
635  SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
636  SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
637  SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
638  SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
639  SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
640  SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
641  SOCK_FASYNC, /* fasync() active */
643  SOCK_ZEROCOPY, /* buffers from userspace */
644  SOCK_WIFI_STATUS, /* push wifi status to userspace */
645  SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
646  * Will use last 4 bytes of packet sent from
647  * user-space instead.
648  */
649 };
650 
651 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
652 {
653  nsk->sk_flags = osk->sk_flags;
654 }
655 
656 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
657 {
658  __set_bit(flag, &sk->sk_flags);
659 }
660 
661 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
662 {
663  __clear_bit(flag, &sk->sk_flags);
664 }
665 
666 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
667 {
668  return test_bit(flag, &sk->sk_flags);
669 }
670 
671 #ifdef CONFIG_NET
672 extern struct static_key memalloc_socks;
673 static inline int sk_memalloc_socks(void)
674 {
675  return static_key_false(&memalloc_socks);
676 }
677 #else
678 
679 static inline int sk_memalloc_socks(void)
680 {
681  return 0;
682 }
683 
684 #endif
685 
686 static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask)
687 {
688  return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC);
689 }
690 
691 static inline void sk_acceptq_removed(struct sock *sk)
692 {
693  sk->sk_ack_backlog--;
694 }
695 
696 static inline void sk_acceptq_added(struct sock *sk)
697 {
698  sk->sk_ack_backlog++;
699 }
700 
701 static inline bool sk_acceptq_is_full(const struct sock *sk)
702 {
703  return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
704 }
705 
706 /*
707  * Compute minimal free write space needed to queue new packets.
708  */
709 static inline int sk_stream_min_wspace(const struct sock *sk)
710 {
711  return sk->sk_wmem_queued >> 1;
712 }
713 
714 static inline int sk_stream_wspace(const struct sock *sk)
715 {
716  return sk->sk_sndbuf - sk->sk_wmem_queued;
717 }
718 
719 extern void sk_stream_write_space(struct sock *sk);
720 
721 static inline bool sk_stream_memory_free(const struct sock *sk)
722 {
723  return sk->sk_wmem_queued < sk->sk_sndbuf;
724 }
725 
726 /* OOB backlog add */
727 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
728 {
729  /* dont let skb dst not refcounted, we are going to leave rcu lock */
730  skb_dst_force(skb);
731 
732  if (!sk->sk_backlog.tail)
733  sk->sk_backlog.head = skb;
734  else
735  sk->sk_backlog.tail->next = skb;
736 
737  sk->sk_backlog.tail = skb;
738  skb->next = NULL;
739 }
740 
741 /*
742  * Take into account size of receive queue and backlog queue
743  * Do not take into account this skb truesize,
744  * to allow even a single big packet to come.
745  */
746 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb,
747  unsigned int limit)
748 {
749  unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
750 
751  return qsize > limit;
752 }
753 
754 /* The per-socket spinlock must be held here. */
755 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
756  unsigned int limit)
757 {
758  if (sk_rcvqueues_full(sk, skb, limit))
759  return -ENOBUFS;
760 
761  __sk_add_backlog(sk, skb);
762  sk->sk_backlog.len += skb->truesize;
763  return 0;
764 }
765 
766 extern int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
767 
768 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
769 {
770  if (sk_memalloc_socks() && skb_pfmemalloc(skb))
771  return __sk_backlog_rcv(sk, skb);
772 
773  return sk->sk_backlog_rcv(sk, skb);
774 }
775 
776 static inline void sock_rps_record_flow(const struct sock *sk)
777 {
778 #ifdef CONFIG_RPS
779  struct rps_sock_flow_table *sock_flow_table;
780 
781  rcu_read_lock();
782  sock_flow_table = rcu_dereference(rps_sock_flow_table);
783  rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
784  rcu_read_unlock();
785 #endif
786 }
787 
788 static inline void sock_rps_reset_flow(const struct sock *sk)
789 {
790 #ifdef CONFIG_RPS
791  struct rps_sock_flow_table *sock_flow_table;
792 
793  rcu_read_lock();
794  sock_flow_table = rcu_dereference(rps_sock_flow_table);
795  rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
796  rcu_read_unlock();
797 #endif
798 }
799 
800 static inline void sock_rps_save_rxhash(struct sock *sk,
801  const struct sk_buff *skb)
802 {
803 #ifdef CONFIG_RPS
804  if (unlikely(sk->sk_rxhash != skb->rxhash)) {
805  sock_rps_reset_flow(sk);
806  sk->sk_rxhash = skb->rxhash;
807  }
808 #endif
809 }
810 
811 static inline void sock_rps_reset_rxhash(struct sock *sk)
812 {
813 #ifdef CONFIG_RPS
814  sock_rps_reset_flow(sk);
815  sk->sk_rxhash = 0;
816 #endif
817 }
818 
819 #define sk_wait_event(__sk, __timeo, __condition) \
820  ({ int __rc; \
821  release_sock(__sk); \
822  __rc = __condition; \
823  if (!__rc) { \
824  *(__timeo) = schedule_timeout(*(__timeo)); \
825  } \
826  lock_sock(__sk); \
827  __rc = __condition; \
828  __rc; \
829  })
830 
831 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
832 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
833 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
834 extern int sk_stream_error(struct sock *sk, int flags, int err);
835 extern void sk_stream_kill_queues(struct sock *sk);
836 extern void sk_set_memalloc(struct sock *sk);
837 extern void sk_clear_memalloc(struct sock *sk);
838 
839 extern int sk_wait_data(struct sock *sk, long *timeo);
840 
841 struct request_sock_ops;
842 struct timewait_sock_ops;
843 struct inet_hashinfo;
844 struct raw_hashinfo;
845 struct module;
846 
847 /* Networking protocol blocks we attach to sockets.
