Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nic.c
Go to the documentation of this file.
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2011 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include "net_driver.h"
18 #include "bitfield.h"
19 #include "efx.h"
20 #include "nic.h"
21 #include "regs.h"
22 #include "io.h"
23 #include "workarounds.h"
24 
25 /**************************************************************************
26  *
27  * Configurable values
28  *
29  **************************************************************************
30  */
31 
32 /* This is set to 16 for a good reason. In summary, if larger than
33  * 16, the descriptor cache holds more than a default socket
34  * buffer's worth of packets (for UDP we can only have at most one
35  * socket buffer's worth outstanding). This combined with the fact
36  * that we only get 1 TX event per descriptor cache means the NIC
37  * goes idle.
38  */
39 #define TX_DC_ENTRIES 16
40 #define TX_DC_ENTRIES_ORDER 1
41 
42 #define RX_DC_ENTRIES 64
43 #define RX_DC_ENTRIES_ORDER 3
44 
45 /* If EFX_MAX_INT_ERRORS internal errors occur within
46  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
47  * disable it.
48  */
49 #define EFX_INT_ERROR_EXPIRE 3600
50 #define EFX_MAX_INT_ERRORS 5
51 
52 /* Depth of RX flush request fifo */
53 #define EFX_RX_FLUSH_COUNT 4
54 
55 /* Driver generated events */
56 #define _EFX_CHANNEL_MAGIC_TEST 0x000101
57 #define _EFX_CHANNEL_MAGIC_FILL 0x000102
58 #define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
59 #define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
60 
61 #define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
62 #define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
63 
64 #define EFX_CHANNEL_MAGIC_TEST(_channel) \
65  _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
66 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
67  _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
68  efx_rx_queue_index(_rx_queue))
69 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
70  _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
71  efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
73  _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
74  (_tx_queue)->queue)
75 
76 /**************************************************************************
77  *
78  * Solarstorm hardware access
79  *
80  **************************************************************************/
81 
82 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
83  unsigned int index)
84 {
85  efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
86  value, index);
87 }
88 
89 /* Read the current event from the event queue */
90 static inline efx_qword_t *efx_event(struct efx_channel *channel,
91  unsigned int index)
92 {
93  return ((efx_qword_t *) (channel->eventq.addr)) +
94  (index & channel->eventq_mask);
95 }
96 
97 /* See if an event is present
98  *
99  * We check both the high and low dword of the event for all ones. We
100  * wrote all ones when we cleared the event, and no valid event can
101  * have all ones in either its high or low dwords. This approach is
102  * robust against reordering.
103  *
104  * Note that using a single 64-bit comparison is incorrect; even
105  * though the CPU read will be atomic, the DMA write may not be.
106  */
107 static inline int efx_event_present(efx_qword_t *event)
108 {
109  return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
110  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
111 }
112 
113 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
114  const efx_oword_t *mask)
115 {
116  return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
117  ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
118 }
119 
121  const struct efx_nic_register_test *regs,
122  size_t n_regs)
123 {
124  unsigned address = 0, i, j;
125  efx_oword_t mask, imask, original, reg, buf;
126 
127  for (i = 0; i < n_regs; ++i) {
128  address = regs[i].address;
129  mask = imask = regs[i].mask;
130  EFX_INVERT_OWORD(imask);
131 
132  efx_reado(efx, &original, address);
133 
134  /* bit sweep on and off */
135  for (j = 0; j < 128; j++) {
136  if (!EFX_EXTRACT_OWORD32(mask, j, j))
137  continue;
138 
139  /* Test this testable bit can be set in isolation */
140  EFX_AND_OWORD(reg, original, mask);
141  EFX_SET_OWORD32(reg, j, j, 1);
142 
143  efx_writeo(efx, &reg, address);
144  efx_reado(efx, &buf, address);
145 
146  if (efx_masked_compare_oword(&reg, &buf, &mask))
147  goto fail;
148 
149  /* Test this testable bit can be cleared in isolation */
150  EFX_OR_OWORD(reg, original, mask);
151  EFX_SET_OWORD32(reg, j, j, 0);
152 
153  efx_writeo(efx, &reg, address);
154  efx_reado(efx, &buf, address);
155 
156  if (efx_masked_compare_oword(&reg, &buf, &mask))
157  goto fail;
158  }
159 
160  efx_writeo(efx, &original, address);
161  }
162 
163  return 0;
164 
165 fail:
166  netif_err(efx, hw, efx->net_dev,
167  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
168  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
169  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
170  return -EIO;
171 }
172 
173 /**************************************************************************
174  *
175  * Special buffer handling
176  * Special buffers are used for event queues and the TX and RX
177  * descriptor rings.
178  *
179  *************************************************************************/
180 
181 /*
182  * Initialise a special buffer
183  *
184  * This will define a buffer (previously allocated via
185  * efx_alloc_special_buffer()) in the buffer table, allowing
186  * it to be used for event queues, descriptor rings etc.
187  */
188 static void
189 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
190 {
191  efx_qword_t buf_desc;
192  unsigned int index;
194  int i;
195 
196  EFX_BUG_ON_PARANOID(!buffer->addr);
197 
198  /* Write buffer descriptors to NIC */
199  for (i = 0; i < buffer->entries; i++) {
200  index = buffer->index + i;
201  dma_addr = buffer->dma_addr + (i * EFX_BUF_SIZE);
202  netif_dbg(efx, probe, efx->net_dev,
203  "mapping special buffer %d at %llx\n",
204  index, (unsigned long long)dma_addr);
205  EFX_POPULATE_QWORD_3(buf_desc,
206  FRF_AZ_BUF_ADR_REGION, 0,
207  FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
208  FRF_AZ_BUF_OWNER_ID_FBUF, 0);
209  efx_write_buf_tbl(efx, &buf_desc, index);
210  }
211 }
212 
213 /* Unmaps a buffer and clears the buffer table entries */
214 static void
215 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
216 {
217  efx_oword_t buf_tbl_upd;
218  unsigned int start = buffer->index;
219  unsigned int end = (buffer->index + buffer->entries - 1);
220 
221  if (!buffer->entries)
222  return;
223 
224  netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
225  buffer->index, buffer->index + buffer->entries - 1);
226 
227  EFX_POPULATE_OWORD_4(buf_tbl_upd,
228  FRF_AZ_BUF_UPD_CMD, 0,
229  FRF_AZ_BUF_CLR_CMD, 1,
230  FRF_AZ_BUF_CLR_END_ID, end,
231  FRF_AZ_BUF_CLR_START_ID, start);
232  efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
233 }
234 
235 /*
236  * Allocate a new special buffer
237  *
238  * This allocates memory for a new buffer, clears it and allocates a
239  * new buffer ID range. It does not write into the buffer table.
240  *
241  * This call will allocate 4KB buffers, since 8KB buffers can't be
242  * used for event queues and descriptor rings.
