Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
util.c
Go to the documentation of this file.
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009 Johannes Berg <[email protected]>
5  */
6 #include <linux/export.h>
7 #include <linux/bitops.h>
8 #include <linux/etherdevice.h>
9 #include <linux/slab.h>
10 #include <net/cfg80211.h>
11 #include <net/ip.h>
12 #include <net/dsfield.h>
13 #include "core.h"
14 
15 struct ieee80211_rate *
17  u32 basic_rates, int bitrate)
18 {
19  struct ieee80211_rate *result = &sband->bitrates[0];
20  int i;
21 
22  for (i = 0; i < sband->n_bitrates; i++) {
23  if (!(basic_rates & BIT(i)))
24  continue;
25  if (sband->bitrates[i].bitrate > bitrate)
26  continue;
27  result = &sband->bitrates[i];
28  }
29 
30  return result;
31 }
33 
35 {
36  /* see 802.11 17.3.8.3.2 and Annex J
37  * there are overlapping channel numbers in 5GHz and 2GHz bands */
38  if (chan <= 0)
39  return 0; /* not supported */
40  switch (band) {
42  if (chan == 14)
43  return 2484;
44  else if (chan < 14)
45  return 2407 + chan * 5;
46  break;
48  if (chan >= 182 && chan <= 196)
49  return 4000 + chan * 5;
50  else
51  return 5000 + chan * 5;
52  break;
54  if (chan < 5)
55  return 56160 + chan * 2160;
56  break;
57  default:
58  ;
59  }
60  return 0; /* not supported */
61 }
63 
65 {
66  /* see 802.11 17.3.8.3.2 and Annex J */
67  if (freq == 2484)
68  return 14;
69  else if (freq < 2484)
70  return (freq - 2407) / 5;
71  else if (freq >= 4910 && freq <= 4980)
72  return (freq - 4000) / 5;
73  else if (freq <= 45000) /* DMG band lower limit */
74  return (freq - 5000) / 5;
75  else if (freq >= 58320 && freq <= 64800)
76  return (freq - 56160) / 2160;
77  else
78  return 0;
79 }
81 
83  int freq)
84 {
85  enum ieee80211_band band;
86  struct ieee80211_supported_band *sband;
87  int i;
88 
89  for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
90  sband = wiphy->bands[band];
91 
92  if (!sband)
93  continue;
94 
95  for (i = 0; i < sband->n_channels; i++) {
96  if (sband->channels[i].center_freq == freq)
97  return &sband->channels[i];
98  }
99  }
100 
101  return NULL;
102 }
104 
105 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband,
106  enum ieee80211_band band)
107 {
108  int i, want;
109 
110  switch (band) {
111  case IEEE80211_BAND_5GHZ:
112  want = 3;
113  for (i = 0; i < sband->n_bitrates; i++) {
114  if (sband->bitrates[i].bitrate == 60 ||
115  sband->bitrates[i].bitrate == 120 ||
116  sband->bitrates[i].bitrate == 240) {
117  sband->bitrates[i].flags |=
119  want--;
120  }
121  }
122  WARN_ON(want);
123  break;
124  case IEEE80211_BAND_2GHZ:
125  want = 7;
126  for (i = 0; i < sband->n_bitrates; i++) {
127  if (sband->bitrates[i].bitrate == 10) {
128  sband->bitrates[i].flags |=
131  want--;
132  }
133 
134  if (sband->bitrates[i].bitrate == 20 ||
135  sband->bitrates[i].bitrate == 55 ||
136  sband->bitrates[i].bitrate == 110 ||
137  sband->bitrates[i].bitrate == 60 ||
138  sband->bitrates[i].bitrate == 120 ||
139  sband->bitrates[i].bitrate == 240) {
140  sband->bitrates[i].flags |=
142  want--;
143  }
144 
145  if (sband->bitrates[i].bitrate != 10 &&
146  sband->bitrates[i].bitrate != 20 &&
147  sband->bitrates[i].bitrate != 55 &&
148  sband->bitrates[i].bitrate != 110)
149  sband->bitrates[i].flags |=
151  }
152  WARN_ON(want != 0 && want != 3 && want != 6);
153  break;
155  /* check for mandatory HT MCS 1..4 */
156  WARN_ON(!sband->ht_cap.ht_supported);
157  WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
158  break;
159  case IEEE80211_NUM_BANDS:
160  WARN_ON(1);
161  break;
162  }
163 }
164 
166 {
167  enum ieee80211_band band;
168 
169  for (band = 0; band < IEEE80211_NUM_BANDS; band++)