848  * socket layer -> transport layer interface
849  * transport -> network interface is defined by struct inet_proto
850  */
851 struct proto {
852  void (*close)(struct sock *sk,
853  long timeout);
854  int (*connect)(struct sock *sk,
855  struct sockaddr *uaddr,
856  int addr_len);
857  int (*disconnect)(struct sock *sk, int flags);
858 
859  struct sock * (*accept)(struct sock *sk, int flags, int *err);
860 
861  int (*ioctl)(struct sock *sk, int cmd,
862  unsigned long arg);
863  int (*init)(struct sock *sk);
864  void (*destroy)(struct sock *sk);
865  void (*shutdown)(struct sock *sk, int how);
866  int (*setsockopt)(struct sock *sk, int level,
867  int optname, char __user *optval,
868  unsigned int optlen);
869  int (*getsockopt)(struct sock *sk, int level,
870  int optname, char __user *optval,
871  int __user *option);
872 #ifdef CONFIG_COMPAT
873  int (*compat_setsockopt)(struct sock *sk,
874  int level,
875  int optname, char __user *optval,
876  unsigned int optlen);
877  int (*compat_getsockopt)(struct sock *sk,
878  int level,
879  int optname, char __user *optval,
880  int __user *option);
881  int (*compat_ioctl)(struct sock *sk,
882  unsigned int cmd, unsigned long arg);
883 #endif
884  int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
885  struct msghdr *msg, size_t len);
886  int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
887  struct msghdr *msg,
888  size_t len, int noblock, int flags,
889  int *addr_len);
890  int (*sendpage)(struct sock *sk, struct page *page,
891  int offset, size_t size, int flags);
892  int (*bind)(struct sock *sk,
893  struct sockaddr *uaddr, int addr_len);
894 
895  int (*backlog_rcv) (struct sock *sk,
896  struct sk_buff *skb);
897 
898  void (*release_cb)(struct sock *sk);
899  void (*mtu_reduced)(struct sock *sk);
900 
901  /* Keeping track of sk's, looking them up, and port selection methods. */
902  void (*hash)(struct sock *sk);
903  void (*unhash)(struct sock *sk);
904  void (*rehash)(struct sock *sk);
905  int (*get_port)(struct sock *sk, unsigned short snum);
906  void (*clear_sk)(struct sock *sk, int size);
907 
908  /* Keeping track of sockets in use */
909 #ifdef CONFIG_PROC_FS
910  unsigned int inuse_idx;
911 #endif
912 
913  /* Memory pressure */
915  atomic_long_t *memory_allocated; /* Current allocated memory. */
916  struct percpu_counter *sockets_allocated; /* Current number of sockets. */
917  /*
918  * Pressure flag: try to collapse.
919  * Technical note: it is used by multiple contexts non atomically.
920  * All the __sk_mem_schedule() is of this nature: accounting
921  * is strict, actions are advisory and have some latency.
922  */
924  long *sysctl_mem;
929 
930  struct kmem_cache *slab;
931  unsigned int obj_size;
933 
935 
938 
939  union {
943  } h;
944 
945  struct module *owner;
946 
947  char name[32];
948 
949  struct list_head node;
950 #ifdef SOCK_REFCNT_DEBUG
951  atomic_t socks;
952 #endif
953 #ifdef CONFIG_MEMCG_KMEM
954  /*
955  * cgroup specific init/deinit functions. Called once for all
956  * protocols that implement it, from cgroups populate function.
957  * This function has to setup any files the protocol want to
958  * appear in the kmem cgroup filesystem.
959  */
960  int (*init_cgroup)(struct mem_cgroup *memcg,
961  struct cgroup_subsys *ss);
962  void (*destroy_cgroup)(struct mem_cgroup *memcg);
963  struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg);
964 #endif
965 };
966 
967 /*
968  * Bits in struct cg_proto.flags
969  */
971  /* Currently active and new sockets should be assigned to cgroups */
973  /* It was ever activated; we must disarm static keys on destruction */
975 };
976 
977 struct cg_proto {
979  struct res_counter *memory_allocated; /* Current allocated memory. */
980  struct percpu_counter *sockets_allocated; /* Current number of sockets. */
982  long *sysctl_mem;
983  unsigned long flags;
984  /*
985  * memcg field is used to find which memcg we belong directly
986  * Each memcg struct can hold more than one cg_proto, so container_of
987  * won't really cut.
988  *
989  * The elegant solution would be having an inverse function to
990  * proto_cgroup in struct proto, but that means polluting the structure
991  * for everybody, instead of just for memcg users.