243  */
244 static int efx_alloc_special_buffer(struct efx_nic *efx,
245  struct efx_special_buffer *buffer,
246  unsigned int len)
247 {
248  len = ALIGN(len, EFX_BUF_SIZE);
249 
250  buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
251  &buffer->dma_addr, GFP_KERNEL);
252  if (!buffer->addr)
253  return -ENOMEM;
254  buffer->len = len;
255  buffer->entries = len / EFX_BUF_SIZE;
256  BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
257 
258  /* All zeros is a potentially valid event so memset to 0xff */
259  memset(buffer->addr, 0xff, len);
260 
261  /* Select new buffer ID */
262  buffer->index = efx->next_buffer_table;
263  efx->next_buffer_table += buffer->entries;
264 #ifdef CONFIG_SFC_SRIOV
265  BUG_ON(efx_sriov_enabled(efx) &&
266  efx->vf_buftbl_base < efx->next_buffer_table);
267 #endif
268 
269  netif_dbg(efx, probe, efx->net_dev,
270  "allocating special buffers %d-%d at %llx+%x "
271  "(virt %p phys %llx)\n", buffer->index,
272  buffer->index + buffer->entries - 1,
273  (u64)buffer->dma_addr, len,
274  buffer->addr, (u64)virt_to_phys(buffer->addr));
275 
276  return 0;
277 }
278 
279 static void
280 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
281 {
282  if (!buffer->addr)
283  return;
284 
285  netif_dbg(efx, hw, efx->net_dev,
286  "deallocating special buffers %d-%d at %llx+%x "
287  "(virt %p phys %llx)\n", buffer->index,
288  buffer->index + buffer->entries - 1,
289  (u64)buffer->dma_addr, buffer->len,
290  buffer->addr, (u64)virt_to_phys(buffer->addr));
291 
292  dma_free_coherent(&efx->pci_dev->dev, buffer->len, buffer->addr,
293  buffer->dma_addr);
294  buffer->addr = NULL;
295  buffer->entries = 0;
296 }
297 
298 /**************************************************************************
299  *
300  * Generic buffer handling
301  * These buffers are used for interrupt status, MAC stats, etc.
302  *
303  **************************************************************************/
304 
305 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
306  unsigned int len)
307 {
308  buffer->addr = dma_alloc_coherent(&efx->pci_dev->dev, len,
309  &buffer->dma_addr, GFP_ATOMIC);
310  if (!buffer->addr)
311  return -ENOMEM;
312  buffer->len = len;
313  memset(buffer->addr, 0, len);
314  return 0;
315 }
316 
317 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
318 {
319  if (buffer->addr) {
320  dma_free_coherent(&efx->pci_dev->dev, buffer->len,
321  buffer->addr, buffer->dma_addr);
322  buffer->addr = NULL;
323  }
324 }
325 
326 /**************************************************************************
327  *
328  * TX path
329  *
330  **************************************************************************/
331 
332 /* Returns a pointer to the specified transmit descriptor in the TX
333  * descriptor queue belonging to the specified channel.
334  */
335 static inline efx_qword_t *
336 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
337 {
338  return ((efx_qword_t *) (tx_queue->txd.addr)) + index;
339 }
340 
341 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
342 static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
343 {
344  unsigned write_ptr;
346 
347  write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
348  EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
349  efx_writed_page(tx_queue->efx, &reg,
350  FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
351 }
352 
353 /* Write pointer and first descriptor for TX descriptor ring */
354 static inline void efx_push_tx_desc(struct efx_tx_queue *tx_queue,
355  const efx_qword_t *txd)
356 {
357  unsigned write_ptr;
359 
362 
363  write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
364  EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
365  FRF_AZ_TX_DESC_WPTR, write_ptr);
366  reg.qword[0] = *txd;
367  efx_writeo_page(tx_queue->efx, &reg,
368  FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
369 }
370 
371 static inline bool
372 efx_may_push_tx_desc(struct efx_tx_queue *tx_queue, unsigned int write_count)
373 {
374  unsigned empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
375 
376  if (empty_read_count == 0)
377  return false;
378 
379  tx_queue->empty_read_count = 0;
380  return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
381 }
382 
383 /* For each entry inserted into the software descriptor ring, create a
384  * descriptor in the hardware TX descriptor ring (in host memory), and
385  * write a doorbell.
386  */
387 void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
388 {
389 
390  struct efx_tx_buffer *buffer;
391  efx_qword_t *txd;
392  unsigned write_ptr;
393  unsigned old_write_count = tx_queue->write_count;
394 
395  BUG_ON(tx_queue->write_count == tx_queue->insert_count);
396 
397  do {
398  write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
399  buffer = &tx_queue->buffer[write_ptr];
400  txd = efx_tx_desc(tx_queue, write_ptr);
401  ++tx_queue->write_count;
402 
403  /* Create TX descriptor ring entry */
406  FSF_AZ_TX_KER_CONT,
407  buffer->flags & EFX_TX_BUF_CONT,
408  FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
409  FSF_AZ_TX_KER_BUF_REGION, 0,
410  FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
411  } while (tx_queue->write_count != tx_queue->insert_count);
412 
413  wmb(); /* Ensure descriptors are written before they are fetched */
414 
415  if (efx_may_push_tx_desc(tx_queue, old_write_count)) {
416  txd = efx_tx_desc(tx_queue,
417  old_write_count & tx_queue->ptr_mask);
418  efx_push_tx_desc(tx_queue, txd);
419  ++tx_queue->pushes;
420  } else {
421  efx_notify_tx_desc(tx_queue);
422  }
423 }
424 
425 /* Allocate hardware resources for a TX queue */
426 int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
427 {
428  struct efx_nic *efx = tx_queue->efx;
429  unsigned entries;
430 
431  entries = tx_queue->ptr_mask + 1;
432  return efx_alloc_special_buffer(efx, &tx_queue->txd,
433  entries * sizeof(efx_qword_t));
434 }
435 
436 void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
437 {
438  struct efx_nic *efx = tx_queue->efx;
440 
441  /* Pin TX descriptor ring */
442  efx_init_special_buffer(efx, &tx_queue->txd);
443 
444  /* Push TX descriptor ring to card */
446  FRF_AZ_TX_DESCQ_EN, 1,
447  FRF_AZ_TX_ISCSI_DDIG_EN, 0,
448  FRF_AZ_TX_ISCSI_HDIG_EN, 0,
449  FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
450  FRF_AZ_TX_DESCQ_EVQ_ID,
451  tx_queue->channel->channel,
452  FRF_AZ_TX_DESCQ_OWNER_ID, 0,
453  FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
454  FRF_AZ_TX_DESCQ_SIZE,
455  __ffs(tx_queue->txd.entries),
456  FRF_AZ_TX_DESCQ_TYPE, 0,
457  FRF_BZ_TX_NON_IP_DROP_DIS, 1);
458 
459  if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
460  int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
461  EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
462  EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
463  !csum);
464  }
465 
466  efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
467  tx_queue->queue);
468 
469  if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
470  /* Only 128 bits in this register */
472 
473  efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