170  if (wiphy->bands[band])
171  set_mandatory_flags_band(wiphy->bands[band], band);
172 }
173 
175 {
176  int i;
177  for (i = 0; i < wiphy->n_cipher_suites; i++)
178  if (cipher == wiphy->cipher_suites[i])
179  return true;
180  return false;
181 }
182 
184  struct key_params *params, int key_idx,
185  bool pairwise, const u8 *mac_addr)
186 {
187  if (key_idx > 5)
188  return -EINVAL;
189 
190  if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
191  return -EINVAL;
192 
193  if (pairwise && !mac_addr)
194  return -EINVAL;
195 
196  /*
197  * Disallow pairwise keys with non-zero index unless it's WEP
198  * or a vendor specific cipher (because current deployments use
199  * pairwise WEP keys with non-zero indices and for vendor specific
200  * ciphers this should be validated in the driver or hardware level
201  * - but 802.11i clearly specifies to use zero)
202  */
203  if (pairwise && key_idx &&
204  ((params->cipher == WLAN_CIPHER_SUITE_TKIP) ||
205  (params->cipher == WLAN_CIPHER_SUITE_CCMP) ||
206  (params->cipher == WLAN_CIPHER_SUITE_AES_CMAC)))
207  return -EINVAL;
208 
209  switch (params->cipher) {
211  if (params->key_len != WLAN_KEY_LEN_WEP40)
212  return -EINVAL;
213  break;
215  if (params->key_len != WLAN_KEY_LEN_TKIP)
216  return -EINVAL;
217  break;
219  if (params->key_len != WLAN_KEY_LEN_CCMP)
220  return -EINVAL;
221  break;
223  if (params->key_len != WLAN_KEY_LEN_WEP104)
224  return -EINVAL;
225  break;
227  if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
228  return -EINVAL;
229  break;
230  default:
231  /*
232  * We don't know anything about this algorithm,
233  * allow using it -- but the driver must check
234  * all parameters! We still check below whether
235  * or not the driver supports this algorithm,
236  * of course.
237  */
238  break;
239  }
240 
241  if (params->seq) {
242  switch (params->cipher) {
245  /* These ciphers do not use key sequence */
246  return -EINVAL;
250  if (params->seq_len != 6)
251  return -EINVAL;
252  break;
253  }
254  }
255 
256  if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
257  return -EINVAL;
258 
259  return 0;
260 }
261 
263 {
264  unsigned int hdrlen = 24;
265 
266  if (ieee80211_is_data(fc)) {
267  if (ieee80211_has_a4(fc))
268  hdrlen = 30;
269  if (ieee80211_is_data_qos(fc)) {
270  hdrlen += IEEE80211_QOS_CTL_LEN;
271  if (ieee80211_has_order(fc))
272  hdrlen += IEEE80211_HT_CTL_LEN;
273  }
274  goto out;
275  }
276 
277  if (ieee80211_is_ctl(fc)) {
278  /*
279  * ACK and CTS are 10 bytes, all others 16. To see how
280  * to get this condition consider
281  * subtype mask: 0b0000000011110000 (0x00F0)
282  * ACK subtype: 0b0000000011010000 (0x00D0)
283  * CTS subtype: 0b0000000011000000 (0x00C0)
284  * bits that matter: ^^^ (0x00E0)
285  * value of those: 0b0000000011000000 (0x00C0)
286  */
287  if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
288  hdrlen = 10;
289  else
290  hdrlen = 16;
291  }
292 out:
293  return hdrlen;
294 }
296 
297 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
298 {
299  const struct ieee80211_hdr *hdr =
300  (const struct ieee80211_hdr *)skb->data;
301  unsigned int hdrlen;
302 
303  if (unlikely(skb->len < 10))
304  return 0;
306  if (unlikely(hdrlen > skb->len))
307  return 0;
308  return hdrlen;
309 }
311 
312 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
313 {
314  int ae = meshhdr->flags & MESH_FLAGS_AE;
315  /* 802.11-2012, 8.2.4.7.3 */
316  switch (ae) {
317  default:
318  case 0:
319  return 6;
320  case MESH_FLAGS_AE_A4:
321  return 12;
322  case MESH_FLAGS_AE_A5_A6:
323  return 18;
324  }
325 }
327 
329  enum nl80211_iftype iftype)
330 {
331  struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