992  */
993  struct mem_cgroup *memcg;
994 };
995 
996 extern int proto_register(struct proto *prot, int alloc_slab);
997 extern void proto_unregister(struct proto *prot);
998 
999 static inline bool memcg_proto_active(struct cg_proto *cg_proto)
1000 {
1001  return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags);
1002 }
1003 
1004 static inline bool memcg_proto_activated(struct cg_proto *cg_proto)
1005 {
1006  return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags);
1007 }
1008 
1009 #ifdef SOCK_REFCNT_DEBUG
1010 static inline void sk_refcnt_debug_inc(struct sock *sk)
1011 {
1012  atomic_inc(&sk->sk_prot->socks);
1013 }
1014 
1015 static inline void sk_refcnt_debug_dec(struct sock *sk)
1016 {
1017  atomic_dec(&sk->sk_prot->socks);
1018  printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1019  sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1020 }
1021 
1022 inline void sk_refcnt_debug_release(const struct sock *sk)
1023 {
1024  if (atomic_read(&sk->sk_refcnt) != 1)
1025  printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1026  sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
1027 }
1028 #else /* SOCK_REFCNT_DEBUG */
1029 #define sk_refcnt_debug_inc(sk) do { } while (0)
1030 #define sk_refcnt_debug_dec(sk) do { } while (0)
1031 #define sk_refcnt_debug_release(sk) do { } while (0)
1032 #endif /* SOCK_REFCNT_DEBUG */
1033 
1034 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET)
1036 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1037  struct cg_proto *cg_proto)
1038 {
1039  return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg));
1040 }
1041 #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled)
1042 #else
1043 #define mem_cgroup_sockets_enabled 0
1044 static inline struct cg_proto *parent_cg_proto(struct proto *proto,
1045  struct cg_proto *cg_proto)
1046 {
1047  return NULL;
1048 }
1049 #endif
1050 
1051 
1052 static inline bool sk_has_memory_pressure(const struct sock *sk)
1053 {
1054  return sk->sk_prot->memory_pressure != NULL;
1055 }
1056 
1057 static inline bool sk_under_memory_pressure(const struct sock *sk)
1058 {
1059  if (!sk->sk_prot->memory_pressure)
1060  return false;
1061 
1063  return !!*sk->sk_cgrp->memory_pressure;
1064 
1065  return !!*sk->sk_prot->memory_pressure;
1066 }
1067 
1068 static inline void sk_leave_memory_pressure(struct sock *sk)
1069 {
1070  int *memory_pressure = sk->sk_prot->memory_pressure;
1071 
1072  if (!memory_pressure)
1073  return;
1074 
1075  if (*memory_pressure)
1076  *memory_pressure = 0;
1077 
1078  if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1079  struct cg_proto *cg_proto = sk->sk_cgrp;
1080  struct proto *prot = sk->sk_prot;
1081 
1082  for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1083  if (*cg_proto->memory_pressure)
1084  *cg_proto->memory_pressure = 0;
1085  }
1086 
1087 }
1088 
1089 static inline void sk_enter_memory_pressure(struct sock *sk)
1090 {
1091  if (!sk->sk_prot->enter_memory_pressure)
1092  return;
1093 
1094  if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1095  struct cg_proto *cg_proto = sk->sk_cgrp;
1096  struct proto *prot = sk->sk_prot;
1097 
1098  for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1099  cg_proto->enter_memory_pressure(sk);
1100  }
1101 
1102  sk->sk_prot->enter_memory_pressure(sk);
1103 }
1104 
1105 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1106 {
1107  long *prot = sk->sk_prot->sysctl_mem;
1109  prot = sk->sk_cgrp->sysctl_mem;
1110  return prot[index];
1111 }
1112 
1113 static inline void memcg_memory_allocated_add(struct cg_proto *prot,
1114  unsigned long amt,
1115  int *parent_status)
1116 {
1117  struct res_counter *fail;
1118  int ret;
1119 
1121  amt << PAGE_SHIFT, &fail);
1122  if (ret < 0)
1123  *parent_status = OVER_LIMIT;
1124 }
1125 
1126 static inline void memcg_memory_allocated_sub(struct cg_proto *prot,
1127  unsigned long amt)
1128 {
1130 }
1131 
1132 static inline u64 memcg_memory_allocated_read(struct cg_proto *prot)
1133 {
1134  u64 ret;
1136  return ret >> PAGE_SHIFT;
1137 }
1138 
1139 static inline long
1140 sk_memory_allocated(const struct sock *sk)
1141 {
1142  struct proto *prot = sk->sk_prot;
1144  return memcg_memory_allocated_read(sk->sk_cgrp);
1145 
1146  return atomic_long_read(prot->memory_allocated);
1147 }
1148 
1149 static inline long
1150 sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status)
1151 {
1152  struct proto *prot = sk->sk_prot;
1153 
1154  if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1155  memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status);
1156  /* update the root cgroup regardless */
1157  atomic_long_add_return(amt, prot->memory_allocated);
1158  return memcg_memory_allocated_read(sk->sk_cgrp);
1159  }
1160 
1161  return atomic_long_add_return(amt, prot->memory_allocated);
1162 }
1163 
1164 static inline void
1165 sk_memory_allocated_sub(struct sock *sk, int amt)
1166 {
1167  struct proto *prot = sk->sk_prot;
1168 
1170  memcg_memory_allocated_sub(sk->sk_cgrp, amt);
1171 
1172  atomic_long_sub(amt, prot->memory_allocated);
1173 }
1174 
1175 static inline void sk_sockets_allocated_dec(struct sock *sk)
1176 {
1177  struct proto *prot = sk->sk_prot;
1178 
1179  if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1180  struct cg_proto *cg_proto = sk->sk_cgrp;
1181 
1182  for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1183  percpu_counter_dec(cg_proto->sockets_allocated);
1184  }
1185 
1186  percpu_counter_dec(prot->sockets_allocated);
1187 }
1188 
1189 static inline void sk_sockets_allocated_inc(struct sock *sk)
1190 {
1191  struct proto *prot = sk->sk_prot;
1192 
1193  if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
1194  struct cg_proto *cg_proto = sk->sk_cgrp;
1195 
1196  for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto))
1197  percpu_counter_inc(cg_proto->sockets_allocated);
1198  }
1199 
1200  percpu_counter_inc(prot->sockets_allocated);
1201 }
1202 
1203 static inline int
1204 sk_sockets_allocated_read_positive(struct sock *sk)
1205 {
1206  struct proto *prot = sk->sk_prot;
1207 
1209  return percpu_counter_read_positive(sk->sk_cgrp->sockets_allocated);
1210 
1211  return percpu_counter_read_positive(prot->sockets_allocated);
1212 }
1213 
1214 static inline int
1215 proto_sockets_allocated_sum_positive(struct proto *prot)
1216 {
1217  return percpu_counter_sum_positive(prot->sockets_allocated);
1218 }
1219 
1220 static inline long
1221 proto_memory_allocated(struct proto *prot)
1222 {
1223  return atomic_long_read(prot->memory_allocated);
1224 }
1225 
1226 static inline bool
1227 proto_memory_pressure(struct proto *prot)
1228 {
1229  if (!prot->memory_pressure)
1230  return false;
1231  return !!*prot->memory_pressure;
1232 }
1233 
1234 
1235 #ifdef CONFIG_PROC_FS
1236 /* Called with local bh disabled */
1237 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1238 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
1239 #else
1240 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1241  int inc)
1242 {
1243 }
1244 #endif
1245 
1246 
1247 /* With per-bucket locks this operation is not-atomic, so that
1248  * this version is not worse.