474  if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
475  __clear_bit_le(tx_queue->queue, &reg);
476  else
477  __set_bit_le(tx_queue->queue, &reg);
478  efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
479  }
480 
481  if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
483  FRF_BZ_TX_PACE,
484  (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
487  efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
488  tx_queue->queue);
489  }
490 }
491 
492 static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
493 {
494  struct efx_nic *efx = tx_queue->efx;
495  efx_oword_t tx_flush_descq;
496 
497  EFX_POPULATE_OWORD_2(tx_flush_descq,
498  FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
499  FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
500  efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
501 }
502 
503 void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
504 {
505  struct efx_nic *efx = tx_queue->efx;
507 
508  /* Remove TX descriptor ring from card */
509  EFX_ZERO_OWORD(tx_desc_ptr);
510  efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
511  tx_queue->queue);
512 
513  /* Unpin TX descriptor ring */
514  efx_fini_special_buffer(efx, &tx_queue->txd);
515 }
516 
517 /* Free buffers backing TX queue */
518 void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
519 {
520  efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
521 }
522 
523 /**************************************************************************
524  *
525  * RX path
526  *
527  **************************************************************************/
528 
529 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
530 static inline efx_qword_t *
531 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
532 {
533  return ((efx_qword_t *) (rx_queue->rxd.addr)) + index;
534 }
535 
536 /* This creates an entry in the RX descriptor queue */
537 static inline void
538 efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
539 {
540  struct efx_rx_buffer *rx_buf;
541  efx_qword_t *rxd;
542 
543  rxd = efx_rx_desc(rx_queue, index);
544  rx_buf = efx_rx_buffer(rx_queue, index);
546  FSF_AZ_RX_KER_BUF_SIZE,
547  rx_buf->len -
548  rx_queue->efx->type->rx_buffer_padding,
549  FSF_AZ_RX_KER_BUF_REGION, 0,
550  FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
551 }
552 
553 /* This writes to the RX_DESC_WPTR register for the specified receive
554  * descriptor ring.
555  */
556 void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
557 {
558  struct efx_nic *efx = rx_queue->efx;
560  unsigned write_ptr;
561 
562  while (rx_queue->notified_count != rx_queue->added_count) {
563  efx_build_rx_desc(
564  rx_queue,
565  rx_queue->notified_count & rx_queue->ptr_mask);
566  ++rx_queue->notified_count;
567  }
568 
569  wmb();
570  write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
571  EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
573  efx_rx_queue_index(rx_queue));
574 }
575 
576 int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
577 {
578  struct efx_nic *efx = rx_queue->efx;
579  unsigned entries;
580 
581  entries = rx_queue->ptr_mask + 1;
582  return efx_alloc_special_buffer(efx, &rx_queue->rxd,
583  entries * sizeof(efx_qword_t));
584 }
585 
586 void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
587 {
589  struct efx_nic *efx = rx_queue->efx;
590  bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
591  bool iscsi_digest_en = is_b0;
592 
593  netif_dbg(efx, hw, efx->net_dev,
594  "RX queue %d ring in special buffers %d-%d\n",
595  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
596  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
597 
598  /* Pin RX descriptor ring */
599  efx_init_special_buffer(efx, &rx_queue->rxd);
600 
601  /* Push RX descriptor ring to card */
602  EFX_POPULATE_OWORD_10(rx_desc_ptr,
603  FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
604  FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
605  FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
606  FRF_AZ_RX_DESCQ_EVQ_ID,
607  efx_rx_queue_channel(rx_queue)->channel,
608  FRF_AZ_RX_DESCQ_OWNER_ID, 0,
609  FRF_AZ_RX_DESCQ_LABEL,
610  efx_rx_queue_index(rx_queue),
611  FRF_AZ_RX_DESCQ_SIZE,
612  __ffs(rx_queue->rxd.entries),
613  FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
614  /* For >=B0 this is scatter so disable */
615  FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
616  FRF_AZ_RX_DESCQ_EN, 1);
617  efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
618  efx_rx_queue_index(rx_queue));
619 }
620 
621 static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
622 {
623  struct efx_nic *efx = rx_queue->efx;
624  efx_oword_t rx_flush_descq;
625 
626  EFX_POPULATE_OWORD_2(rx_flush_descq,
627  FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
628  FRF_AZ_RX_FLUSH_DESCQ,
629  efx_rx_queue_index(rx_queue));
630  efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
631 }
632 
633 void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
634 {
636  struct efx_nic *efx = rx_queue->efx;
637 
638  /* Remove RX descriptor ring from card */
639  EFX_ZERO_OWORD(rx_desc_ptr);
640  efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
641  efx_rx_queue_index(rx_queue));
642 
643  /* Unpin RX descriptor ring */
644  efx_fini_special_buffer(efx, &rx_queue->rxd);
645 }
646 
647 /* Free buffers backing RX queue */
648 void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
649 {
650  efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
651 }
652 
653 /**************************************************************************
654  *
655  * Flush handling
656  *
657  **************************************************************************/
658 
659 /* efx_nic_flush_queues() must be woken up when all flushes are completed,
660  * or more RX flushes can be kicked off.
661  */
662 static bool efx_flush_wake(struct efx_nic *efx)
663 {
664  /* Ensure that all updates are visible to efx_nic_flush_queues() */
665  smp_mb();
666 
667  return (atomic_read(&efx->drain_pending) == 0 ||
669  && atomic_read(&efx->rxq_flush_pending) > 0));
670 }
671 
672 /* Flush all the transmit queues, and continue flushing receive queues until
673  * they're all flushed. Wait for the DRAIN events to be recieved so that there
674  * are no more RX and TX events left on any channel. */
676 {
677  unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
678  struct efx_channel *channel;
679  struct efx_rx_queue *rx_queue;
680  struct efx_tx_queue *tx_queue;
681  int rc = 0;
682 
683  efx->fc_disable++;
684  efx->type->prepare_flush(efx);
685 
686  efx_for_each_channel(channel, efx) {
687  efx_for_each_channel_tx_queue(tx_queue, channel) {
688  atomic_inc(&efx->drain_pending);
689  efx_flush_tx_queue(tx_queue);
690  }
691  efx_for_each_channel_rx_queue(rx_queue, channel) {
692  atomic_inc(&efx->drain_pending);
693  rx_queue->flush_pending = true;
695  }
696  }
697 
698  while (timeout && atomic_read(&efx->drain_pending) > 0) {
699  /* If SRIOV is enabled, then offload receive queue flushing to
700  * the firmware (though we will still have to poll for
701  * completion). If that fails, fall back to the old scheme.