333  u8 *payload;
334  u8 dst[ETH_ALEN];
335  u8 src[ETH_ALEN] __aligned(2);
336 
337  if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
338  return -1;
339 
340  hdrlen = ieee80211_hdrlen(hdr->frame_control);
341 
342  /* convert IEEE 802.11 header + possible LLC headers into Ethernet
343  * header
344  * IEEE 802.11 address fields:
345  * ToDS FromDS Addr1 Addr2 Addr3 Addr4
346  * 0 0 DA SA BSSID n/a
347  * 0 1 DA BSSID SA n/a
348  * 1 0 BSSID SA DA n/a
349  * 1 1 RA TA DA SA
350  */
351  memcpy(dst, ieee80211_get_DA(hdr), ETH_ALEN);
352  memcpy(src, ieee80211_get_SA(hdr), ETH_ALEN);
353 
354  switch (hdr->frame_control &
357  if (unlikely(iftype != NL80211_IFTYPE_AP &&
358  iftype != NL80211_IFTYPE_AP_VLAN &&
359  iftype != NL80211_IFTYPE_P2P_GO))
360  return -1;
361  break;
363  if (unlikely(iftype != NL80211_IFTYPE_WDS &&
364  iftype != NL80211_IFTYPE_MESH_POINT &&
365  iftype != NL80211_IFTYPE_AP_VLAN &&
366  iftype != NL80211_IFTYPE_STATION))
367  return -1;
368  if (iftype == NL80211_IFTYPE_MESH_POINT) {
369  struct ieee80211s_hdr *meshdr =
370  (struct ieee80211s_hdr *) (skb->data + hdrlen);
371  /* make sure meshdr->flags is on the linear part */
372  if (!pskb_may_pull(skb, hdrlen + 1))
373  return -1;
374  if (meshdr->flags & MESH_FLAGS_AE_A4)
375  return -1;
376  if (meshdr->flags & MESH_FLAGS_AE_A5_A6) {
377  skb_copy_bits(skb, hdrlen +
378  offsetof(struct ieee80211s_hdr, eaddr1),
379  dst, ETH_ALEN);
380  skb_copy_bits(skb, hdrlen +
381  offsetof(struct ieee80211s_hdr, eaddr2),
382  src, ETH_ALEN);
383  }
384  hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
385  }
386  break;
388  if ((iftype != NL80211_IFTYPE_STATION &&
389  iftype != NL80211_IFTYPE_P2P_CLIENT &&
390  iftype != NL80211_IFTYPE_MESH_POINT) ||
391  (is_multicast_ether_addr(dst) &&
392  ether_addr_equal(src, addr)))
393  return -1;
394  if (iftype == NL80211_IFTYPE_MESH_POINT) {
395  struct ieee80211s_hdr *meshdr =
396  (struct ieee80211s_hdr *) (skb->data + hdrlen);
397  /* make sure meshdr->flags is on the linear part */
398  if (!pskb_may_pull(skb, hdrlen + 1))
399  return -1;
400  if (meshdr->flags & MESH_FLAGS_AE_A5_A6)
401  return -1;
402  if (meshdr->flags & MESH_FLAGS_AE_A4)
403  skb_copy_bits(skb, hdrlen +
404  offsetof(struct ieee80211s_hdr, eaddr1),
405  src, ETH_ALEN);
406  hdrlen += ieee80211_get_mesh_hdrlen(meshdr);
407  }
408  break;
409  case cpu_to_le16(0):
410  if (iftype != NL80211_IFTYPE_ADHOC &&
411  iftype != NL80211_IFTYPE_STATION)
412  return -1;
413  break;
414  }
415 
416  if (!pskb_may_pull(skb, hdrlen + 8))
417  return -1;
418 
419  payload = skb->data + hdrlen;
420  ethertype = (payload[6] << 8) | payload[7];
421 
422  if (likely((ether_addr_equal(payload, rfc1042_header) &&
424  ether_addr_equal(payload, bridge_tunnel_header))) {
425  /* remove RFC1042 or Bridge-Tunnel encapsulation and
426  * replace EtherType */
427  skb_pull(skb, hdrlen + 6);
430  } else {
431  struct ethhdr *ehdr;
432  __be16 len;
433 
434  skb_pull(skb, hdrlen);
435  len = htons(skb->len);
436  ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
437  memcpy(ehdr->h_dest, dst, ETH_ALEN);
438  memcpy(ehdr->h_source, src, ETH_ALEN);
439  ehdr->h_proto = len;
440  }
441  return 0;
442 }
444 
446  enum nl80211_iftype iftype, u8 *bssid, bool qos)
447 {
448  struct ieee80211_hdr hdr;
450  __le16 fc;
451  const u8 *encaps_data;
452  int encaps_len, skip_header_bytes;
453  int nh_pos, h_pos;
454  int head_need;
455 
456  if (unlikely(skb->len < ETH_HLEN))
457  return -EINVAL;
458 
459  nh_pos = skb_network_header(skb) - skb->data;
460  h_pos = skb_transport_header(skb) - skb->data;
461 
462  /* convert Ethernet header to proper 802.11 header (based on
