Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
cache.c
Go to the documentation of this file.
1 /*
2  * net/sunrpc/cache.c
3  *
4  * Generic code for various authentication-related caches
5  * used by sunrpc clients and servers.
6  *
7  * Copyright (C) 2002 Neil Brown <[email protected]>
8  *
9  * Released under terms in GPL version 2. See COPYING.
10  *
11  */
12 
13 #include <linux/types.h>
14 #include <linux/fs.h>
15 #include <linux/file.h>
16 #include <linux/slab.h>
17 #include <linux/signal.h>
18 #include <linux/sched.h>
19 #include <linux/kmod.h>
20 #include <linux/list.h>
21 #include <linux/module.h>
22 #include <linux/ctype.h>
23 #include <asm/uaccess.h>
24 #include <linux/poll.h>
25 #include <linux/seq_file.h>
26 #include <linux/proc_fs.h>
27 #include <linux/net.h>
28 #include <linux/workqueue.h>
29 #include <linux/mutex.h>
30 #include <linux/pagemap.h>
31 #include <asm/ioctls.h>
32 #include <linux/sunrpc/types.h>
33 #include <linux/sunrpc/cache.h>
34 #include <linux/sunrpc/stats.h>
36 #include "netns.h"
37 
38 #define RPCDBG_FACILITY RPCDBG_CACHE
39 
40 static bool cache_defer_req(struct cache_req *req, struct cache_head *item);
41 static void cache_revisit_request(struct cache_head *item);
42 
43 static void cache_init(struct cache_head *h)
44 {
45  time_t now = seconds_since_boot();
46  h->next = NULL;
47  h->flags = 0;
48  kref_init(&h->ref);
49  h->expiry_time = now + CACHE_NEW_EXPIRY;
50  h->last_refresh = now;
51 }
52 
53 static inline int cache_is_expired(struct cache_detail *detail, struct cache_head *h)
54 {
55  return (h->expiry_time < seconds_since_boot()) ||
56  (detail->flush_time > h->last_refresh);
57 }
58 
60  struct cache_head *key, int hash)
61 {
62  struct cache_head **head, **hp;
63  struct cache_head *new = NULL, *freeme = NULL;
64 
65  head = &detail->hash_table[hash];
66 
67  read_lock(&detail->hash_lock);
68 
69  for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
70  struct cache_head *tmp = *hp;
71  if (detail->match(tmp, key)) {
72  if (cache_is_expired(detail, tmp))
73  /* This entry is expired, we will discard it. */
74  break;
75  cache_get(tmp);
76  read_unlock(&detail->hash_lock);
77  return tmp;
78  }
79  }
80  read_unlock(&detail->hash_lock);
81  /* Didn't find anything, insert an empty entry */
82 
83  new = detail->alloc();
84  if (!new)
85  return NULL;
86  /* must fully initialise 'new', else
87  * we might get lose if we need to
88  * cache_put it soon.
89  */
90  cache_init(new);
91  detail->init(new, key);
92 
93  write_lock(&detail->hash_lock);
94 
95  /* check if entry appeared while we slept */
96  for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
97  struct cache_head *tmp = *hp;
98  if (detail->match(tmp, key)) {
99  if (cache_is_expired(detail, tmp)) {
100  *hp = tmp->next;
101  tmp->next = NULL;
102  detail->entries --;
103  freeme = tmp;
104  break;
105  }
106  cache_get(tmp);
107  write_unlock(&detail->hash_lock);
108  cache_put(new, detail);
109  return tmp;
110  }
111  }
112  new->next = *head;
113  *head = new;
114  detail->entries++;
115  cache_get(new);
116  write_unlock(&detail->hash_lock);
117 
118  if (freeme)
119  cache_put(freeme, detail);
120  return new;
121 }
123 
124 
125 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch);
126 
127 static void cache_fresh_locked(struct cache_head *head, time_t expiry)
128 {
129  head->expiry_time = expiry;
130  head->last_refresh = seconds_since_boot();
131  smp_wmb(); /* paired with smp_rmb() in cache_is_valid() */
132  set_bit(CACHE_VALID, &head->flags);
133 }
134 
135 static void cache_fresh_unlocked(struct cache_head *head,
136  struct cache_detail *detail)
137 {
138  if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
139  cache_revisit_request(head);
140  cache_dequeue(detail, head);
141  }
142 }
143 
145  struct cache_head *new, struct cache_head *old, int hash)
146 {
147  /* The 'old' entry is to be replaced by 'new'.
148  * If 'old' is not VALID, we update it directly,
149  * otherwise we need to replace it
150  */
151  struct cache_head **head;
152  struct cache_head *tmp;
153 
154  if (!test_bit(CACHE_VALID, &old->flags)) {
155  write_lock(&detail->hash_lock);
156  if (!test_bit(CACHE_VALID, &old->flags)) {
157  if (test_bit(CACHE_NEGATIVE, &new->flags))
158  set_bit(CACHE_NEGATIVE, &old->flags);
159  else
160  detail->update(old, new);
161  cache_fresh_locked(old, new->expiry_time);
162  write_unlock(&detail->hash_lock);
163  cache_fresh_unlocked(old, detail);
164  return old;
165  }
166  write_unlock(&detail->hash_lock);
167  }
168  /* We need to insert a new entry */
169  tmp = detail->alloc();
170  if (!tmp) {
171  cache_put(old, detail);
172  return NULL;
173  }
174  cache_init(tmp);
175  detail->init(tmp, old);
176  head = &detail->hash_table[hash];
177 
178  write_lock(&detail->hash_lock);
179  if (test_bit(CACHE_NEGATIVE, &new->flags))
180  set_bit(CACHE_NEGATIVE, &tmp->flags);
181  else
182  detail->update(tmp, new);
183  tmp->next = *head;
184  *head = tmp;
185  detail->entries++;
186  cache_get(tmp);
187  cache_fresh_locked(tmp, new->expiry_time);
188  cache_fresh_locked(old, 0);
189  write_unlock(&detail->hash_lock);
190  cache_fresh_unlocked(tmp, detail);
191  cache_fresh_unlocked(old, detail);
192  cache_put(old, detail);
193  return tmp;
194 }
196 
197 static int cache_make_upcall(struct cache_detail *cd, struct cache_head *h)
198 {
199  if (!cd->cache_upcall)
200  return -EINVAL;
201  return cd->cache_upcall(cd, h);
202 }
203 
204 static inline int cache_is_valid(struct cache_detail *detail, struct cache_head *h)
205 {
206  if (!test_bit(CACHE_VALID, &h->flags))
207  return -EAGAIN;
208  else {
209  /* entry is valid */
210  if (test_bit(CACHE_NEGATIVE, &h->flags))
211  return -ENOENT;
212  else {
213  /*
214  * In combination with write barrier in
215  * sunrpc_cache_update, ensures that anyone
216  * using the cache entry after this sees the
217  * updated contents:
218  */
219  smp_rmb();
220  return 0;
221  }
222  }
223 }
224 
225 static int try_to_negate_entry(struct cache_detail *detail, struct cache_head *h)
226 {
227  int rv;
228 
229  write_lock(&detail->hash_lock);
230  rv = cache_is_valid(detail, h);
231  if (rv != -EAGAIN) {
232  write_unlock(&detail->hash_lock);
233  return rv;
234  }
236  cache_fresh_locked(h, seconds_since_boot()+CACHE_NEW_EXPIRY);
237  write_unlock(&detail->hash_lock);
238  cache_fresh_unlocked(h, detail);
239  return -ENOENT;
240 }
241 
242 /*
243  * This is the generic cache management routine for all
244  * the authentication caches.