1249  */
1250 static inline void __sk_prot_rehash(struct sock *sk)
1251 {
1252  sk->sk_prot->unhash(sk);
1253  sk->sk_prot->hash(sk);
1254 }
1255 
1256 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
1257 
1258 /* About 10 seconds */
1259 #define SOCK_DESTROY_TIME (10*HZ)
1260 
1261 /* Sockets 0-1023 can't be bound to unless you are superuser */
1262 #define PROT_SOCK 1024
1263 
1264 #define SHUTDOWN_MASK 3
1265 #define RCV_SHUTDOWN 1
1266 #define SEND_SHUTDOWN 2
1267 
1268 #define SOCK_SNDBUF_LOCK 1
1269 #define SOCK_RCVBUF_LOCK 2
1270 #define SOCK_BINDADDR_LOCK 4
1271 #define SOCK_BINDPORT_LOCK 8
1272 
1273 /* sock_iocb: used to kick off async processing of socket ios */
1274 struct sock_iocb {
1275  struct list_head list;
1276 
1277  int flags;
1278  int size;
1279  struct socket *sock;
1280  struct sock *sk;
1281  struct scm_cookie *scm;
1283  struct kiocb *kiocb;
1284 };
1285 
1286 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
1287 {
1288  return (struct sock_iocb *)iocb->private;
1289 }
1290 
1291 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
1292 {
1293  return si->kiocb;
1294 }
1295 
1297  struct socket socket;
1299 };
1300 
1301 static inline struct socket *SOCKET_I(struct inode *inode)
1302 {
1303  return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1304 }
1305 
1306 static inline struct inode *SOCK_INODE(struct socket *socket)
1307 {
1308  return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1309 }
1310 
1311 /*
1312  * Functions for memory accounting
1313  */
1314 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
1315 extern void __sk_mem_reclaim(struct sock *sk);
1316 
1317 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
1318 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1319 #define SK_MEM_SEND 0
1320 #define SK_MEM_RECV 1
1321 
1322 static inline int sk_mem_pages(int amt)
1323 {
1324  return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1325 }
1326 
1327 static inline bool sk_has_account(struct sock *sk)
1328 {
1329  /* return true if protocol supports memory accounting */
1330  return !!sk->sk_prot->memory_allocated;
1331 }
1332 
1333 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1334 {
1335  if (!sk_has_account(sk))
1336  return true;
1337  return size <= sk->sk_forward_alloc ||
1338  __sk_mem_schedule(sk, size, SK_MEM_SEND);
1339 }
1340 
1341 static inline bool
1342 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1343 {
1344  if (!sk_has_account(sk))
1345  return true;
1346  return size<= sk->sk_forward_alloc ||
1347  __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1348  skb_pfmemalloc(skb);
1349 }
1350 
1351 static inline void sk_mem_reclaim(struct sock *sk)
1352 {
1353  if (!sk_has_account(sk))
1354  return;
1355  if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1356  __sk_mem_reclaim(sk);
1357 }
1358 
1359 static inline void sk_mem_reclaim_partial(struct sock *sk)
1360 {
1361  if (!sk_has_account(sk))
1362  return;
1363  if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1364  __sk_mem_reclaim(sk);
1365 }
1366 
1367 static inline void sk_mem_charge(struct sock *sk, int size)
1368 {
1369  if (!sk_has_account(sk))
1370  return;
1371  sk->sk_forward_alloc -= size;
1372 }
1373 
1374 static inline void sk_mem_uncharge(struct sock *sk, int size)
1375 {
1376  if (!sk_has_account(sk))
1377  return;
1378  sk->sk_forward_alloc += size;
1379 }
1380 
1381 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1382 {
1383  sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1384  sk->sk_wmem_queued -= skb->truesize;
1385  sk_mem_uncharge(sk, skb->truesize);
1386  __kfree_skb(skb);
1387 }
1388 
1389 /* Used by processes to "lock" a socket state, so that
1390  * interrupts and bottom half handlers won't change it
1391  * from under us. It essentially blocks any incoming
1392  * packets, so that we won't get any new data or any
1393  * packets that change the state of the socket.