463  * operation mode) */
464  ethertype = (skb->data[12] << 8) | skb->data[13];
466 
467  switch (iftype) {
468  case NL80211_IFTYPE_AP:
472  /* DA BSSID SA */
473  memcpy(hdr.addr1, skb->data, ETH_ALEN);
474  memcpy(hdr.addr2, addr, ETH_ALEN);
475  memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
476  hdrlen = 24;
477  break;
481  /* BSSID SA DA */
482  memcpy(hdr.addr1, bssid, ETH_ALEN);
483  memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
484  memcpy(hdr.addr3, skb->data, ETH_ALEN);
485  hdrlen = 24;
486  break;
488  /* DA SA BSSID */
489  memcpy(hdr.addr1, skb->data, ETH_ALEN);
490  memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
491  memcpy(hdr.addr3, bssid, ETH_ALEN);
492  hdrlen = 24;
493  break;
494  default:
495  return -EOPNOTSUPP;
496  }
497 
498  if (qos) {
500  hdrlen += 2;
501  }
502 
503  hdr.frame_control = fc;
504  hdr.duration_id = 0;
505  hdr.seq_ctrl = 0;
506 
507  skip_header_bytes = ETH_HLEN;
508  if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
509  encaps_data = bridge_tunnel_header;
510  encaps_len = sizeof(bridge_tunnel_header);
511  skip_header_bytes -= 2;
512  } else if (ethertype > 0x600) {
513  encaps_data = rfc1042_header;
514  encaps_len = sizeof(rfc1042_header);
515  skip_header_bytes -= 2;
516  } else {
517  encaps_data = NULL;
518  encaps_len = 0;
519  }
520 
521  skb_pull(skb, skip_header_bytes);
522  nh_pos -= skip_header_bytes;
523  h_pos -= skip_header_bytes;
524 
525  head_need = hdrlen + encaps_len - skb_headroom(skb);
526 
527  if (head_need > 0 || skb_cloned(skb)) {
528  head_need = max(head_need, 0);
529  if (head_need)
530  skb_orphan(skb);
531 
532  if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
533  return -ENOMEM;
534 
535  skb->truesize += head_need;
536  }
537 
538  if (encaps_data) {
539  memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
540  nh_pos += encaps_len;
541  h_pos += encaps_len;
542  }
543 
544  memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
545 
546  nh_pos += hdrlen;
547  h_pos += hdrlen;
548 
549  /* Update skb pointers to various headers since this modified frame
550  * is going to go through Linux networking code that may potentially
551  * need things like pointer to IP header. */
552  skb_set_mac_header(skb, 0);
553  skb_set_network_header(skb, nh_pos);
554  skb_set_transport_header(skb, h_pos);
555 
556  return 0;
557 }
559 
560 
562  const u8 *addr, enum nl80211_iftype iftype,
563  const unsigned int extra_headroom,
564  bool has_80211_header)
565 {
566  struct sk_buff *frame = NULL;
567  u16 ethertype;
568  u8 *payload;
569  const struct ethhdr *eth;
570  int remaining, err;
572 
573  if (has_80211_header) {
574  err = ieee80211_data_to_8023(skb, addr, iftype);
575  if (err)
576  goto out;
577 
578  /* skip the wrapping header */
579  eth = (struct ethhdr *) skb_pull(skb, sizeof(struct ethhdr));
580  if (!eth)
581  goto out;
582  } else {
583  eth = (struct ethhdr *) skb->data;
584  }
585 
586  while (skb != frame) {
587  u8 padding;
588  __be16 len = eth->h_proto;
589  unsigned int subframe_len = sizeof(struct ethhdr) + ntohs(len);
590 
591  remaining = skb->len;
592  memcpy(dst, eth->h_dest, ETH_ALEN);
593  memcpy(src, eth->h_source, ETH_ALEN);
594 
595  padding = (4 - subframe_len) & 0x3;
596  /* the last MSDU has no padding */
597  if (subframe_len > remaining)
598  goto purge;
599 
600  skb_pull(skb, sizeof(struct ethhdr));
601  /* reuse skb for the last subframe */
602  if (remaining <= subframe_len + padding)
603  frame = skb;
604  else {
605  unsigned int hlen = ALIGN(extra_headroom, 4);
606  /*
607  * Allocate and reserve two bytes more for payload
608  * alignment since sizeof(struct ethhdr) is 14.