702  */
703  if (efx_sriov_enabled(efx)) {
704  rc = efx_mcdi_flush_rxqs(efx);
705  if (!rc)
706  goto wait;
707  }
708 
709  /* The hardware supports four concurrent rx flushes, each of
710  * which may need to be retried if there is an outstanding
711  * descriptor fetch
712  */
713  efx_for_each_channel(channel, efx) {
714  efx_for_each_channel_rx_queue(rx_queue, channel) {
715  if (atomic_read(&efx->rxq_flush_outstanding) >=
717  break;
718 
719  if (rx_queue->flush_pending) {
720  rx_queue->flush_pending = false;
723  efx_flush_rx_queue(rx_queue);
724  }
725  }
726  }
727 
728  wait:
729  timeout = wait_event_timeout(efx->flush_wq, efx_flush_wake(efx),
730  timeout);
731  }
732 
733  if (atomic_read(&efx->drain_pending)) {
734  netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
735  "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
738  rc = -ETIMEDOUT;
739 
740  atomic_set(&efx->drain_pending, 0);
741  atomic_set(&efx->rxq_flush_pending, 0);
743  }
744 
745  efx->fc_disable--;
746 
747  return rc;
748 }
749 
750 /**************************************************************************
751  *
752  * Event queue processing
753  * Event queues are processed by per-channel tasklets.
754  *
755  **************************************************************************/
756 
757 /* Update a channel's event queue's read pointer (RPTR) register
758  *
759  * This writes the EVQ_RPTR_REG register for the specified channel's
760  * event queue.
761  */
763 {
765  struct efx_nic *efx = channel->efx;
766 
767  EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
768  channel->eventq_read_ptr & channel->eventq_mask);
769  efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
770  channel->channel);
771 }
772 
773 /* Use HW to insert a SW defined event */
774 void efx_generate_event(struct efx_nic *efx, unsigned int evq,
776 {
777  efx_oword_t drv_ev_reg;
778 
781  drv_ev_reg.u32[0] = event->u32[0];
782  drv_ev_reg.u32[1] = event->u32[1];
783  drv_ev_reg.u32[2] = 0;
784  drv_ev_reg.u32[3] = 0;
785  EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
786  efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
787 }
788 
789 static void efx_magic_event(struct efx_channel *channel, u32 magic)
790 {
792 
793  EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
795  FSF_AZ_DRV_GEN_EV_MAGIC, magic);
796  efx_generate_event(channel->efx, channel->channel, &event);
797 }
798 
799 /* Handle a transmit completion event
800  *
801  * The NIC batches TX completion events; the message we receive is of
802  * the form "complete all TX events up to this index".
803  */
804 static int
805 efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
806 {
807  unsigned int tx_ev_desc_ptr;
808  unsigned int tx_ev_q_label;
809  struct efx_tx_queue *tx_queue;
810  struct efx_nic *efx = channel->efx;
811  int tx_packets = 0;
812 
814  return 0;
815 
816  if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
817  /* Transmit completion */
818  tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
819  tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
820  tx_queue = efx_channel_get_tx_queue(
821  channel, tx_ev_q_label % EFX_TXQ_TYPES);
822  tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
823  tx_queue->ptr_mask);
824  efx_xmit_done(tx_queue, tx_ev_desc_ptr);
825  } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
826  /* Rewrite the FIFO write pointer */
827  tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
828  tx_queue = efx_channel_get_tx_queue(
829  channel, tx_ev_q_label % EFX_TXQ_TYPES);
830 
831  netif_tx_lock(efx->net_dev);
832  efx_notify_tx_desc(tx_queue);
833  netif_tx_unlock(efx->net_dev);
834  } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
835  EFX_WORKAROUND_10727(efx)) {
837  } else {
838  netif_err(efx, tx_err, efx->net_dev,
839  "channel %d unexpected TX event "
840  EFX_QWORD_FMT"\n", channel->channel,
841  EFX_QWORD_VAL(*event));
842  }
843 
844  return tx_packets;
845 }
846 
847 /* Detect errors included in the rx_evt_pkt_ok bit. */
848 static u16 efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
849  const efx_qword_t *event)
850 {
851  struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
852  struct efx_nic *efx = rx_queue->efx;
853  bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
854  bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
855  bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
856  bool rx_ev_other_err, rx_ev_pause_frm;
857  bool rx_ev_hdr_type, rx_ev_mcast_pkt;
858  unsigned rx_ev_pkt_type;
859 
860  rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
861  rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
862  rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
863  rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
864  rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
865  FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
866  rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
867  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
868  rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
869  FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
870  rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
871  rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
872  rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
873  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
874  rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
875 
876  /* Every error apart from tobe_disc and pause_frm */
877  rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
878  rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
879  rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
880 
881  /* Count errors that are not in MAC stats. Ignore expected
882  * checksum errors during self-test. */
883  if (rx_ev_frm_trunc)
884  ++channel->n_rx_frm_trunc;
885  else if (rx_ev_tobe_disc)
886  ++channel->n_rx_tobe_disc;
887  else if (!efx->loopback_selftest) {
888  if (rx_ev_ip_hdr_chksum_err)
889  ++channel->n_rx_ip_hdr_chksum_err;
890  else if (rx_ev_tcp_udp_chksum_err)
891  ++channel->n_rx_tcp_udp_chksum_err;
892  }
893 
894  /* TOBE_DISC is expected on unicast mismatches; don't print out an
895  * error message. FRM_TRUNC indicates RXDP dropped the packet due
896  * to a FIFO overflow.
897  */
898 #ifdef DEBUG
899  if (rx_ev_other_err && net_ratelimit()) {
900  netif_dbg(efx, rx_err, efx->net_dev,
901  " RX queue %d unexpected RX event "
902  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
903  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
904  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
905  rx_ev_ip_hdr_chksum_err ?
906  " [IP_HDR_CHKSUM_ERR]" : "",
907  rx_ev_tcp_udp_chksum_err ?
908  " [TCP_UDP_CHKSUM_ERR]" : "",
909  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
910  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
911  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
912  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
913  rx_ev_pause_frm ? " [PAUSE]" : "");
914  }
915 #endif
916 
917  /* The frame must be discarded if any of these are true. */
918  return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
919  rx_ev_tobe_disc | rx_ev_pause_frm) ?
920  EFX_RX_PKT_DISCARD : 0;
921 }
922 
923 /* Handle receive events that are not in-order. */
924 static void
925 efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
926 {
927  struct efx_nic *efx = rx_queue->efx;
928  unsigned expected, dropped;
929 
930  expected = rx_queue->removed_count & rx_queue->ptr_mask;
931  dropped = (index - expected) & rx_queue->ptr_mask;
932  netif_info(efx, rx_err, efx->net_dev,
933  "dropped %d events (index=%d expected=%d)\n",
934  dropped, index, expected);
935 
938 }
939 
940 /* Handle a packet received event
941  *
942  * The NIC gives a "discard" flag if it's a unicast packet with the
943  * wrong destination address
944  * Also "is multicast" and "matches multicast filter" flags can be used to
945  * discard non-matching multicast packets.