1394  *
1395  * While locked, BH processing will add new packets to
1396  * the backlog queue. This queue is processed by the
1397  * owner of the socket lock right before it is released.
1398  *
1399  * Since ~2.3.5 it is also exclusive sleep lock serializing
1400  * accesses from user process context.
1401  */
1402 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1403 
1404 /*
1405  * Macro so as to not evaluate some arguments when
1406  * lockdep is not enabled.
1407  *
1408  * Mark both the sk_lock and the sk_lock.slock as a
1409  * per-address-family lock class.
1410  */
1411 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1412 do { \
1413  sk->sk_lock.owned = 0; \
1414  init_waitqueue_head(&sk->sk_lock.wq); \
1415  spin_lock_init(&(sk)->sk_lock.slock); \
1416  debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1417  sizeof((sk)->sk_lock)); \
1418  lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1419  (skey), (sname)); \
1420  lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1421 } while (0)
1422 
1423 extern void lock_sock_nested(struct sock *sk, int subclass);
1424 
1425 static inline void lock_sock(struct sock *sk)
1426 {
1427  lock_sock_nested(sk, 0);
1428 }
1429 
1430 extern void release_sock(struct sock *sk);
1431 
1432 /* BH context may only use the following locking interface. */
1433 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1434 #define bh_lock_sock_nested(__sk) \
1435  spin_lock_nested(&((__sk)->sk_lock.slock), \
1436  SINGLE_DEPTH_NESTING)
1437 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1438 
1439 extern bool lock_sock_fast(struct sock *sk);
1448 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1449 {
1450  if (slow)
1451  release_sock(sk);
1452  else
1453  spin_unlock_bh(&sk->sk_lock.slock);
1454 }
1455 
1456 
1457 extern struct sock *sk_alloc(struct net *net, int family,
1458  gfp_t priority,
1459  struct proto *prot);
1460 extern void sk_free(struct sock *sk);
1461 extern void sk_release_kernel(struct sock *sk);
1462 extern struct sock *sk_clone_lock(const struct sock *sk,
1463  const gfp_t priority);
1464 
1465 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1466  unsigned long size, int force,
1467  gfp_t priority);
1468 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1469  unsigned long size, int force,
1470  gfp_t priority);
1471 extern void sock_wfree(struct sk_buff *skb);
1472 extern void sock_rfree(struct sk_buff *skb);
1473 extern void sock_edemux(struct sk_buff *skb);
1474 
1475 extern int sock_setsockopt(struct socket *sock, int level,
1476  int op, char __user *optval,
1477  unsigned int optlen);
1478 
1479 extern int sock_getsockopt(struct socket *sock, int level,
1480  int op, char __user *optval,
1481  int __user *optlen);
1482 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1483  unsigned long size,
1484  int noblock,
1485  int *errcode);
1486 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1487  unsigned long header_len,
1488  unsigned long data_len,
1489  int noblock,
1490  int *errcode);
1491 extern void *sock_kmalloc(struct sock *sk, int size,
1492  gfp_t priority);
1493 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1494 extern void sk_send_sigurg(struct sock *sk);
1495 
1496 /*
1497  * Functions to fill in entries in struct proto_ops when a protocol
1498  * does not implement a particular function.
1499  */
1500 extern int sock_no_bind(struct socket *,
1501  struct sockaddr *, int);
1502 extern int sock_no_connect(struct socket *,
1503  struct sockaddr *, int, int);
1504 extern int sock_no_socketpair(struct socket *,
1505  struct socket *);
1506 extern int sock_no_accept(struct socket *,
1507  struct socket *, int);
1508 extern int sock_no_getname(struct socket *,
1509  struct sockaddr *, int *, int);
1510 extern unsigned int sock_no_poll(struct file *, struct socket *,
1511  struct poll_table_struct *);
1512 extern int sock_no_ioctl(struct socket *, unsigned int,
1513  unsigned long);
1514 extern int sock_no_listen(struct socket *, int);
1515 extern int sock_no_shutdown(struct socket *, int);
1516 extern int sock_no_getsockopt(struct socket *, int , int,
1517  char __user *, int __user *);
1518 extern int sock_no_setsockopt(struct socket *, int, int,
1519  char __user *, unsigned int);
1520 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1521  struct msghdr *, size_t);
1522 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1523  struct msghdr *, size_t, int);
1524 extern int sock_no_mmap(struct file *file,
1525  struct socket *sock,
1526  struct vm_area_struct *vma);
1527 extern ssize_t sock_no_sendpage(struct socket *sock,
1528  struct page *page,
1529  int offset, size_t size,
1530  int flags);
1531 
1532 /*
1533  * Functions to fill in entries in struct proto_ops when a protocol
1534  * uses the inet style.
1535  */
1536 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1537  char __user *optval, int __user *optlen);
1538 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1539  struct msghdr *msg, size_t size, int flags);
1540 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1541  char __user *optval, unsigned int optlen);
1542 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1543  int optname, char __user *optval, int __user *optlen);
1544 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1545  int optname, char __user *optval, unsigned int optlen);
1546 
1547 extern void sk_common_release(struct sock *sk);
1548 
1549 /*
1550  * Default socket callbacks and setup code
1551  */
1552 
1553 /* Initialise core socket variables */
1554 extern void sock_init_data(struct socket *sock, struct sock *sk);
1555 
1556 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1557 
1565 static inline void sk_filter_release(struct sk_filter *fp)
1566 {
1567  if (atomic_dec_and_test(&fp->refcnt))
1569 }
1570 
1571 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1572 {
1573  unsigned int size = sk_filter_len(fp);
1574 
1575  atomic_sub(size, &sk->sk_omem_alloc);
1576  sk_filter_release(fp);
1577 }
1578 
1579 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1580 {
1581  atomic_inc(&fp->refcnt);
1582  atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1583 }
1584 
1585 /*
1586  * Socket reference counting postulates.