609  */
610  frame = dev_alloc_skb(hlen + subframe_len + 2);
611  if (!frame)
612  goto purge;
613 
614  skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
615  memcpy(skb_put(frame, ntohs(len)), skb->data,
616  ntohs(len));
617 
618  eth = (struct ethhdr *)skb_pull(skb, ntohs(len) +
619  padding);
620  if (!eth) {
621  dev_kfree_skb(frame);
622  goto purge;
623  }
624  }
625 
626  skb_reset_network_header(frame);
627  frame->dev = skb->dev;
628  frame->priority = skb->priority;
629 
630  payload = frame->data;
631  ethertype = (payload[6] << 8) | payload[7];
632 
633  if (likely((ether_addr_equal(payload, rfc1042_header) &&
634  ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
635  ether_addr_equal(payload, bridge_tunnel_header))) {
636  /* remove RFC1042 or Bridge-Tunnel
637  * encapsulation and replace EtherType */
638  skb_pull(frame, 6);
639  memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
640  memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
641  } else {
642  memcpy(skb_push(frame, sizeof(__be16)), &len,
643  sizeof(__be16));
644  memcpy(skb_push(frame, ETH_ALEN), src, ETH_ALEN);
645  memcpy(skb_push(frame, ETH_ALEN), dst, ETH_ALEN);
646  }
647  __skb_queue_tail(list, frame);
648  }
649 
650  return;
651 
652  purge:
653  __skb_queue_purge(list);
654  out:
655  dev_kfree_skb(skb);
656 }
658 
659 /* Given a data frame determine the 802.1p/1d tag to use. */
660 unsigned int cfg80211_classify8021d(struct sk_buff *skb)
661 {
662  unsigned int dscp;
663 
664  /* skb->priority values from 256->263 are magic values to
665  * directly indicate a specific 802.1d priority. This is used
666  * to allow 802.1d priority to be passed directly in from VLAN
667  * tags, etc.
668  */
669  if (skb->priority >= 256 && skb->priority <= 263)
670  return skb->priority - 256;
671 
672  switch (skb->protocol) {
673  case htons(ETH_P_IP):
674  dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
675  break;
676  case htons(ETH_P_IPV6):
677  dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
678  break;
679  default:
680  return 0;
681  }
682 
683  return dscp >> 5;
684 }
686 
687 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
688 {
689  if (bss->information_elements == NULL)
690  return NULL;
691  return cfg80211_find_ie(ie, bss->information_elements,
693 }
695 
697 {
698  struct cfg80211_registered_device *rdev = wiphy_to_dev(wdev->wiphy);
699  struct net_device *dev = wdev->netdev;
700  int i;
701 
702  if (!wdev->connect_keys)
703  return;
704 
705  for (i = 0; i < 6; i++) {
706  if (!wdev->connect_keys->params[i].cipher)
707  continue;
708  if (rdev->ops->add_key(wdev->wiphy, dev, i, false, NULL,
709  &wdev->connect_keys->params[i])) {
710  netdev_err(dev, "failed to set key %d\n", i);
711  continue;
712  }
713  if (wdev->connect_keys->def == i)
714  if (rdev->ops->set_default_key(wdev->wiphy, dev,
715  i, true, true)) {
716  netdev_err(dev, "failed to set defkey %d\n", i);
717  continue;
718  }
719  if (wdev->connect_keys->defmgmt == i)
720  if (rdev->ops->set_default_mgmt_key(wdev->wiphy, dev, i))
721  netdev_err(dev, "failed to set mgtdef %d\n", i);
722  }
723 
724  kfree(wdev->connect_keys);
725  wdev->connect_keys = NULL;
726 }
727 
729 {
730  struct cfg80211_event *ev;
731  unsigned long flags;
732  const u8 *bssid = NULL;
733 
734  spin_lock_irqsave(&wdev->event_lock, flags);
735  while (!list_empty(&wdev->event_list)) {
736  ev = list_first_entry(&wdev->event_list,
737  struct cfg80211_event, list);
738  list_del(&ev->list);
739  spin_unlock_irqrestore(&wdev->event_lock, flags);
740 
741  wdev_lock(wdev);
742  switch (ev->type) {
744  if (!is_zero_ether_addr(ev->cr.bssid))
745  bssid = ev->cr.bssid;
747  wdev->netdev, bssid,
748  ev->cr.req_ie, ev->cr.req_ie_len,