946  */
947 static void
948 efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
949 {
950  unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
951  unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
952  unsigned expected_ptr;
953  bool rx_ev_pkt_ok;
954  u16 flags;
955  struct efx_rx_queue *rx_queue;
956  struct efx_nic *efx = channel->efx;
957 
959  return;
960 
961  /* Basic packet information */
962  rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
963  rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
964  rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
965  WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
966  WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
967  WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
968  channel->channel);
969 
970  rx_queue = efx_channel_get_rx_queue(channel);
971 
972  rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
973  expected_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
974  if (unlikely(rx_ev_desc_ptr != expected_ptr))
975  efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
976 
977  if (likely(rx_ev_pkt_ok)) {
978  /* If packet is marked as OK and packet type is TCP/IP or
979  * UDP/IP, then we can rely on the hardware checksum.
980  */
981  flags = (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
982  rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP) ?
983  EFX_RX_PKT_CSUMMED : 0;
984  } else {
985  flags = efx_handle_rx_not_ok(rx_queue, event);
986  }
987 
988  /* Detect multicast packets that didn't match the filter */
989  rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
990  if (rx_ev_mcast_pkt) {
991  unsigned int rx_ev_mcast_hash_match =
992  EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
993 
994  if (unlikely(!rx_ev_mcast_hash_match)) {
995  ++channel->n_rx_mcast_mismatch;
996  flags |= EFX_RX_PKT_DISCARD;
997  }
998  }
999 
1000  channel->irq_mod_score += 2;
1001 
1002  /* Handle received packet */
1003  efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, flags);
1004 }
1005 
1006 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1007  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1008  * of all transmit completions.
1009  */
1010 static void
1011 efx_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1012 {
1013  struct efx_tx_queue *tx_queue;
1014  int qid;
1015 
1016  qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1017  if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1018  tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1019  qid % EFX_TXQ_TYPES);
1020 
1021  efx_magic_event(tx_queue->channel,
1022  EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1023  }
1024 }
1025 
1026 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1027  * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1028  * the RX queue back to the mask of RX queues in need of flushing.
1029  */
1030 static void
1031 efx_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1032 {
1033  struct efx_channel *channel;
1034  struct efx_rx_queue *rx_queue;
1035  int qid;
1036  bool failed;
1037 
1038  qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1039  failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1040  if (qid >= efx->n_channels)
1041  return;
1042  channel = efx_get_channel(efx, qid);
1043  if (!efx_channel_has_rx_queue(channel))
1044  return;
1045  rx_queue = efx_channel_get_rx_queue(channel);
1046 
1047  if (failed) {
1048  netif_info(efx, hw, efx->net_dev,
1049  "RXQ %d flush retry\n", qid);
1050  rx_queue->flush_pending = true;
1052  } else {
1053  efx_magic_event(efx_rx_queue_channel(rx_queue),
1054  EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1055  }
1057  if (efx_flush_wake(efx))
1058  wake_up(&efx->flush_wq);
1059 }
1060 
1061 static void
1062 efx_handle_drain_event(struct efx_channel *channel)
1063 {
1064  struct efx_nic *efx = channel->efx;
1065 
1066  WARN_ON(atomic_read(&efx->drain_pending) == 0);
1067  atomic_dec(&efx->drain_pending);
1068  if (efx_flush_wake(efx))
1069  wake_up(&efx->flush_wq);
1070 }
1071 
1072 static void
1073 efx_handle_generated_event(struct efx_channel *channel, efx_qword_t *event)
1074 {
1075  struct efx_nic *efx = channel->efx;
1076  struct efx_rx_queue *rx_queue =
1077  efx_channel_has_rx_queue(channel) ?
1078  efx_channel_get_rx_queue(channel) : NULL;
1079  unsigned magic, code;
1080 
1081  magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1082  code = _EFX_CHANNEL_MAGIC_CODE(magic);
1083 
1084  if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1085  channel->event_test_cpu = raw_smp_processor_id();
1086  } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1087  /* The queue must be empty, so we won't receive any rx
1088  * events, so efx_process_channel() won't refill the
1089  * queue. Refill it here */
1090  efx_fast_push_rx_descriptors(rx_queue);
1091  } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1092  rx_queue->enabled = false;
1093  efx_handle_drain_event(channel);
1094  } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1095  efx_handle_drain_event(channel);
1096  } else {
1097  netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1098  "generated event "EFX_QWORD_FMT"\n",
1099  channel->channel, EFX_QWORD_VAL(*event));
1100  }
1101 }
1102 
1103 static void
1104 efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1105 {
1106  struct efx_nic *efx = channel->efx;
1107  unsigned int ev_sub_code;
1108  unsigned int ev_sub_data;
1109 
1110  ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1111  ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1112 
1113  switch (ev_sub_code) {
1115  netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1116  channel->channel, ev_sub_data);
1117  efx_handle_tx_flush_done(efx, event);
1118  efx_sriov_tx_flush_done(efx, event);
1119  break;
1121  netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1122  channel->channel, ev_sub_data);
1123  efx_handle_rx_flush_done(efx, event);
1124  efx_sriov_rx_flush_done(efx, event);
1125  break;
1127  netif_dbg(efx, hw, efx->net_dev,
1128  "channel %d EVQ %d initialised\n",
1129  channel->channel, ev_sub_data);
1130  break;
1132  netif_vdbg(efx, hw, efx->net_dev,
1133  "channel %d SRAM update done\n", channel->channel);
1134  break;
1135  case FSE_AZ_WAKE_UP_EV:
1136  netif_vdbg(efx, hw, efx->net_dev,
1137  "channel %d RXQ %d wakeup event\n",
1138  channel->channel, ev_sub_data);
1139  break;
1140  case FSE_AZ_TIMER_EV:
1141  netif_vdbg(efx, hw, efx->net_dev,
1142  "channel %d RX queue %d timer expired\n",
1143  channel->channel, ev_sub_data);
1144  break;
1145  case FSE_AA_RX_RECOVER_EV:
1146  netif_err(efx, rx_err, efx->net_dev,
1147  "channel %d seen DRIVER RX_RESET event. "
1148  "Resetting.\n", channel->channel);
1149  atomic_inc(&efx->rx_reset);
1150  efx_schedule_reset(efx,
1151  EFX_WORKAROUND_6555(efx) ?
1154  break;
1156  if (ev_sub_data < EFX_VI_BASE) {
1157  netif_err(efx, rx_err, efx->net_dev,
1158  "RX DMA Q %d reports descriptor fetch error."