245  * It checks the currency of a cache item and will (later)
246  * initiate an upcall to fill it if needed.
247  *
248  *
249  * Returns 0 if the cache_head can be used, or cache_puts it and returns
250  * -EAGAIN if upcall is pending and request has been queued
251  * -ETIMEDOUT if upcall failed or request could not be queue or
252  * upcall completed but item is still invalid (implying that
253  * the cache item has been replaced with a newer one).
254  * -ENOENT if cache entry was negative
255  */
256 int cache_check(struct cache_detail *detail,
257  struct cache_head *h, struct cache_req *rqstp)
258 {
259  int rv;
260  long refresh_age, age;
261 
262  /* First decide return status as best we can */
263  rv = cache_is_valid(detail, h);
264 
265  /* now see if we want to start an upcall */
266  refresh_age = (h->expiry_time - h->last_refresh);
267  age = seconds_since_boot() - h->last_refresh;
268 
269  if (rqstp == NULL) {
270  if (rv == -EAGAIN)
271  rv = -ENOENT;
272  } else if (rv == -EAGAIN || age > refresh_age/2) {
273  dprintk("RPC: Want update, refage=%ld, age=%ld\n",
274  refresh_age, age);
275  if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
276  switch (cache_make_upcall(detail, h)) {
277  case -EINVAL:
279  cache_revisit_request(h);
280  rv = try_to_negate_entry(detail, h);
281  break;
282  case -EAGAIN:
284  cache_revisit_request(h);
285  break;
286  }
287  }
288  }
289 
290  if (rv == -EAGAIN) {
291  if (!cache_defer_req(rqstp, h)) {
292  /*
293  * Request was not deferred; handle it as best
294  * we can ourselves:
295  */
296  rv = cache_is_valid(detail, h);
297  if (rv == -EAGAIN)
298  rv = -ETIMEDOUT;
299  }
300  }
301  if (rv)
302  cache_put(h, detail);
303  return rv;
304 }
306 
307 /*
308  * caches need to be periodically cleaned.
309  * For this we maintain a list of cache_detail and
310  * a current pointer into that list and into the table
311  * for that entry.
312  *
313  * Each time clean_cache is called it finds the next non-empty entry
314  * in the current table and walks the list in that entry
315  * looking for entries that can be removed.
316  *
317  * An entry gets removed if:
318  * - The expiry is before current time
319  * - The last_refresh time is before the flush_time for that cache
320  *
321  * later we might drop old entries with non-NEVER expiry if that table
322  * is getting 'full' for some definition of 'full'
323  *
324  * The question of "how often to scan a table" is an interesting one
325  * and is answered in part by the use of the "nextcheck" field in the
326  * cache_detail.
327  * When a scan of a table begins, the nextcheck field is set to a time
328  * that is well into the future.
329  * While scanning, if an expiry time is found that is earlier than the
330  * current nextcheck time, nextcheck is set to that expiry time.
331  * If the flush_time is ever set to a time earlier than the nextcheck
332  * time, the nextcheck time is then set to that flush_time.
333  *
334  * A table is then only scanned if the current time is at least
335  * the nextcheck time.
336  *
337  */
338 
339 static LIST_HEAD(cache_list);
340 static DEFINE_SPINLOCK(cache_list_lock);
341 static struct cache_detail *current_detail;
342 static int current_index;
343 
344 static void do_cache_clean(struct work_struct *work);
345 static struct delayed_work cache_cleaner;
346 
348 {
349  rwlock_init(&cd->hash_lock);
350  INIT_LIST_HEAD(&cd->queue);
351  spin_lock(&cache_list_lock);
352  cd->nextcheck = 0;
353  cd->entries = 0;
354  atomic_set(&cd->readers, 0);
355  cd->last_close = 0;
356  cd->last_warn = -1;
357  list_add(&cd->others, &cache_list);
358  spin_unlock(&cache_list_lock);
359 
360  /* start the cleaning process */
361  schedule_delayed_work(&cache_cleaner, 0);
362 }
364 
366 {
367  cache_purge(cd);
368  spin_lock(&cache_list_lock);
369  write_lock(&cd->hash_lock);
370  if (cd->entries || atomic_read(&cd->inuse)) {
371  write_unlock(&cd->hash_lock);
372  spin_unlock(&cache_list_lock);
373  goto out;
374  }
375  if (current_detail == cd)
376  current_detail = NULL;
377  list_del_init(&cd->others);
378  write_unlock(&cd->hash_lock);
379  spin_unlock(&cache_list_lock);
380  if (list_empty(&cache_list)) {
381  /* module must be being unloaded so its safe to kill the worker */
382  cancel_delayed_work_sync(&cache_cleaner);
383  }
384  return;
385 out:
386  printk(KERN_ERR "nfsd: failed to unregister %s cache\n", cd->name);
387 }
389 
390 /* clean cache tries to find something to clean
391  * and cleans it.
392  * It returns 1 if it cleaned something,
393  * 0 if it didn't find anything this time
394  * -1 if it fell off the end of the list.
395  */
396 static int cache_clean(void)
397 {
398  int rv = 0;
399  struct list_head *next;
400 
401  spin_lock(&cache_list_lock);
402 
403  /* find a suitable table if we don't already have one */
404  while (current_detail == NULL ||
405  current_index >= current_detail->hash_size) {
406  if (current_detail)
407  next = current_detail->others.next;
408  else
409  next = cache_list.next;
410  if (next == &cache_list) {
411  current_detail = NULL;
412  spin_unlock(&cache_list_lock);
413  return -1;
414  }
415  current_detail = list_entry(next, struct cache_detail, others);
416  if (current_detail->nextcheck > seconds_since_boot())
417  current_index = current_detail->hash_size;
418  else {
419  current_index = 0;
420  current_detail->nextcheck = seconds_since_boot()+30*60;
421  }
422  }
423 
424  /* find a non-empty bucket in the table */
425  while (current_detail &&
426  current_index < current_detail->hash_size &&
427  current_detail->hash_table[current_index] == NULL)
428  current_index++;
429 
430  /* find a cleanable entry in the bucket and clean it, or set to next bucket */
431 
432  if (current_detail && current_index < current_detail->hash_size) {
433  struct cache_head *ch, **cp;
434  struct cache_detail *d;
435 
436  write_lock(&current_detail->hash_lock);
437 
438  /* Ok, now to clean this strand */
439 
440  cp = & current_detail->hash_table[current_index];
441  for (ch = *cp ; ch ; cp = & ch->next, ch = *cp) {
442  if (current_detail->nextcheck > ch->expiry_time)
443  current_detail->nextcheck = ch->expiry_time+1;
444  if (!cache_is_expired(current_detail, ch))
445  continue;
446 
447  *cp = ch->next;
448  ch->next = NULL;
449  current_detail->entries--;
450  rv = 1;
451  break;
452  }
453 
454  write_unlock(&current_detail->hash_lock);
455  d = current_detail;
456  if (!ch)
457  current_index ++;
458  spin_unlock(&cache_list_lock);
459  if (ch) {
461  cache_dequeue(current_detail, ch);
462  cache_revisit_request(ch);
463  cache_put(ch, d);
464  }
465  } else
466  spin_unlock(&cache_list_lock);
467 
468  return rv;
469 }
470 
471 /*
472  * We want to regularly clean the cache, so we need to schedule some work ...