749  ev->cr.resp_ie, ev->cr.resp_ie_len,
750  ev->cr.status,
751  ev->cr.status == WLAN_STATUS_SUCCESS,
752  NULL);
753  break;
754  case EVENT_ROAMED:
755  __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
756  ev->rm.req_ie_len, ev->rm.resp_ie,
757  ev->rm.resp_ie_len);
758  break;
759  case EVENT_DISCONNECTED:
761  ev->dc.ie, ev->dc.ie_len,
762  ev->dc.reason, true);
763  break;
764  case EVENT_IBSS_JOINED:
765  __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid);
766  break;
767  }
768  wdev_unlock(wdev);
769 
770  kfree(ev);
771 
772  spin_lock_irqsave(&wdev->event_lock, flags);
773  }
774  spin_unlock_irqrestore(&wdev->event_lock, flags);
775 }
776 
778 {
779  struct wireless_dev *wdev;
780 
781  ASSERT_RTNL();
782  ASSERT_RDEV_LOCK(rdev);
783 
784  mutex_lock(&rdev->devlist_mtx);
785 
786  list_for_each_entry(wdev, &rdev->wdev_list, list)
788 
789  mutex_unlock(&rdev->devlist_mtx);
790 }
791 
793  struct net_device *dev, enum nl80211_iftype ntype,
794  u32 *flags, struct vif_params *params)
795 {
796  int err;
797  enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
798 
799  ASSERT_RDEV_LOCK(rdev);
800 
801  /* don't support changing VLANs, you just re-create them */
802  if (otype == NL80211_IFTYPE_AP_VLAN)
803  return -EOPNOTSUPP;
804 
805  /* cannot change into P2P device type */
806  if (ntype == NL80211_IFTYPE_P2P_DEVICE)
807  return -EOPNOTSUPP;
808 
809  if (!rdev->ops->change_virtual_intf ||
810  !(rdev->wiphy.interface_modes & (1 << ntype)))
811  return -EOPNOTSUPP;
812 
813  /* if it's part of a bridge, reject changing type to station/ibss */
814  if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
815  (ntype == NL80211_IFTYPE_ADHOC ||
816  ntype == NL80211_IFTYPE_STATION ||
817  ntype == NL80211_IFTYPE_P2P_CLIENT))
818  return -EBUSY;
819 
820  if (ntype != otype && netif_running(dev)) {
821  mutex_lock(&rdev->devlist_mtx);
822  err = cfg80211_can_change_interface(rdev, dev->ieee80211_ptr,
823  ntype);
824  mutex_unlock(&rdev->devlist_mtx);
825  if (err)
826  return err;
827 
828  dev->ieee80211_ptr->use_4addr = false;
829  dev->ieee80211_ptr->mesh_id_up_len = 0;
830 
831  switch (otype) {
832  case NL80211_IFTYPE_AP:
833  cfg80211_stop_ap(rdev, dev);
834  break;
836  cfg80211_leave_ibss(rdev, dev, false);
837  break;
840  cfg80211_disconnect(rdev, dev,
842  break;
844  /* mesh should be handled? */
845  break;
846  default:
847  break;
848  }
849 
851  }
852 
853  err = rdev->ops->change_virtual_intf(&rdev->wiphy, dev,
854  ntype, flags, params);
855 
856  WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
857 
858  if (!err && params && params->use_4addr != -1)
859  dev->ieee80211_ptr->use_4addr = params->use_4addr;
860 
861  if (!err) {
862  dev->priv_flags &= ~IFF_DONT_BRIDGE;
863  switch (ntype) {
865  if (dev->ieee80211_ptr->use_4addr)
866  break;
867  /* fall through */
870  dev->priv_flags |= IFF_DONT_BRIDGE;
871  break;
873  case NL80211_IFTYPE_AP:
875  case NL80211_IFTYPE_WDS:
877  /* bridging OK */
878  break;
880  /* monitor can't bridge anyway */
881  break;
883  case NUM_NL80211_IFTYPES:
884  /* not happening */
885  break;
887  WARN_ON(1);
888  break;
889  }
890  }
891 
892  if (!err && ntype != otype && netif_running(dev)) {
893  cfg80211_update_iface_num(rdev, ntype, 1);
894  cfg80211_update_iface_num(rdev, otype, -1);
895  }
896 
897  return err;
898 }
899 
900 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
901 {
902  static const u32 __mcs2bitrate[] = {
903  /* control PHY */
904  [0] = 275,
905  /* SC PHY */
906  [1] = 3850,
907  [2] = 7700,
908  [3] = 9625,
909  [4] = 11550,
910  [5] = 12512, /* 1251.25 mbps */
911  [6] = 15400,
912  [7] = 19250,
913  [8] = 23100,
914  [9] = 25025,