1159  " RX Q %d is disabled.\n", ev_sub_data,
1160  ev_sub_data);
1162  } else
1163  efx_sriov_desc_fetch_err(efx, ev_sub_data);
1164  break;
1166  if (ev_sub_data < EFX_VI_BASE) {
1167  netif_err(efx, tx_err, efx->net_dev,
1168  "TX DMA Q %d reports descriptor fetch error."
1169  " TX Q %d is disabled.\n", ev_sub_data,
1170  ev_sub_data);
1172  } else
1173  efx_sriov_desc_fetch_err(efx, ev_sub_data);
1174  break;
1175  default:
1176  netif_vdbg(efx, hw, efx->net_dev,
1177  "channel %d unknown driver event code %d "
1178  "data %04x\n", channel->channel, ev_sub_code,
1179  ev_sub_data);
1180  break;
1181  }
1182 }
1183 
1184 int efx_nic_process_eventq(struct efx_channel *channel, int budget)
1185 {
1186  struct efx_nic *efx = channel->efx;
1187  unsigned int read_ptr;
1188  efx_qword_t event, *p_event;
1189  int ev_code;
1190  int tx_packets = 0;
1191  int spent = 0;
1192 
1193  read_ptr = channel->eventq_read_ptr;
1194 
1195  for (;;) {
1196  p_event = efx_event(channel, read_ptr);
1197  event = *p_event;
1198 
1199  if (!efx_event_present(&event))
1200  /* End of events */
1201  break;
1202 
1203  netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1204  "channel %d event is "EFX_QWORD_FMT"\n",
1205  channel->channel, EFX_QWORD_VAL(event));
1206 
1207  /* Clear this event by marking it all ones */
1208  EFX_SET_QWORD(*p_event);
1209 
1210  ++read_ptr;
1211 
1212  ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1213 
1214  switch (ev_code) {
1215  case FSE_AZ_EV_CODE_RX_EV:
1216  efx_handle_rx_event(channel, &event);
1217  if (++spent == budget)
1218  goto out;
1219  break;
1220  case FSE_AZ_EV_CODE_TX_EV:
1221  tx_packets += efx_handle_tx_event(channel, &event);
1222  if (tx_packets > efx->txq_entries) {
1223  spent = budget;
1224  goto out;
1225  }
1226  break;
1228  efx_handle_generated_event(channel, &event);
1229  break;
1231  efx_handle_driver_event(channel, &event);
1232  break;
1234  efx_sriov_event(channel, &event);
1235  break;
1237  efx_mcdi_process_event(channel, &event);
1238  break;
1240  if (efx->type->handle_global_event &&
1241  efx->type->handle_global_event(channel, &event))
1242  break;
1243  /* else fall through */
1244  default:
1245  netif_err(channel->efx, hw, channel->efx->net_dev,
1246  "channel %d unknown event type %d (data "
1247  EFX_QWORD_FMT ")\n", channel->channel,
1248  ev_code, EFX_QWORD_VAL(event));
1249  }
1250  }
1251 
1252 out:
1253  channel->eventq_read_ptr = read_ptr;
1254  return spent;
1255 }
1256 
1257 /* Check whether an event is present in the eventq at the current
1258  * read pointer. Only useful for self-test.
1259  */
1260 bool efx_nic_event_present(struct efx_channel *channel)
1261 {
1262  return efx_event_present(efx_event(channel, channel->eventq_read_ptr));
1263 }
1264 
1265 /* Allocate buffer table entries for event queue */
1266 int efx_nic_probe_eventq(struct efx_channel *channel)
1267 {
1268  struct efx_nic *efx = channel->efx;
1269  unsigned entries;
1270 
1271  entries = channel->eventq_mask + 1;
1272  return efx_alloc_special_buffer(efx, &channel->eventq,
1273  entries * sizeof(efx_qword_t));
1274 }
1275 
1276 void efx_nic_init_eventq(struct efx_channel *channel)
1277 {
1278  efx_oword_t reg;
1279  struct efx_nic *efx = channel->efx;
1280 
1281  netif_dbg(efx, hw, efx->net_dev,
1282  "channel %d event queue in special buffers %d-%d\n",
1283  channel->channel, channel->eventq.index,
1284  channel->eventq.index + channel->eventq.entries - 1);
1285 
1286  if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1288  FRF_CZ_TIMER_Q_EN, 1,
1289  FRF_CZ_HOST_NOTIFY_MODE, 0,
1290  FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1291  efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1292  }
1293 
1294  /* Pin event queue buffer */
1295  efx_init_special_buffer(efx, &channel->eventq);
1296 
1297  /* Fill event queue with all ones (i.e. empty events) */
1298  memset(channel->eventq.addr, 0xff, channel->eventq.len);
1299 
1300  /* Push event queue to card */
1302  FRF_AZ_EVQ_EN, 1,
1303  FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1304  FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1305  efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1306  channel->channel);
1307 
1308  efx->type->push_irq_moderation(channel);
1309 }
1310 
1311 void efx_nic_fini_eventq(struct efx_channel *channel)
1312 {
1313  efx_oword_t reg;
1314  struct efx_nic *efx = channel->efx;
1315 
1316  /* Remove event queue from card */
1317  EFX_ZERO_OWORD(reg);
1318  efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1319  channel->channel);
1320  if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1321  efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1322 
1323  /* Unpin event queue */
1324  efx_fini_special_buffer(efx, &channel->eventq);
1325 }
1326 
1327 /* Free buffers backing event queue */
1328 void efx_nic_remove_eventq(struct efx_channel *channel)
1329 {
1330  efx_free_special_buffer(channel->efx, &channel->eventq);
1331 }
1332 
1333 
1335 {
1336  channel->event_test_cpu = -1;
1337  smp_wmb();
1338  efx_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1339 }
1340 
1342 {
1343  efx_magic_event(efx_rx_queue_channel(rx_queue),
1344  EFX_CHANNEL_MAGIC_FILL(rx_queue));
1345 }
1346 
1347 /**************************************************************************
1348  *
1349  * Hardware interrupts
1350  * The hardware interrupt handler does very little work; all the event
1351  * queue processing is carried out by per-channel tasklets.
1352  *
1353  **************************************************************************/
1354 
1355 /* Enable/disable/generate interrupts */
1356 static inline void efx_nic_interrupts(struct efx_nic *efx,
1357  bool enabled, bool force)
1358 {
1359  efx_oword_t int_en_reg_ker;
1360 
1361  EFX_POPULATE_OWORD_3(int_en_reg_ker,
1362  FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1363  FRF_AZ_KER_INT_KER, force,
1364  FRF_AZ_DRV_INT_EN_KER, enabled);
1365  efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1366 }
1367 
1369 {
1370  EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1371  wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1372 
1373  efx_nic_interrupts(efx, true, false);
1374 }
1375 
1377 {
1378  /* Disable interrupts */
1379  efx_nic_interrupts(efx, false, false);
1380 }
1381 
1382 /* Generate a test interrupt
1383  * Interrupt must already have been enabled, otherwise nasty things
1384  * may happen.