473  */
474 static void do_cache_clean(struct work_struct *work)
475 {
476  int delay = 5;
477  if (cache_clean() == -1)
478  delay = round_jiffies_relative(30*HZ);
479 
480  if (list_empty(&cache_list))
481  delay = 0;
482 
483  if (delay)
484  schedule_delayed_work(&cache_cleaner, delay);
485 }
486 
487 
488 /*
489  * Clean all caches promptly. This just calls cache_clean
490  * repeatedly until we are sure that every cache has had a chance to
491  * be fully cleaned
492  */
493 void cache_flush(void)
494 {
495  while (cache_clean() != -1)
496  cond_resched();
497  while (cache_clean() != -1)
498  cond_resched();
499 }
501 
502 void cache_purge(struct cache_detail *detail)
503 {
504  detail->flush_time = LONG_MAX;
505  detail->nextcheck = seconds_since_boot();
506  cache_flush();
507  detail->flush_time = 1;
508 }
510 
511 
512 /*
513  * Deferral and Revisiting of Requests.
514  *
515  * If a cache lookup finds a pending entry, we
516  * need to defer the request and revisit it later.
517  * All deferred requests are stored in a hash table,
518  * indexed by "struct cache_head *".
519  * As it may be wasteful to store a whole request
520  * structure, we allow the request to provide a
521  * deferred form, which must contain a
522  * 'struct cache_deferred_req'
523  * This cache_deferred_req contains a method to allow
524  * it to be revisited when cache info is available
525  */
526 
527 #define DFR_HASHSIZE (PAGE_SIZE/sizeof(struct list_head))
528 #define DFR_HASH(item) ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
529 
530 #define DFR_MAX 300 /* ??? */
531 
532 static DEFINE_SPINLOCK(cache_defer_lock);
533 static LIST_HEAD(cache_defer_list);
534 static struct hlist_head cache_defer_hash[DFR_HASHSIZE];
535 static int cache_defer_cnt;
536 
537 static void __unhash_deferred_req(struct cache_deferred_req *dreq)
538 {
539  hlist_del_init(&dreq->hash);
540  if (!list_empty(&dreq->recent)) {
541  list_del_init(&dreq->recent);
542  cache_defer_cnt--;
543  }
544 }
545 
546 static void __hash_deferred_req(struct cache_deferred_req *dreq, struct cache_head *item)
547 {
548  int hash = DFR_HASH(item);
549 
550  INIT_LIST_HEAD(&dreq->recent);
551  hlist_add_head(&dreq->hash, &cache_defer_hash[hash]);
552 }
553 
554 static void setup_deferral(struct cache_deferred_req *dreq,
555  struct cache_head *item,
556  int count_me)
557 {
558 
559  dreq->item = item;
560 
561  spin_lock(&cache_defer_lock);
562 
563  __hash_deferred_req(dreq, item);
564 
565  if (count_me) {
566  cache_defer_cnt++;
567  list_add(&dreq->recent, &cache_defer_list);
568  }
569 
570  spin_unlock(&cache_defer_lock);
571 
572 }
573 
577 };
578 
579 static void cache_restart_thread(struct cache_deferred_req *dreq, int too_many)
580 {
581  struct thread_deferred_req *dr =
582  container_of(dreq, struct thread_deferred_req, handle);
583  complete(&dr->completion);
584 }
585 
586 static void cache_wait_req(struct cache_req *req, struct cache_head *item)
587 {
589  struct cache_deferred_req *dreq = &sleeper.handle;
590 
591  sleeper.completion = COMPLETION_INITIALIZER_ONSTACK(sleeper.completion);
592  dreq->revisit = cache_restart_thread;
593 
594  setup_deferral(dreq, item, 0);
595 
596  if (!test_bit(CACHE_PENDING, &item->flags) ||
598  &sleeper.completion, req->thread_wait) <= 0) {
599  /* The completion wasn't completed, so we need
600  * to clean up
601  */
602  spin_lock(&cache_defer_lock);
603  if (!hlist_unhashed(&sleeper.handle.hash)) {
604  __unhash_deferred_req(&sleeper.handle);
605  spin_unlock(&cache_defer_lock);
606  } else {
607  /* cache_revisit_request already removed
608  * this from the hash table, but hasn't
609  * called ->revisit yet. It will very soon
610  * and we need to wait for it.
611  */
612  spin_unlock(&cache_defer_lock);
613  wait_for_completion(&sleeper.completion);
614  }
615  }
616 }
617 
618 static void cache_limit_defers(void)
619 {
620  /* Make sure we haven't exceed the limit of allowed deferred
621  * requests.
622  */
623  struct cache_deferred_req *discard = NULL;
624 
625  if (cache_defer_cnt <= DFR_MAX)
626  return;
627 
628  spin_lock(&cache_defer_lock);
629 
630  /* Consider removing either the first or the last */
631  if (cache_defer_cnt > DFR_MAX) {
632  if (net_random() & 1)
633  discard = list_entry(cache_defer_list.next,
634  struct cache_deferred_req, recent);
635  else
636  discard = list_entry(cache_defer_list.prev,
637  struct cache_deferred_req, recent);
638  __unhash_deferred_req(discard);
639  }
640  spin_unlock(&cache_defer_lock);
641  if (discard)
642  discard->revisit(discard, 1);
643 }
644 
645 /* Return true if and only if a deferred request is queued. */
646 static bool cache_defer_req(struct cache_req *req, struct cache_head *item)
647 {
648  struct cache_deferred_req *dreq;
649 
650  if (req->thread_wait) {
651  cache_wait_req(req, item);
652  if (!test_bit(CACHE_PENDING, &item->flags))
653  return false;
654  }
655  dreq = req->defer(req);
656  if (dreq == NULL)
657  return false;
658  setup_deferral(dreq, item, 1);
659  if (!test_bit(CACHE_PENDING, &item->flags))
660  /* Bit could have been cleared before we managed to
661  * set up the deferral, so need to revisit just in case
662  */
663  cache_revisit_request(item);
664 
665  cache_limit_defers();
666  return true;
667 }
668 
669 static void cache_revisit_request(struct cache_head *item)
670 {
671  struct cache_deferred_req *dreq;
672  struct list_head pending;
673  struct hlist_node *lp, *tmp;
674  int hash = DFR_HASH(item);
675 
676  INIT_LIST_HEAD(&pending);
677  spin_lock(&cache_defer_lock);
678 
679  hlist_for_each_entry_safe(dreq, lp, tmp, &cache_defer_hash[hash], hash)
680  if (dreq->item == item) {
681  __unhash_deferred_req(dreq);
682  list_add(&dreq->recent, &pending);
683  }
684 
685  spin_unlock(&cache_defer_lock);
686 
687  while (!list_empty(&pending)) {
688  dreq = list_entry(pending.next, struct cache_deferred_req, recent);
689  list_del_init(&dreq->recent);
690  dreq->revisit(dreq, 0);
691  }
692 }
693 
695 {
696  struct cache_deferred_req *dreq, *tmp;
697  struct list_head pending;
698 
699 
700  INIT_LIST_HEAD(&pending);
701  spin_lock(&cache_defer_lock);
702 
703  list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
704  if (dreq->owner == owner) {
705  __unhash_deferred_req(dreq);
706  list_add(&dreq->recent, &pending);
707  }
708  }
709  spin_unlock(&cache_defer_lock);
710 
711  while (!list_empty(&pending)) {
712  dreq = list_entry(pending.next, struct cache_deferred_req, recent);
713  list_del_init(&dreq->recent);
714  dreq->revisit(dreq, 1);
715  }
716 }
717 
718 /*
719  * communicate with user-space
720  *
721  * We have a magic /proc file - /proc/sunrpc/<cachename>/channel.