915  [10] = 30800,
916  [11] = 38500,
917  [12] = 46200,
918  /* OFDM PHY */
919  [13] = 6930,
920  [14] = 8662, /* 866.25 mbps */
921  [15] = 13860,
922  [16] = 17325,
923  [17] = 20790,
924  [18] = 27720,
925  [19] = 34650,
926  [20] = 41580,
927  [21] = 45045,
928  [22] = 51975,
929  [23] = 62370,
930  [24] = 67568, /* 6756.75 mbps */
931  /* LP-SC PHY */
932  [25] = 6260,
933  [26] = 8340,
934  [27] = 11120,
935  [28] = 12510,
936  [29] = 16680,
937  [30] = 22240,
938  [31] = 25030,
939  };
940 
941  if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
942  return 0;
943 
944  return __mcs2bitrate[rate->mcs];
945 }
946 
948 {
949  int modulation, streams, bitrate;
950 
951  if (!(rate->flags & RATE_INFO_FLAGS_MCS))
952  return rate->legacy;
953  if (rate->flags & RATE_INFO_FLAGS_60G)
954  return cfg80211_calculate_bitrate_60g(rate);
955 
956  /* the formula below does only work for MCS values smaller than 32 */
957  if (WARN_ON_ONCE(rate->mcs >= 32))
958  return 0;
959 
960  modulation = rate->mcs & 7;
961  streams = (rate->mcs >> 3) + 1;
962 
963  bitrate = (rate->flags & RATE_INFO_FLAGS_40_MHZ_WIDTH) ?
964  13500000 : 6500000;
965 
966  if (modulation < 4)
967  bitrate *= (modulation + 1);
968  else if (modulation == 4)
969  bitrate *= (modulation + 2);
970  else
971  bitrate *= (modulation + 3);
972 
973  bitrate *= streams;
974 
975  if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
976  bitrate = (bitrate / 9) * 10;
977 
978  /* do NOT round down here */
979  return (bitrate + 50000) / 100000;
980 }
982 
984  u32 beacon_int)
985 {
986  struct wireless_dev *wdev;
987  int res = 0;
988 
989  if (!beacon_int)
990  return -EINVAL;
991 
992  mutex_lock(&rdev->devlist_mtx);
993 
994  list_for_each_entry(wdev, &rdev->wdev_list, list) {
995  if (!wdev->beacon_interval)
996  continue;
997  if (wdev->beacon_interval != beacon_int) {
998  res = -EINVAL;
999  break;
1000  }
1001  }
1002 
1003  mutex_unlock(&rdev->devlist_mtx);
1004 
1005  return res;
1006 }
1007 
1009  struct wireless_dev *wdev,
1010  enum nl80211_iftype iftype,
1011  struct ieee80211_channel *chan,
1012  enum cfg80211_chan_mode chanmode)
1013 {
1014  struct wireless_dev *wdev_iter;
1015  u32 used_iftypes = BIT(iftype);
1016  int num[NUM_NL80211_IFTYPES];
1017  struct ieee80211_channel
1018  *used_channels[CFG80211_MAX_NUM_DIFFERENT_CHANNELS];
1019  struct ieee80211_channel *ch;
1020  enum cfg80211_chan_mode chmode;
1021  int num_different_channels = 0;
1022  int total = 1;
1023  int i, j;
1024 
1025  ASSERT_RTNL();
1027 
1028  /* Always allow software iftypes */
1029  if (rdev->wiphy.software_iftypes & BIT(iftype))
1030  return 0;
1031 
1032  memset(num, 0, sizeof(num));
1033  memset(used_channels, 0, sizeof(used_channels));
1034 
1035  num[iftype] = 1;
1036 
1037  switch (chanmode) {
1038  case CHAN_MODE_UNDEFINED:
1039  break;
1040  case CHAN_MODE_SHARED:
1041  WARN_ON(!chan);
1042  used_channels[0] = chan;
1043  num_different_channels++;
1044  break;
1045  case CHAN_MODE_EXCLUSIVE:
1046  num_different_channels++;
1047  break;
1048  }
1049 
1050  list_for_each_entry(wdev_iter, &rdev->wdev_list, list) {
1051  if (wdev_iter == wdev)
1052  continue;
1053  if (wdev_iter->netdev) {
1054  if (!netif_running(wdev_iter->netdev))
1055  continue;
1056  } else if (wdev_iter->iftype == NL80211_IFTYPE_P2P_DEVICE) {
1057  if (!wdev_iter->p2p_started)
1058  continue;
1059  } else {
1060  WARN_ON(1);
1061  }
1062 
1063  if (rdev->wiphy.software_iftypes & BIT(wdev_iter->iftype))
1064  continue;
1065 
1066  /*
1067  * We may be holding the "wdev" mutex, but now need to lock
1068  * wdev_iter. This is OK because once we get here wdev_iter
1069  * is not wdev (tested above), but we need to use the nested
1070  * locking for lockdep.