1385  */
1387 {
1388  efx->last_irq_cpu = -1;
1389  smp_wmb();
1390  efx_nic_interrupts(efx, true, true);
1391 }
1392 
1393 /* Process a fatal interrupt
1394  * Disable bus mastering ASAP and schedule a reset
1395  */
1397 {
1398  struct falcon_nic_data *nic_data = efx->nic_data;
1399  efx_oword_t *int_ker = efx->irq_status.addr;
1400  efx_oword_t fatal_intr;
1401  int error, mem_perr;
1402 
1403  efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1404  error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1405 
1406  netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1407  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1408  EFX_OWORD_VAL(fatal_intr),
1409  error ? "disabling bus mastering" : "no recognised error");
1410 
1411  /* If this is a memory parity error dump which blocks are offending */
1412  mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1413  EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1414  if (mem_perr) {
1415  efx_oword_t reg;
1416  efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1417  netif_err(efx, hw, efx->net_dev,
1418  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1419  EFX_OWORD_VAL(reg));
1420  }
1421 
1422  /* Disable both devices */
1423  pci_clear_master(efx->pci_dev);
1424  if (efx_nic_is_dual_func(efx))
1425  pci_clear_master(nic_data->pci_dev2);
1427 
1428  /* Count errors and reset or disable the NIC accordingly */
1429  if (efx->int_error_count == 0 ||
1431  efx->int_error_count = 0;
1432  efx->int_error_expire =
1434  }
1435  if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1436  netif_err(efx, hw, efx->net_dev,
1437  "SYSTEM ERROR - reset scheduled\n");
1439  } else {
1440  netif_err(efx, hw, efx->net_dev,
1441  "SYSTEM ERROR - max number of errors seen."
1442  "NIC will be disabled\n");
1444  }
1445 
1446  return IRQ_HANDLED;
1447 }
1448 
1449 /* Handle a legacy interrupt
1450  * Acknowledges the interrupt and schedule event queue processing.
1451  */
1452 static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1453 {
1454  struct efx_nic *efx = dev_id;
1455  efx_oword_t *int_ker = efx->irq_status.addr;
1457  struct efx_channel *channel;
1458  efx_dword_t reg;
1459  u32 queues;
1460  int syserr;
1461 
1462  /* Could this be ours? If interrupts are disabled then the
1463  * channel state may not be valid.
1464  */
1465  if (!efx->legacy_irq_enabled)
1466  return result;
1467 
1468  /* Read the ISR which also ACKs the interrupts */
1469  efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1470  queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1471 
1472  /* Handle non-event-queue sources */
1473  if (queues & (1U << efx->irq_level)) {
1474  syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1475  if (unlikely(syserr))
1476  return efx_nic_fatal_interrupt(efx);
1478  }
1479 
1480  if (queues != 0) {
1481  if (EFX_WORKAROUND_15783(efx))
1482  efx->irq_zero_count = 0;
1483 
1484  /* Schedule processing of any interrupting queues */
1485  efx_for_each_channel(channel, efx) {
1486  if (queues & 1)
1487  efx_schedule_channel_irq(channel);
1488  queues >>= 1;
1489  }
1490  result = IRQ_HANDLED;
1491 
1492  } else if (EFX_WORKAROUND_15783(efx)) {
1493  efx_qword_t *event;
1494 
1495  /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1496  * because this might be a shared interrupt. */
1497  if (efx->irq_zero_count++ == 0)
1498  result = IRQ_HANDLED;
1499 
1500  /* Ensure we schedule or rearm all event queues */
1501  efx_for_each_channel(channel, efx) {
1502  event = efx_event(channel, channel->eventq_read_ptr);
1503  if (efx_event_present(event))
1504  efx_schedule_channel_irq(channel);
1505  else
1506  efx_nic_eventq_read_ack(channel);
1507  }
1508  }
1509 
1510  if (result == IRQ_HANDLED)
1511  netif_vdbg(efx, intr, efx->net_dev,
1512  "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1513  irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1514 
1515  return result;
1516 }
1517 
1518 /* Handle an MSI interrupt
1519  *
1520  * Handle an MSI hardware interrupt. This routine schedules event
1521  * queue processing. No interrupt acknowledgement cycle is necessary.
1522  * Also, we never need to check that the interrupt is for us, since
1523  * MSI interrupts cannot be shared.
1524  */
1525 static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1526 {
1527  struct efx_channel *channel = *(struct efx_channel **)dev_id;
1528  struct efx_nic *efx = channel->efx;
1529  efx_oword_t *int_ker = efx->irq_status.addr;
1530  int syserr;
1531 
1532  netif_vdbg(efx, intr, efx->net_dev,
1533  "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1534  irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1535 
1536  /* Handle non-event-queue sources */
1537  if (channel->channel == efx->irq_level) {
1538  syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1539  if (unlikely(syserr))
1540  return efx_nic_fatal_interrupt(efx);
1542  }
1543 
1544  /* Schedule processing of the channel */
1545  efx_schedule_channel_irq(channel);
1546 
1547  return IRQ_HANDLED;
1548 }
1549 
1550 
1551 /* Setup RSS indirection table.
1552  * This maps from the hash value of the packet to RXQ
1553  */
1555 {
1556  size_t i = 0;
1558 
1559  if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1560  return;
1561 
1564 
1565  for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1566  EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1567  efx->rx_indir_table[i]);
1568  efx_writed_table(efx, &dword, FR_BZ_RX_INDIRECTION_TBL, i);
1569  }
1570 }
1571 
1572 /* Hook interrupt handler(s)
1573  * Try MSI and then legacy interrupts.
1574  */
1576 {
1577  struct efx_channel *channel;
1578  int rc;
1579 
1580  if (!EFX_INT_MODE_USE_MSI(efx)) {
1582  if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1583  handler = efx_legacy_interrupt;
1584  else
1585  handler = falcon_legacy_interrupt_a1;
1586 
1587  rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1588  efx->name, efx);
1589  if (rc) {
1590  netif_err(efx, drv, efx->net_dev,
1591  "failed to hook legacy IRQ %d\n",
1592  efx->pci_dev->irq);
1593  goto fail1;
1594  }
1595  return 0;
1596  }
1597 
1598  /* Hook MSI or MSI-X interrupt */
1599  efx_for_each_channel(channel, efx) {
1600  rc = request_irq(channel->irq, efx_msi_interrupt,
1601  IRQF_PROBE_SHARED, /* Not shared */
1602  efx->channel_name[channel->channel],
1603  &efx->channel[channel->channel]);
1604  if (rc) {
1605  netif_err(efx, drv, efx->net_dev,
1606  "failed to hook IRQ %d\n", channel->irq);
1607  goto fail2;
1608  }
1609  }
1610 
1611  return 0;
1612 
1613  fail2:
1614  efx_for_each_channel(channel, efx)
1615  free_irq(channel->irq, &efx->channel[channel->channel]);
1616  fail1:
1617  return rc;
1618 }
1619 
1621 {
1622  struct efx_channel *channel;
1623  efx_oword_t reg;
1624 
1625  /* Disable MSI/MSI-X interrupts */
1626  efx_for_each_channel(channel, efx) {
1627  if (channel->irq)
1628  free_irq(channel->irq, &efx->channel[channel->channel]);
1629  }
1630 
1631  /* ACK legacy interrupt */
1632  if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1633  efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1634  else
1635  falcon_irq_ack_a1(efx);
1636 
1637  /* Disable legacy interrupt */
1638  if (efx->legacy_irq)
1639  free_irq(efx->legacy_irq, efx);
1640 }
1641 
1642 /* Looks at available SRAM resources and works out how many queues we
1643  * can support, and where things like descriptor caches should live.