722  * On read, you get a full request, or block.
723  * On write, an update request is processed.
724  * Poll works if anything to read, and always allows write.
725  *
726  * Implemented by linked list of requests. Each open file has
727  * a ->private that also exists in this list. New requests are added
728  * to the end and may wakeup and preceding readers.
729  * New readers are added to the head. If, on read, an item is found with
730  * CACHE_UPCALLING clear, we free it from the list.
731  *
732  */
733 
734 static DEFINE_SPINLOCK(queue_lock);
735 static DEFINE_MUTEX(queue_io_mutex);
736 
737 struct cache_queue {
738  struct list_head list;
739  int reader; /* if 0, then request */
740 };
742  struct cache_queue q;
743  struct cache_head *item;
744  char * buf;
745  int len;
746  int readers;
747 };
748 struct cache_reader {
749  struct cache_queue q;
750  int offset; /* if non-0, we have a refcnt on next request */
751 };
752 
753 static ssize_t cache_read(struct file *filp, char __user *buf, size_t count,
754  loff_t *ppos, struct cache_detail *cd)
755 {
756  struct cache_reader *rp = filp->private_data;
757  struct cache_request *rq;
758  struct inode *inode = filp->f_path.dentry->d_inode;
759  int err;
760 
761  if (count == 0)
762  return 0;
763 
764  mutex_lock(&inode->i_mutex); /* protect against multiple concurrent
765  * readers on this file */
766  again:
767  spin_lock(&queue_lock);
768  /* need to find next request */
769  while (rp->q.list.next != &cd->queue &&
770  list_entry(rp->q.list.next, struct cache_queue, list)
771  ->reader) {
772  struct list_head *next = rp->q.list.next;
773  list_move(&rp->q.list, next);
774  }
775  if (rp->q.list.next == &cd->queue) {
776  spin_unlock(&queue_lock);
777  mutex_unlock(&inode->i_mutex);
778  BUG_ON(rp->offset);
779  return 0;
780  }
781  rq = container_of(rp->q.list.next, struct cache_request, q.list);
782  BUG_ON(rq->q.reader);
783  if (rp->offset == 0)
784  rq->readers++;
785  spin_unlock(&queue_lock);
786 
787  if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
788  err = -EAGAIN;
789  spin_lock(&queue_lock);
790  list_move(&rp->q.list, &rq->q.list);
791  spin_unlock(&queue_lock);
792  } else {
793  if (rp->offset + count > rq->len)
794  count = rq->len - rp->offset;
795  err = -EFAULT;
796  if (copy_to_user(buf, rq->buf + rp->offset, count))
797  goto out;
798  rp->offset += count;
799  if (rp->offset >= rq->len) {
800  rp->offset = 0;
801  spin_lock(&queue_lock);
802  list_move(&rp->q.list, &rq->q.list);
803  spin_unlock(&queue_lock);
804  }
805  err = 0;
806  }
807  out:
808  if (rp->offset == 0) {
809  /* need to release rq */
810  spin_lock(&queue_lock);
811  rq->readers--;
812  if (rq->readers == 0 &&
813  !test_bit(CACHE_PENDING, &rq->item->flags)) {
814  list_del(&rq->q.list);
815  spin_unlock(&queue_lock);
816  cache_put(rq->item, cd);
817  kfree(rq->buf);
818  kfree(rq);
819  } else
820  spin_unlock(&queue_lock);
821  }
822  if (err == -EAGAIN)
823  goto again;
824  mutex_unlock(&inode->i_mutex);
825  return err ? err : count;
826 }
827 
828 static ssize_t cache_do_downcall(char *kaddr, const char __user *buf,
829  size_t count, struct cache_detail *cd)
830 {
831  ssize_t ret;
832 
833  if (count == 0)
834  return -EINVAL;
835  if (copy_from_user(kaddr, buf, count))
836  return -EFAULT;
837  kaddr[count] = '\0';
838  ret = cd->cache_parse(cd, kaddr, count);
839  if (!ret)
840  ret = count;
841  return ret;
842 }
843 
844 static ssize_t cache_slow_downcall(const char __user *buf,
845  size_t count, struct cache_detail *cd)
846 {
847  static char write_buf[8192]; /* protected by queue_io_mutex */
848  ssize_t ret = -EINVAL;
849 
850  if (count >= sizeof(write_buf))
851  goto out;
852  mutex_lock(&queue_io_mutex);
853  ret = cache_do_downcall(write_buf, buf, count, cd);
854  mutex_unlock(&queue_io_mutex);
855 out:
856  return ret;
857 }
858 
859 static ssize_t cache_downcall(struct address_space *mapping,
860  const char __user *buf,
861  size_t count, struct cache_detail *cd)
862 {
863  struct page *page;
864  char *kaddr;
865  ssize_t ret = -ENOMEM;
866 
867  if (count >= PAGE_CACHE_SIZE)
868  goto out_slow;
869 
870  page = find_or_create_page(mapping, 0, GFP_KERNEL);
871  if (!page)
872  goto out_slow;
873 
874  kaddr = kmap(page);
875  ret = cache_do_downcall(kaddr, buf, count, cd);
876  kunmap(page);
877  unlock_page(page);
878  page_cache_release(page);
879  return ret;
880 out_slow:
881  return cache_slow_downcall(buf, count, cd);
882 }
883 
884 static ssize_t cache_write(struct file *filp, const char __user *buf,
885  size_t count, loff_t *ppos,
886  struct cache_detail *cd)
887 {
888  struct address_space *mapping = filp->f_mapping;
889  struct inode *inode = filp->f_path.dentry->d_inode;
890  ssize_t ret = -EINVAL;
891 
892  if (!cd->cache_parse)
893  goto out;
894 
895  mutex_lock(&inode->i_mutex);
896  ret = cache_downcall(mapping, buf, count, cd);
897  mutex_unlock(&inode->i_mutex);
898 out:
899  return ret;
900 }
901 
902 static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
903 
904 static unsigned int cache_poll(struct file *filp, poll_table *wait,
905  struct cache_detail *cd)
906 {
907  unsigned int mask;
908  struct cache_reader *rp = filp->private_data;
909  struct cache_queue *cq;
910 
911  poll_wait(filp, &queue_wait, wait);
912 
913  /* alway allow write */
914  mask = POLL_OUT | POLLWRNORM;
915 
916  if (!rp)
917  return mask;
918 
919  spin_lock(&queue_lock);
920 
921  for (cq= &rp->q; &cq->list != &cd->queue;