1587  *
1588  * * Each user of socket SHOULD hold a reference count.
1589  * * Each access point to socket (an hash table bucket, reference from a list,
1590  * running timer, skb in flight MUST hold a reference count.
1591  * * When reference count hits 0, it means it will never increase back.
1592  * * When reference count hits 0, it means that no references from
1593  * outside exist to this socket and current process on current CPU
1594  * is last user and may/should destroy this socket.
1595  * * sk_free is called from any context: process, BH, IRQ. When
1596  * it is called, socket has no references from outside -> sk_free
1597  * may release descendant resources allocated by the socket, but
1598  * to the time when it is called, socket is NOT referenced by any
1599  * hash tables, lists etc.
1600  * * Packets, delivered from outside (from network or from another process)
1601  * and enqueued on receive/error queues SHOULD NOT grab reference count,
1602  * when they sit in queue. Otherwise, packets will leak to hole, when
1603  * socket is looked up by one cpu and unhasing is made by another CPU.
1604  * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1605  * (leak to backlog). Packet socket does all the processing inside
1606  * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1607  * use separate SMP lock, so that they are prone too.
1608  */
1609 
1610 /* Ungrab socket and destroy it, if it was the last reference. */
1611 static inline void sock_put(struct sock *sk)
1612 {
1613  if (atomic_dec_and_test(&sk->sk_refcnt))
1614  sk_free(sk);
1615 }
1616 
1617 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1618  const int nested);
1619 
1620 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1621 {
1622  sk->sk_tx_queue_mapping = tx_queue;
1623 }
1624 
1625 static inline void sk_tx_queue_clear(struct sock *sk)
1626 {
1627  sk->sk_tx_queue_mapping = -1;
1628 }
1629 
1630 static inline int sk_tx_queue_get(const struct sock *sk)
1631 {
1632  return sk ? sk->sk_tx_queue_mapping : -1;
1633 }
1634 
1635 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1636 {
1637  sk_tx_queue_clear(sk);
1638  sk->sk_socket = sock;
1639 }
1640 
1641 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1642 {
1643  BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1644  return &rcu_dereference_raw(sk->sk_wq)->wait;
1645 }
1646 /* Detach socket from process context.
1647  * Announce socket dead, detach it from wait queue and inode.
1648  * Note that parent inode held reference count on this struct sock,
1649  * we do not release it in this function, because protocol
1650  * probably wants some additional cleanups or even continuing
1651  * to work with this socket (TCP).
1652  */
1653 static inline void sock_orphan(struct sock *sk)
1654 {
1656  sock_set_flag(sk, SOCK_DEAD);
1657  sk_set_socket(sk, NULL);
1658  sk->sk_wq = NULL;
1660 }
1661 
1662 static inline void sock_graft(struct sock *sk, struct socket *parent)
1663 {
1665  sk->sk_wq = parent->wq;
1666  parent->sk = sk;
1667  sk_set_socket(sk, parent);
1668  security_sock_graft(sk, parent);
1670 }
1671 
1672 extern kuid_t sock_i_uid(struct sock *sk);
1673 extern unsigned long sock_i_ino(struct sock *sk);
1674 
1675 static inline struct dst_entry *
1676 __sk_dst_get(struct sock *sk)
1677 {
1679  lockdep_is_held(&sk->sk_lock.slock));
1680 }
1681 
1682 static inline struct dst_entry *
1683 sk_dst_get(struct sock *sk)
1684 {
1685  struct dst_entry *dst;
1686 
1687  rcu_read_lock();
1688  dst = rcu_dereference(sk->sk_dst_cache);
1689  if (dst)
1690  dst_hold(dst);
1691  rcu_read_unlock();
1692  return dst;
1693 }
1694 
1695 extern void sk_reset_txq(struct sock *sk);
1696 
1697 static inline void dst_negative_advice(struct sock *sk)
1698 {
1699  struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1700 
1701  if (dst && dst->ops->negative_advice) {
1702  ndst = dst->ops->negative_advice(dst);
1703 
1704  if (ndst != dst) {
1705  rcu_assign_pointer(sk->sk_dst_cache, ndst);
1706  sk_reset_txq(sk);
1707  }
1708  }
1709 }
1710 
1711 static inline void
1712 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1713 {
1714  struct dst_entry *old_dst;
1715 
1716  sk_tx_queue_clear(sk);
1717  /*
1718  * This can be called while sk is owned by the caller only,
1719  * with no state that can be checked in a rcu_dereference_check() cond
1720  */
1721  old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1722  rcu_assign_pointer(sk->sk_dst_cache, dst);
1723  dst_release(old_dst);
1724 }
1725 
1726 static inline void
1727 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1728 {
1729  spin_lock(&sk->sk_dst_lock);
1730  __sk_dst_set(sk, dst);
1731  spin_unlock(&sk->sk_dst_lock);
1732 }
1733 
1734 static inline void
1735 __sk_dst_reset(struct sock *sk)
1736 {
1737  __sk_dst_set(sk, NULL);
1738 }
1739 
1740 static inline void
1741 sk_dst_reset(struct sock *sk)
1742 {
1743  spin_lock(&sk->sk_dst_lock);
1744  __sk_dst_reset(sk);
1745  spin_unlock(&sk->sk_dst_lock);
1746 }
1747 
1748 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1749 
1750 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1751 
1752 static inline bool sk_can_gso(const struct sock *sk)
1753 {
1754  return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1755 }
1756 
1757 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1758 
1759 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
1760 {
1761  sk->sk_route_nocaps |= flags;
1762  sk->sk_route_caps &= ~flags;
1763 }
1764 
1765 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1766  char __user *from, char *to,
1767  int copy, int offset)
1768 {
1769  if (skb->ip_summed == CHECKSUM_NONE) {
1770  int err = 0;
1771  __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1772  if (err)
1773  return err;
1774  skb->csum = csum_block_add(skb->csum, csum, offset);
1775  } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1776  if (!access_ok(VERIFY_READ, from, copy) ||
1777  __copy_from_user_nocache(to, from, copy))
1778  return -EFAULT;
1779  } else if (copy_from_user(to, from, copy))
1780  return -EFAULT;
1781 
1782  return 0;
1783 }
1784 
1785 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1786  char __user *from, int copy)