1071  */
1072  mutex_lock_nested(&wdev_iter->mtx, 1);
1073  __acquire(wdev_iter->mtx);
1074  cfg80211_get_chan_state(wdev_iter, &ch, &chmode);
1075  wdev_unlock(wdev_iter);
1076 
1077  switch (chmode) {
1078  case CHAN_MODE_UNDEFINED:
1079  break;
1080  case CHAN_MODE_SHARED:
1081  for (i = 0; i < CFG80211_MAX_NUM_DIFFERENT_CHANNELS; i++)
1082  if (!used_channels[i] || used_channels[i] == ch)
1083  break;
1084 
1085  if (i == CFG80211_MAX_NUM_DIFFERENT_CHANNELS)
1086  return -EBUSY;
1087 
1088  if (used_channels[i] == NULL) {
1089  used_channels[i] = ch;
1090  num_different_channels++;
1091  }
1092  break;
1093  case CHAN_MODE_EXCLUSIVE:
1094  num_different_channels++;
1095  break;
1096  }
1097 
1098  num[wdev_iter->iftype]++;
1099  total++;
1100  used_iftypes |= BIT(wdev_iter->iftype);
1101  }
1102 
1103  if (total == 1)
1104  return 0;
1105 
1106  for (i = 0; i < rdev->wiphy.n_iface_combinations; i++) {
1107  const struct ieee80211_iface_combination *c;
1108  struct ieee80211_iface_limit *limits;
1109  u32 all_iftypes = 0;
1110 
1111  c = &rdev->wiphy.iface_combinations[i];
1112 
1113  if (total > c->max_interfaces)
1114  continue;
1115  if (num_different_channels > c->num_different_channels)
1116  continue;
1117 
1118  limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1119  GFP_KERNEL);
1120  if (!limits)
1121  return -ENOMEM;
1122 
1123  for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1124  if (rdev->wiphy.software_iftypes & BIT(iftype))
1125  continue;
1126  for (j = 0; j < c->n_limits; j++) {
1127  all_iftypes |= limits[j].types;
1128  if (!(limits[j].types & BIT(iftype)))
1129  continue;
1130  if (limits[j].max < num[iftype])
1131  goto cont;
1132  limits[j].max -= num[iftype];
1133  }
1134  }
1135 
1136  /*
1137  * Finally check that all iftypes that we're currently
1138  * using are actually part of this combination. If they
1139  * aren't then we can't use this combination and have
1140  * to continue to the next.
1141  */
1142  if ((all_iftypes & used_iftypes) != used_iftypes)
1143  goto cont;
1144 
1145  /*
1146  * This combination covered all interface types and
1147  * supported the requested numbers, so we're good.
1148  */
1149  kfree(limits);
1150  return 0;
1151  cont:
1152  kfree(limits);
1153  }
1154 
1155  return -EBUSY;
1156 }
1157 
1159  const u8 *rates, unsigned int n_rates,
1160  u32 *mask)
1161 {
1162  int i, j;
1163 
1164  if (!sband)
1165  return -EINVAL;
1166 
1167  if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1168  return -EINVAL;
1169 
1170  *mask = 0;
1171 
1172  for (i = 0; i < n_rates; i++) {
1173  int rate = (rates[i] & 0x7f) * 5;
1174  bool found = false;
1175 
1176  for (j = 0; j < sband->n_bitrates; j++) {
1177  if (sband->bitrates[j].bitrate == rate) {
1178  found = true;
1179  *mask |= BIT(j);
1180  break;
1181  }
1182  }
1183  if (!found)
1184  return -EINVAL;
1185  }
1186 
1187  /*
1188  * mask must have at least one bit set here since we
1189  * didn't accept a 0-length rates array nor allowed
1190  * entries in the array that didn't exist
1191  */
1192 
1193  return 0;
1194 }
1195 
1196 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1197 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1198 const unsigned char rfc1042_header[] __aligned(2) =
1199  { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1200 EXPORT_SYMBOL(rfc1042_header);
1201 
1202 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1203 const unsigned char bridge_tunnel_header[] __aligned(2) =
1204  { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1205 EXPORT_SYMBOL(bridge_tunnel_header);