922  cq = list_entry(cq->list.next, struct cache_queue, list))
923  if (!cq->reader) {
924  mask |= POLLIN | POLLRDNORM;
925  break;
926  }
927  spin_unlock(&queue_lock);
928  return mask;
929 }
930 
931 static int cache_ioctl(struct inode *ino, struct file *filp,
932  unsigned int cmd, unsigned long arg,
933  struct cache_detail *cd)
934 {
935  int len = 0;
936  struct cache_reader *rp = filp->private_data;
937  struct cache_queue *cq;
938 
939  if (cmd != FIONREAD || !rp)
940  return -EINVAL;
941 
942  spin_lock(&queue_lock);
943 
944  /* only find the length remaining in current request,
945  * or the length of the next request
946  */
947  for (cq= &rp->q; &cq->list != &cd->queue;
948  cq = list_entry(cq->list.next, struct cache_queue, list))
949  if (!cq->reader) {
950  struct cache_request *cr =
951  container_of(cq, struct cache_request, q);
952  len = cr->len - rp->offset;
953  break;
954  }
955  spin_unlock(&queue_lock);
956 
957  return put_user(len, (int __user *)arg);
958 }
959 
960 static int cache_open(struct inode *inode, struct file *filp,
961  struct cache_detail *cd)
962 {
963  struct cache_reader *rp = NULL;
964 
965  if (!cd || !try_module_get(cd->owner))
966  return -EACCES;
967  nonseekable_open(inode, filp);
968  if (filp->f_mode & FMODE_READ) {
969  rp = kmalloc(sizeof(*rp), GFP_KERNEL);
970  if (!rp)
971  return -ENOMEM;
972  rp->offset = 0;
973  rp->q.reader = 1;
974  atomic_inc(&cd->readers);
975  spin_lock(&queue_lock);
976  list_add(&rp->q.list, &cd->queue);
977  spin_unlock(&queue_lock);
978  }
979  filp->private_data = rp;
980  return 0;
981 }
982 
983 static int cache_release(struct inode *inode, struct file *filp,
984  struct cache_detail *cd)
985 {
986  struct cache_reader *rp = filp->private_data;
987 
988  if (rp) {
989  spin_lock(&queue_lock);
990  if (rp->offset) {
991  struct cache_queue *cq;
992  for (cq= &rp->q; &cq->list != &cd->queue;
993  cq = list_entry(cq->list.next, struct cache_queue, list))
994  if (!cq->reader) {
995  container_of(cq, struct cache_request, q)
996  ->readers--;
997  break;
998  }
999  rp->offset = 0;
1000  }
1001  list_del(&rp->q.list);
1002  spin_unlock(&queue_lock);
1003 
1004  filp->private_data = NULL;
1005  kfree(rp);
1006 
1007  cd->last_close = seconds_since_boot();
1008  atomic_dec(&cd->readers);
1009  }
1010  module_put(cd->owner);
1011  return 0;
1012 }
1013 
1014 
1015 
1016 static void cache_dequeue(struct cache_detail *detail, struct cache_head *ch)
1017 {
1018  struct cache_queue *cq;
1019  spin_lock(&queue_lock);
1020  list_for_each_entry(cq, &detail->queue, list)
1021  if (!cq->reader) {
1022  struct cache_request *cr = container_of(cq, struct cache_request, q);
1023  if (cr->item != ch)
1024  continue;
1025  if (cr->readers != 0)
1026  continue;
1027  list_del(&cr->q.list);
1028  spin_unlock(&queue_lock);
1029  cache_put(cr->item, detail);
1030  kfree(cr->buf);
1031  kfree(cr);
1032  return;
1033  }
1034  spin_unlock(&queue_lock);
1035 }
1036 
1037 /*
1038  * Support routines for text-based upcalls.
1039  * Fields are separated by spaces.
1040  * Fields are either mangled to quote space tab newline slosh with slosh
1041  * or a hexified with a leading \x
1042  * Record is terminated with newline.
1043  *
1044  */
1045 
1046 void qword_add(char **bpp, int *lp, char *str)
1047 {
1048  char *bp = *bpp;
1049  int len = *lp;
1050  char c;
1051 
1052  if (len < 0) return;
1053 
1054  while ((c=*str++) && len)
1055  switch(c) {
1056  case ' ':
1057  case '\t':
1058  case '\n':
1059  case '\\':
1060  if (len >= 4) {
1061  *bp++ = '\\';
1062  *bp++ = '0' + ((c & 0300)>>6);
1063  *bp++ = '0' + ((c & 0070)>>3);
1064  *bp++ = '0' + ((c & 0007)>>0);
1065  }
1066  len -= 4;
1067  break;
1068  default:
1069  *bp++ = c;
1070  len--;
1071  }
1072  if (c || len <1) len = -1;
1073  else {
1074  *bp++ = ' ';
1075  len--;
1076  }
1077  *bpp = bp;
1078  *lp = len;
1079 }
1081 
1082 void qword_addhex(char **bpp, int *lp, char *buf, int blen)
1083 {
1084  char *bp = *bpp;
1085  int len = *lp;
1086 
1087  if (len < 0) return;
1088 
1089  if (len > 2) {
1090  *bp++ = '\\';
1091  *bp++ = 'x';
1092  len -= 2;
1093  while (blen && len >= 2) {
1094  unsigned char c = *buf++;
1095  *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
1096  *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
1097  len -= 2;
1098  blen--;
1099  }
1100  }
1101  if (blen || len<1) len = -1;
1102  else {
1103  *bp++ = ' ';
1104  len--;
1105  }
1106  *bpp = bp;
1107  *lp = len;
1108 }
1110 
1111 static void warn_no_listener(struct cache_detail *detail)
1112 {
1113  if (detail->last_warn != detail->last_close) {
1114  detail->last_warn = detail->last_close;
1115  if (detail->warn_no_listener)
1116  detail->warn_no_listener(detail, detail->last_close != 0);
1117  }
1118 }
1119 
1120 static bool cache_listeners_exist(struct cache_detail *detail)
1121 {
1122  if (atomic_read(&detail->readers))
1123  return true;
1124  if (detail->last_close == 0)
1125  /* This cache was never opened */
1126  return false;
1127  if (detail->last_close < seconds_since_boot() - 30)
1128  /*
1129  * We allow for the possibility that someone might
1130  * restart a userspace daemon without restarting the
1131  * server; but after 30 seconds, we give up.
1132  */
1133  return false;
1134  return true;
1135 }
1136 
1137 /*
1138  * register an upcall request to user-space and queue it up for read() by the
1139  * upcall daemon.
1140  *
1141  * Each request is at most one page long.