1787 {
1788  int err, offset = skb->len;
1789 
1790  err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1791  copy, offset);
1792  if (err)
1793  __skb_trim(skb, offset);
1794 
1795  return err;
1796 }
1797 
1798 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1799  struct sk_buff *skb,
1800  struct page *page,
1801  int off, int copy)
1802 {
1803  int err;
1804 
1805  err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1806  copy, skb->len);
1807  if (err)
1808  return err;
1809 
1810  skb->len += copy;
1811  skb->data_len += copy;
1812  skb->truesize += copy;
1813  sk->sk_wmem_queued += copy;
1814  sk_mem_charge(sk, copy);
1815  return 0;
1816 }
1817 
1818 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1819  struct sk_buff *skb, struct page *page,
1820  int off, int copy)
1821 {
1822  if (skb->ip_summed == CHECKSUM_NONE) {
1823  int err = 0;
1824  __wsum csum = csum_and_copy_from_user(from,
1825  page_address(page) + off,
1826  copy, 0, &err);
1827  if (err)
1828  return err;
1829  skb->csum = csum_block_add(skb->csum, csum, skb->len);
1830  } else if (copy_from_user(page_address(page) + off, from, copy))
1831  return -EFAULT;
1832 
1833  skb->len += copy;
1834  skb->data_len += copy;
1835  skb->truesize += copy;
1836  sk->sk_wmem_queued += copy;
1837  sk_mem_charge(sk, copy);
1838  return 0;
1839 }
1840 
1847 static inline int sk_wmem_alloc_get(const struct sock *sk)
1848 {
1849  return atomic_read(&sk->sk_wmem_alloc) - 1;
1850 }
1851 
1858 static inline int sk_rmem_alloc_get(const struct sock *sk)
1859 {
1860  return atomic_read(&sk->sk_rmem_alloc);
1861 }
1862 
1869 static inline bool sk_has_allocations(const struct sock *sk)
1870 {
1871  return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1872 }
1873 
1906 static inline bool wq_has_sleeper(struct socket_wq *wq)
1907 {
1908  /* We need to be sure we are in sync with the
1909  * add_wait_queue modifications to the wait queue.
1910  *
1911  * This memory barrier is paired in the sock_poll_wait.
1912  */
1913  smp_mb();
1914  return wq && waitqueue_active(&wq->wait);
1915 }
1916 
1925 static inline void sock_poll_wait(struct file *filp,
1926  wait_queue_head_t *wait_address, poll_table *p)
1927 {
1928  if (!poll_does_not_wait(p) && wait_address) {
1929  poll_wait(filp, wait_address, p);
1930  /* We need to be sure we are in sync with the
1931  * socket flags modification.
1932  *
1933  * This memory barrier is paired in the wq_has_sleeper.
1934  */
1935  smp_mb();
1936  }
1937 }
1938 
1939 /*
1940  * Queue a received datagram if it will fit. Stream and sequenced
1941  * protocols can't normally use this as they need to fit buffers in
1942  * and play with them.
1943  *
1944  * Inlined as it's very short and called for pretty much every
1945  * packet ever received.
1946  */
1947 
1948 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1949 {
1950  skb_orphan(skb);
1951  skb->sk = sk;
1952  skb->destructor = sock_wfree;
1953  /*
1954  * We used to take a refcount on sk, but following operation
1955  * is enough to guarantee sk_free() wont free this sock until
1956  * all in-flight packets are completed
1957  */
1958  atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1959 }
1960 
1961 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1962 {
1963  skb_orphan(skb);
1964  skb->sk = sk;
1965  skb->destructor = sock_rfree;
1966  atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1967  sk_mem_charge(sk, skb->truesize);
1968 }
1969 
1970 extern void sk_reset_timer(struct sock *sk, struct timer_list *timer,
1971  unsigned long expires);
1972 
1973 extern void sk_stop_timer(struct sock *sk, struct timer_list *timer);
1974 
1975 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1976 
1977 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1978 
1979 /*
1980  * Recover an error report and clear atomically
1981  */
1982 
1983 static inline int sock_error(struct sock *sk)
1984 {
1985  int err;
1986  if (likely(!sk->sk_err))
1987  return 0;
1988  err = xchg(&sk->sk_err, 0);
1989  return -err;
1990 }
1991 
1992 static inline unsigned long sock_wspace(struct sock *sk)
1993 {
1994  int amt = 0;
1995 
1996  if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1997  amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1998  if (amt < 0)
1999  amt = 0;
2000  }
2001  return amt;
2002 }
2003 
2004 static inline void sk_wake_async(struct sock *sk, int how, int band)
2005 {
2006  if (sock_flag(sk, SOCK_FASYNC))
2007  sock_wake_async(sk->sk_socket, how, band);
2008 }
2009 
2010 #define SOCK_MIN_SNDBUF 2048
2011 /*
2012  * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
2013  * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
2014  */
2015 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
2016 
2017 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2018 {
2019  if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
2020  sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2021  sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
2022  }
2023 }
2024 
2025 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
2026 
2034 static inline struct page_frag *sk_page_frag(struct sock *sk)
2035 {
2036  if (sk->sk_allocation & __GFP_WAIT)
2037  return &current->task_frag;
2038 
2039  return &sk->sk_frag;
2040 }
2041 
2042 extern bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2043 
2044 /*
2045  * Default write policy as shown to user space via poll/select/SIGIO
2046  */
2047 static inline bool sock_writeable(const struct sock *sk)
2048 {
2049  return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
2050 }
2051 
2052 static inline gfp_t gfp_any(void)
2053 {
2054  return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2055 }
2056 
2057 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2058 {
2059  return noblock ? 0 : sk->sk_rcvtimeo;
2060 }
2061 
2062 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2063 {
2064  return noblock ? 0 : sk->sk_sndtimeo;
2065 }
2066 
2067 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2068 {
2069  return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
2070 }
2071 
2072 /* Alas, with timeout socket operations are not restartable.