1142  */
1143 int sunrpc_cache_pipe_upcall(struct cache_detail *detail, struct cache_head *h,
1144  void (*cache_request)(struct cache_detail *,
1145  struct cache_head *,
1146  char **,
1147  int *))
1148 {
1149 
1150  char *buf;
1151  struct cache_request *crq;
1152  char *bp;
1153  int len;
1154 
1155  if (!cache_listeners_exist(detail)) {
1156  warn_no_listener(detail);
1157  return -EINVAL;
1158  }
1159 
1160  buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1161  if (!buf)
1162  return -EAGAIN;
1163 
1164  crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1165  if (!crq) {
1166  kfree(buf);
1167  return -EAGAIN;
1168  }
1169 
1170  bp = buf; len = PAGE_SIZE;
1171 
1172  cache_request(detail, h, &bp, &len);
1173 
1174  if (len < 0) {
1175  kfree(buf);
1176  kfree(crq);
1177  return -EAGAIN;
1178  }
1179  crq->q.reader = 0;
1180  crq->item = cache_get(h);
1181  crq->buf = buf;
1182  crq->len = PAGE_SIZE - len;
1183  crq->readers = 0;
1184  spin_lock(&queue_lock);
1185  list_add_tail(&crq->q.list, &detail->queue);
1186  spin_unlock(&queue_lock);
1187  wake_up(&queue_wait);
1188  return 0;
1189 }
1191 
1192 /*
1193  * parse a message from user-space and pass it
1194  * to an appropriate cache
1195  * Messages are, like requests, separated into fields by
1196  * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1197  *
1198  * Message is
1199  * reply cachename expiry key ... content....
1200  *
1201  * key and content are both parsed by cache
1202  */
1203 
1204 #define isodigit(c) (isdigit(c) && c <= '7')
1205 int qword_get(char **bpp, char *dest, int bufsize)
1206 {
1207  /* return bytes copied, or -1 on error */
1208  char *bp = *bpp;
1209  int len = 0;
1210 
1211  while (*bp == ' ') bp++;
1212 
1213  if (bp[0] == '\\' && bp[1] == 'x') {
1214  /* HEX STRING */
1215  bp += 2;
1216  while (len < bufsize) {
1217  int h, l;
1218 
1219  h = hex_to_bin(bp[0]);
1220  if (h < 0)
1221  break;
1222 
1223  l = hex_to_bin(bp[1]);
1224  if (l < 0)
1225  break;
1226 
1227  *dest++ = (h << 4) | l;
1228  bp += 2;
1229  len++;
1230  }
1231  } else {
1232  /* text with \nnn octal quoting */
1233  while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1234  if (*bp == '\\' &&
1235  isodigit(bp[1]) && (bp[1] <= '3') &&
1236  isodigit(bp[2]) &&
1237  isodigit(bp[3])) {
1238  int byte = (*++bp -'0');
1239  bp++;
1240  byte = (byte << 3) | (*bp++ - '0');
1241  byte = (byte << 3) | (*bp++ - '0');
1242  *dest++ = byte;
1243  len++;
1244  } else {
1245  *dest++ = *bp++;
1246  len++;
1247  }
1248  }
1249  }
1250 
1251  if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1252  return -1;
1253  while (*bp == ' ') bp++;
1254  *bpp = bp;
1255  *dest = '\0';
1256  return len;
1257 }
1259 
1260 
1261 /*
1262  * support /proc/sunrpc/cache/$CACHENAME/content
1263  * as a seqfile.
1264  * We call ->cache_show passing NULL for the item to
1265  * get a header, then pass each real item in the cache
1266  */
1267 
1268 struct handle {
1269  struct cache_detail *cd;
1270 };
1271 
1272 static void *c_start(struct seq_file *m, loff_t *pos)
1273  __acquires(cd->hash_lock)
1274 {
1275  loff_t n = *pos;
1276  unsigned int hash, entry;
1277  struct cache_head *ch;
1278  struct cache_detail *cd = ((struct handle*)m->private)->cd;
1279 
1280 
1281  read_lock(&cd->hash_lock);
1282  if (!n--)
1283  return SEQ_START_TOKEN;
1284  hash = n >> 32;
1285  entry = n & ((1LL<<32) - 1);
1286 
1287  for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1288  if (!entry--)
1289  return ch;
1290  n &= ~((1LL<<32) - 1);
1291  do {
1292  hash++;
1293  n += 1LL<<32;
1294  } while(hash < cd->hash_size &&
1295  cd->hash_table[hash]==NULL);
1296  if (hash >= cd->hash_size)
1297  return NULL;
1298  *pos = n+1;
1299  return cd->hash_table[hash];
1300 }
1301 
1302 static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1303 {
1304  struct cache_head *ch = p;
1305  int hash = (*pos >> 32);
1306  struct cache_detail *cd = ((struct handle*)m->private)->cd;
1307 
1308  if (p == SEQ_START_TOKEN)
1309  hash = 0;
1310  else if (ch->next == NULL) {
1311  hash++;
1312  *pos += 1LL<<32;
1313  } else {
1314  ++*pos;
1315  return ch->next;
1316  }
1317  *pos &= ~((1LL<<32) - 1);
1318  while (hash < cd->hash_size &&
1319  cd->hash_table[hash] == NULL) {
1320  hash++;
1321  *pos += 1LL<<32;
1322  }
1323  if (hash >= cd->hash_size)
1324  return NULL;
1325  ++*pos;
1326  return cd->hash_table[hash];
1327 }
1328 
1329 static void c_stop(struct seq_file *m, void *p)
1330  __releases(cd->hash_lock)
1331 {
1332  struct cache_detail *cd = ((struct handle*)m->private)->cd;
1333  read_unlock(&cd->hash_lock);
1334 }
1335 
1336 static int c_show(struct seq_file *m, void *p)
1337 {
1338  struct cache_head *cp = p;
1339  struct cache_detail *cd = ((struct handle*)m->private)->cd;
1340 
1341  if (p == SEQ_START_TOKEN)
1342  return cd->cache_show(m, cd, NULL);
1343 
1344  ifdebug(CACHE)
1345  seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1346  convert_to_wallclock(cp->expiry_time),
1347  atomic_read(&cp->ref.refcount), cp->flags);
1348  cache_get(cp);
1349  if (cache_check(cd, cp, NULL))
1350  /* cache_check does a cache_put on failure */
1351  seq_printf(m, "# ");
1352  else {
1353  if (cache_is_expired(cd, cp))
1354  seq_printf(m, "# ");
1355  cache_put(cp, cd);
1356  }
1357 
1358  return cd->cache_show(m, cd, cp);
1359 }
1360 
1361 static const struct seq_operations cache_content_op = {
1362  .start = c_start,
1363  .next = c_next,
1364  .stop = c_stop,
1365  .show = c_show,
1366 };
1367 
1368 static int content_open(struct inode *inode, struct file *file,
1369  struct cache_detail *cd)
1370 {
1371  struct handle *han;
1372 
1373  if (!cd || !try_module_get(cd->owner))
1374  return -EACCES;
1375  han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1376  if (han == NULL) {
1377  module_put(cd->owner);
1378  return -ENOMEM;
1379  }
1380 
1381  han->cd = cd;
1382  return 0;
1383 }
1384 
1385 static int content_release(struct inode *inode, struct file *file,
1386  struct cache_detail *cd)
1387 {
1388  int ret = seq_release_private(inode, file);
1389  module_put(cd->owner);
1390  return ret;
1391 }
1392 
1393 static int open_flush(struct inode *inode, struct file *file,
1394  struct cache_detail *cd)
1395 {
1396  if (!cd || !try_module_get(cd->owner))
1397  return -EACCES;
1398  return nonseekable_open(inode, file);
1399 }
1400 
1401 static int release_flush(struct inode *inode, struct file *file,
1402  struct cache_detail *cd)
1403 {
1404  module_put(cd->owner);
1405  return 0;
1406 }
1407 
1408 static ssize_t read_flush(struct file *file, char __user *buf,
1409  size_t count, loff_t *ppos,
1410  struct cache_detail *cd)
1411 {
1412  char tbuf[22];
1413  unsigned long p = *ppos;
1414  size_t len;
1415 
1416  snprintf(tbuf, sizeof(tbuf), "%lu\n", convert_to_wallclock(cd->flush_time));
1417  len = strlen(tbuf);
1418  if (p >= len)
1419  return 0;
1420  len -= p;
1421  if (len > count)
1422  len = count;
1423  if (copy_to_user(buf, (void*)(tbuf+p), len))
1424  return -EFAULT;
1425  *ppos += len;
1426  return len;
1427 }
1428 
1429 static ssize_t write_flush(struct file *file, const char __user *buf,
1430  size_t count, loff_t *ppos,
1431  struct cache_detail *cd)
1432 {
1433  char tbuf[20];
1434  char *bp, *ep;
1435 
1436  if (*ppos || count > sizeof(tbuf)-1)
1437  return -EINVAL;
1438  if (copy_from_user(tbuf, buf, count))
1439  return -EFAULT;
1440  tbuf[count] = 0;
1441  simple_strtoul(tbuf, &ep, 0);
1442  if (*ep && *ep != '\n')
1443  return -EINVAL;
1444 
1445  bp = tbuf;
1446  cd->flush_time = get_expiry(&bp);
1447  cd->nextcheck = seconds_since_boot();
1448  cache_flush();
1449 
1450  *ppos += count;
1451  return count;
1452 }
1453 
1454 static ssize_t cache_read_procfs(struct file *filp, char __user *buf,
1455  size_t count, loff_t *ppos)
1456 {
1457  struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1458 
1459  return cache_read(filp, buf, count, ppos, cd);
1460 }
1461 
1462 static ssize_t cache_write_procfs(struct file *filp, const char __user *buf,
1463  size_t count, loff_t *ppos)
1464 {
1465  struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1466 
1467  return cache_write(filp, buf, count, ppos, cd);
1468 }
1469 
1470 static unsigned int cache_poll_procfs(struct file *filp, poll_table *wait)
1471 {
1472  struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1473 
1474  return cache_poll(filp, wait, cd);
1475 }
1476 
1477 static long cache_ioctl_procfs(struct file *filp,
1478  unsigned int cmd, unsigned long arg)
1479 {
1480  struct inode *inode = filp->f_path.dentry->d_inode;
1481  struct cache_detail *cd = PDE(inode)->data;
1482 
1483  return cache_ioctl(inode, filp, cmd, arg, cd);
1484 }
1485 
1486 static int cache_open_procfs(struct inode *inode, struct file *filp)
1487 {
1488  struct cache_detail *cd = PDE(inode)->data;
1489 
1490  return cache_open(inode, filp, cd);
1491 }
1492 
1493 static int cache_release_procfs(struct inode *inode, struct file *filp)
1494 {
1495  struct cache_detail *cd = PDE(inode)->data;
1496 
1497  return cache_release(inode, filp, cd);
1498 }
1499 
1500 static const struct file_operations cache_file_operations_procfs = {
1501  .owner = THIS_MODULE,
1502  .llseek = no_llseek,
1503  .read = cache_read_procfs,
1504  .write = cache_write_procfs,
1505  .poll = cache_poll_procfs,
1506  .unlocked_ioctl = cache_ioctl_procfs, /* for FIONREAD */
1507  .open = cache_open_procfs,
1508  .release = cache_release_procfs,
1509 };
1510 
1511 static int content_open_procfs(struct inode *inode, struct file *filp)
1512 {
1513  struct cache_detail *cd = PDE(inode)->data;
1514 
1515  return content_open(inode, filp, cd);
1516 }
1517 
1518 static int content_release_procfs(struct inode *inode, struct file *filp)
1519 {
1520  struct cache_detail *cd = PDE(inode)->data;
1521 
1522  return content_release(inode, filp, cd);
1523 }
1524 
1525 static const struct file_operations content_file_operations_procfs = {
1526  .open = content_open_procfs,
1527  .read = seq_read,
1528  .llseek = seq_lseek,
1529  .release = content_release_procfs,
1530 };
1531 
1532 static int open_flush_procfs(struct inode *inode, struct file *filp)
1533 {
1534  struct cache_detail *cd = PDE(inode)->data;
1535 
1536  return open_flush(inode, filp, cd);
1537 }
1538 
1539 static int release_flush_procfs(struct inode *inode, struct file *filp)
1540 {
1541  struct cache_detail *cd = PDE(inode)->data;
1542 
1543  return release_flush(inode, filp, cd);
1544 }
1545 
1546 static ssize_t read_flush_procfs(struct file *filp, char __user *buf,
1547  size_t count, loff_t *ppos)
1548 {
1549  struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1550 
1551  return read_flush(filp, buf, count, ppos, cd);
1552 }
1553 
1554 static ssize_t write_flush_procfs(struct file *filp,
1555  const char __user *buf,
1556  size_t count, loff_t *ppos)
1557 {
1558  struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
1559 
1560  return write_flush(filp, buf, count, ppos, cd);
1561 }
1562 
1563 static const struct file_operations cache_flush_operations_procfs = {
1564  .open = open_flush_procfs,
1565  .read = read_flush_procfs,
1566  .write = write_flush_procfs,
1567  .release = release_flush_procfs,
1568  .llseek = no_llseek,
1569 };
1570 
1571 static void remove_cache_proc_entries(struct cache_detail *cd, struct net *net)
1572 {
1573  struct sunrpc_net *sn;
1574 
1575  if (cd->u.procfs.proc_ent == NULL)
1576  return;
1577  if (cd->u.procfs.flush_ent)
1578  remove_proc_entry("flush", cd->u.procfs.proc_ent);
1579  if (cd->u.procfs.channel_ent)
1580  remove_proc_entry("channel", cd->u.procfs.proc_ent);
1581  if (cd->u.procfs.content_ent)
1582  remove_proc_entry("content", cd->u.procfs.proc_ent);
1583  cd->u.procfs.proc_ent = NULL;
1584  sn = net_generic(net, sunrpc_net_id);
1586 }
1587 
1588 #ifdef CONFIG_PROC_FS
1589 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1590 {
1591  struct proc_dir_entry *p;
1592  struct sunrpc_net *sn;
1593 
1594  sn = net_generic(net, sunrpc_net_id);
1595  cd->u.procfs.proc_ent = proc_mkdir(cd->name, sn->proc_net_rpc);