2073  * Compare this to poll().
2074  */
2075 static inline int sock_intr_errno(long timeo)
2076 {
2077  return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2078 }
2079 
2080 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2081  struct sk_buff *skb);
2082 extern void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2083  struct sk_buff *skb);
2084 
2085 static inline void
2086 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2087 {
2088  ktime_t kt = skb->tstamp;
2089  struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2090 
2091  /*
2092  * generate control messages if
2093  * - receive time stamping in software requested (SOCK_RCVTSTAMP
2094  * or SOCK_TIMESTAMPING_RX_SOFTWARE)
2095  * - software time stamp available and wanted
2096  * (SOCK_TIMESTAMPING_SOFTWARE)
2097  * - hardware time stamps available and wanted
2098  * (SOCK_TIMESTAMPING_SYS_HARDWARE or
2099  * SOCK_TIMESTAMPING_RAW_HARDWARE)
2100  */
2101  if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2102  sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
2103  (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
2104  (hwtstamps->hwtstamp.tv64 &&
2105  sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
2106  (hwtstamps->syststamp.tv64 &&
2107  sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
2108  __sock_recv_timestamp(msg, sk, skb);
2109  else
2110  sk->sk_stamp = kt;
2111 
2112  if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2113  __sock_recv_wifi_status(msg, sk, skb);
2114 }
2115 
2116 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2117  struct sk_buff *skb);
2118 
2119 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2120  struct sk_buff *skb)
2121 {
2122 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2123  (1UL << SOCK_RCVTSTAMP) | \
2124  (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
2125  (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
2126  (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
2127  (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
2128 
2129  if (sk->sk_flags & FLAGS_TS_OR_DROPS)
2130  __sock_recv_ts_and_drops(msg, sk, skb);
2131  else
2132  sk->sk_stamp = skb->tstamp;
2133 }
2134 
2143 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
2144 
2154 #ifdef CONFIG_NET_DMA
2155 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2156 {
2157  __skb_unlink(skb, &sk->sk_receive_queue);
2158  if (!copied_early)
2159  __kfree_skb(skb);
2160  else
2161  __skb_queue_tail(&sk->sk_async_wait_queue, skb);
2162 }
2163 #else
2164 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, bool copied_early)
2165 {
2166  __skb_unlink(skb, &sk->sk_receive_queue);
2167  __kfree_skb(skb);
2168 }
2169 #endif
2170 
2171 static inline
2172 struct net *sock_net(const struct sock *sk)
2173 {
2174  return read_pnet(&sk->sk_net);
2175 }
2176 
2177 static inline
2178 void sock_net_set(struct sock *sk, struct net *net)
2179 {
2180  write_pnet(&sk->sk_net, net);
2181 }
2182 
2183 /*
2184  * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
2185  * They should not hold a reference to a namespace in order to allow
2186  * to stop it.
2187  * Sockets after sk_change_net should be released using sk_release_kernel
2188  */
2189 static inline void sk_change_net(struct sock *sk, struct net *net)
2190 {
2191  put_net(sock_net(sk));
2192  sock_net_set(sk, hold_net(net));
2193 }
2194 
2195 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
2196 {
2197  if (skb->sk) {
2198  struct sock *sk = skb->sk;
2199 
2200  skb->destructor = NULL;
2201  skb->sk = NULL;
2202  return sk;
2203  }
2204  return NULL;
2205 }
2206 
2207 extern void sock_enable_timestamp(struct sock *sk, int flag);
2208 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
2209 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
2210 
2211 /*
2212  * Enable debug/info messages
2213  */
2214 extern int net_msg_warn;
2215 #define NETDEBUG(fmt, args...) \
2216  do { if (net_msg_warn) printk(fmt,##args); } while (0)
2217 
2218 #define LIMIT_NETDEBUG(fmt, args...) \
2219  do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
2220 
2221 extern __u32 sysctl_wmem_max;
2222 extern __u32 sysctl_rmem_max;
2223 
2224 extern int sysctl_optmem_max;
2225 
2226 extern __u32 sysctl_wmem_default;
2227 extern __u32 sysctl_rmem_default;
2228 
2229 #endif /* _SOCK_H */