1596  if (cd->u.procfs.proc_ent == NULL)
1597  goto out_nomem;
1598  cd->u.procfs.channel_ent = NULL;
1599  cd->u.procfs.content_ent = NULL;
1600 
1601  p = proc_create_data("flush", S_IFREG|S_IRUSR|S_IWUSR,
1602  cd->u.procfs.proc_ent,
1603  &cache_flush_operations_procfs, cd);
1604  cd->u.procfs.flush_ent = p;
1605  if (p == NULL)
1606  goto out_nomem;
1607 
1608  if (cd->cache_upcall || cd->cache_parse) {
1609  p = proc_create_data("channel", S_IFREG|S_IRUSR|S_IWUSR,
1610  cd->u.procfs.proc_ent,
1611  &cache_file_operations_procfs, cd);
1612  cd->u.procfs.channel_ent = p;
1613  if (p == NULL)
1614  goto out_nomem;
1615  }
1616  if (cd->cache_show) {
1617  p = proc_create_data("content", S_IFREG|S_IRUSR|S_IWUSR,
1618  cd->u.procfs.proc_ent,
1619  &content_file_operations_procfs, cd);
1620  cd->u.procfs.content_ent = p;
1621  if (p == NULL)
1622  goto out_nomem;
1623  }
1624  return 0;
1625 out_nomem:
1626  remove_cache_proc_entries(cd, net);
1627  return -ENOMEM;
1628 }
1629 #else /* CONFIG_PROC_FS */
1630 static int create_cache_proc_entries(struct cache_detail *cd, struct net *net)
1631 {
1632  return 0;
1633 }
1634 #endif
1635 
1637 {
1638  INIT_DEFERRABLE_WORK(&cache_cleaner, do_cache_clean);
1639 }
1640 
1641 int cache_register_net(struct cache_detail *cd, struct net *net)
1642 {
1643  int ret;
1644 
1646  ret = create_cache_proc_entries(cd, net);
1647  if (ret)
1649  return ret;
1650 }
1652 
1653 void cache_unregister_net(struct cache_detail *cd, struct net *net)
1654 {
1655  remove_cache_proc_entries(cd, net);
1657 }
1659 
1660 struct cache_detail *cache_create_net(struct cache_detail *tmpl, struct net *net)
1661 {
1662  struct cache_detail *cd;
1663 
1664  cd = kmemdup(tmpl, sizeof(struct cache_detail), GFP_KERNEL);
1665  if (cd == NULL)
1666  return ERR_PTR(-ENOMEM);
1667 
1668  cd->hash_table = kzalloc(cd->hash_size * sizeof(struct cache_head *),
1669  GFP_KERNEL);
1670  if (cd->hash_table == NULL) {
1671  kfree(cd);
1672  return ERR_PTR(-ENOMEM);
1673  }
1674  cd->net = net;
1675  return cd;
1676 }
1678 
1679 void cache_destroy_net(struct cache_detail *cd, struct net *net)
1680 {
1681  kfree(cd->hash_table);
1682  kfree(cd);
1683 }
1685 
1686 static ssize_t cache_read_pipefs(struct file *filp, char __user *buf,
1687  size_t count, loff_t *ppos)
1688 {
1689  struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1690 
1691  return cache_read(filp, buf, count, ppos, cd);
1692 }
1693 
1694 static ssize_t cache_write_pipefs(struct file *filp, const char __user *buf,
1695  size_t count, loff_t *ppos)
1696 {
1697  struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1698 
1699  return cache_write(filp, buf, count, ppos, cd);
1700 }
1701 
1702 static unsigned int cache_poll_pipefs(struct file *filp, poll_table *wait)
1703 {
1704  struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1705 
1706  return cache_poll(filp, wait, cd);
1707 }
1708 
1709 static long cache_ioctl_pipefs(struct file *filp,
1710  unsigned int cmd, unsigned long arg)
1711 {
1712  struct inode *inode = filp->f_dentry->d_inode;
1713  struct cache_detail *cd = RPC_I(inode)->private;
1714 
1715  return cache_ioctl(inode, filp, cmd, arg, cd);
1716 }
1717 
1718 static int cache_open_pipefs(struct inode *inode, struct file *filp)
1719 {
1720  struct cache_detail *cd = RPC_I(inode)->private;
1721 
1722  return cache_open(inode, filp, cd);
1723 }
1724 
1725 static int cache_release_pipefs(struct inode *inode, struct file *filp)
1726 {
1727  struct cache_detail *cd = RPC_I(inode)->private;
1728 
1729  return cache_release(inode, filp, cd);
1730 }
1731 
1733  .owner = THIS_MODULE,
1734  .llseek = no_llseek,
1735  .read = cache_read_pipefs,
1736  .write = cache_write_pipefs,
1737  .poll = cache_poll_pipefs,
1738  .unlocked_ioctl = cache_ioctl_pipefs, /* for FIONREAD */
1739  .open = cache_open_pipefs,
1740  .release = cache_release_pipefs,
1741 };
1742 
1743 static int content_open_pipefs(struct inode *inode, struct file *filp)
1744 {
1745  struct cache_detail *cd = RPC_I(inode)->private;
1746 
1747  return content_open(inode, filp, cd);
1748 }
1749 
1750 static int content_release_pipefs(struct inode *inode, struct file *filp)
1751 {
1752  struct cache_detail *cd = RPC_I(inode)->private;
1753 
1754  return content_release(inode, filp, cd);
1755 }
1756 
1758  .open = content_open_pipefs,
1759  .read = seq_read,
1760  .llseek = seq_lseek,
1761  .release = content_release_pipefs,
1762 };
1763 
1764 static int open_flush_pipefs(struct inode *inode, struct file *filp)
1765 {
1766  struct cache_detail *cd = RPC_I(inode)->private;
1767 
1768  return open_flush(inode, filp, cd);
1769 }
1770 
1771 static int release_flush_pipefs(struct inode *inode, struct file *filp)
1772 {
1773  struct cache_detail *cd = RPC_I(inode)->private;
1774 
1775  return release_flush(inode, filp, cd);
1776 }
1777 
1778 static ssize_t read_flush_pipefs(struct file *filp, char __user *buf,
1779  size_t count, loff_t *ppos)
1780 {
1781  struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1782 
1783  return read_flush(filp, buf, count, ppos, cd);
1784 }
1785 
1786 static ssize_t write_flush_pipefs(struct file *filp,
1787  const char __user *buf,
1788  size_t count, loff_t *ppos)
1789 {
1790  struct cache_detail *cd = RPC_I(filp->f_path.dentry->d_inode)->private;
1791 
1792  return write_flush(filp, buf, count, ppos, cd);
1793 }
1794 
1796  .open = open_flush_pipefs,
1797  .read = read_flush_pipefs,
1798  .write = write_flush_pipefs,
1799  .release = release_flush_pipefs,
1800  .llseek = no_llseek,
1801 };
1802 
1804  const char *name, umode_t umode,
1805  struct cache_detail *cd)
1806 {
1807  struct qstr q;
1808  struct dentry *dir;
1809  int ret = 0;
1810 
1811  q.name = name;
1812  q.len = strlen(name);
1813  q.hash = full_name_hash(q.name, q.len);
1814  dir = rpc_create_cache_dir(parent, &q, umode, cd);
1815  if (!IS_ERR(dir))
1816  cd->u.pipefs.dir = dir;
1817  else
1818  ret = PTR_ERR(dir);
1819  return ret;
1820 }
1822 
1824 {
1825  rpc_remove_cache_dir(cd->u.pipefs.dir);
1826  cd->u.pipefs.dir = NULL;
1827 }
1829