1644  *
1645  * SRAM is split up as follows:
1646  * 0 buftbl entries for channels
1647  * efx->vf_buftbl_base buftbl entries for SR-IOV
1648  * efx->rx_dc_base RX descriptor caches
1649  * efx->tx_dc_base TX descriptor caches
1650  */
1651 void efx_nic_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1652 {
1653  unsigned vi_count, buftbl_min;
1654 
1655  /* Account for the buffer table entries backing the datapath channels
1656  * and the descriptor caches for those channels.
1657  */
1658  buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1661  * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1662  vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1663 
1664 #ifdef CONFIG_SFC_SRIOV
1665  if (efx_sriov_wanted(efx)) {
1666  unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1667 
1668  efx->vf_buftbl_base = buftbl_min;
1669 
1670  vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1671  vi_count = max(vi_count, EFX_VI_BASE);
1672  buftbl_free = (sram_lim_qw - buftbl_min -
1673  vi_count * vi_dc_entries);
1674 
1675  entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1676  efx_vf_size(efx));
1677  vf_limit = min(buftbl_free / entries_per_vf,
1678  (1024U - EFX_VI_BASE) >> efx->vi_scale);
1679 
1680  if (efx->vf_count > vf_limit) {
1681  netif_err(efx, probe, efx->net_dev,
1682  "Reducing VF count from from %d to %d\n",
1683  efx->vf_count, vf_limit);
1684  efx->vf_count = vf_limit;
1685  }
1686  vi_count += efx->vf_count * efx_vf_size(efx);
1687  }
1688 #endif
1689 
1690  efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1691  efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1692 }
1693 
1695 {
1696  efx_oword_t altera_build;
1697  efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1698  return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1699 }
1700 
1701 void efx_nic_init_common(struct efx_nic *efx)
1702 {
1703  efx_oword_t temp;
1704 
1705  /* Set positions of descriptor caches in SRAM. */
1706  EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1707  efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1708  EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1709  efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1710 
1711  /* Set TX descriptor cache size. */
1713  EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1714  efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1715 
1716  /* Set RX descriptor cache size. Set low watermark to size-8, as
1717  * this allows most efficient prefetching.
1718  */
1720  EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1721  efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1722  EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1723  efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1724 
1725  /* Program INT_KER address */
1726  EFX_POPULATE_OWORD_2(temp,
1727  FRF_AZ_NORM_INT_VEC_DIS_KER,
1728  EFX_INT_MODE_USE_MSI(efx),
1729  FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1730  efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1731 
1732  if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1733  /* Use an interrupt level unused by event queues */
1734  efx->irq_level = 0x1f;
1735  else
1736  /* Use a valid MSI-X vector */
1737  efx->irq_level = 0;
1738 
1739  /* Enable all the genuinely fatal interrupts. (They are still
1740  * masked by the overall interrupt mask, controlled by
1741  * falcon_interrupts()).
1742  *
1743  * Note: All other fatal interrupts are enabled
1744  */
1745  EFX_POPULATE_OWORD_3(temp,
1746  FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1747  FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1748  FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1749  if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1750  EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1751  EFX_INVERT_OWORD(temp);
1752  efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1753 
1755 
1756  /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1757  * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1758  */
1759  efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1760  EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1761  EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1762  EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1763  EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1764  EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1765  /* Enable SW_EV to inherit in char driver - assume harmless here */
1766  EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1767  /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1768  EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1769  /* Disable hardware watchdog which can misfire */
1770  EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1771  /* Squash TX of packets of 16 bytes or less */
1772  if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1773  EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1774  efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1775 
1776  if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1777  EFX_POPULATE_OWORD_4(temp,
1778  /* Default values */
1779  FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1780  FRF_BZ_TX_PACE_SB_AF, 0xb,
1781  FRF_BZ_TX_PACE_FB_BASE, 0,
1782  /* Allow large pace values in the
1783  * fast bin. */
1784  FRF_BZ_TX_PACE_BIN_TH,
1786  efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1787  }
1788 }
1789 
1790 /* Register dump */
1791 
1792 #define REGISTER_REVISION_A 1
1793 #define REGISTER_REVISION_B 2
1794 #define REGISTER_REVISION_C 3
1795 #define REGISTER_REVISION_Z 3 /* latest revision */
1796 
1797 struct efx_nic_reg {
1800 };
1801 
1802 #define REGISTER(name, min_rev, max_rev) { \
1803  FR_ ## min_rev ## max_rev ## _ ## name, \
1804  REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev \
1805 }
1806 #define REGISTER_AA(name) REGISTER(name, A, A)
1807 #define REGISTER_AB(name) REGISTER(name, A, B)
1808 #define REGISTER_AZ(name) REGISTER(name, A, Z)
1809 #define REGISTER_BB(name) REGISTER(name, B, B)
1810 #define REGISTER_BZ(name) REGISTER(name, B, Z)
1811 #define REGISTER_CZ(name) REGISTER(name, C, Z)
1812 
1813 static const struct efx_nic_reg efx_nic_regs[] = {
1814  REGISTER_AZ(ADR_REGION),
1815  REGISTER_AZ(INT_EN_KER),
1816  REGISTER_BZ(INT_EN_CHAR),
1817  REGISTER_AZ(INT_ADR_KER),
1818  REGISTER_BZ(INT_ADR_CHAR),
1819  /* INT_ACK_KER is WO */
1820  /* INT_ISR0 is RC */
1821  REGISTER_AZ(HW_INIT),
1822  REGISTER_CZ(USR_EV_CFG),
1823  REGISTER_AB(EE_SPI_HCMD),
1824  REGISTER_AB(EE_SPI_HADR),
1825  REGISTER_AB(EE_SPI_HDATA),
1826  REGISTER_AB(EE_BASE_PAGE),
1827  REGISTER_AB(EE_VPD_CFG0),
1828  /* EE_VPD_SW_CNTL and EE_VPD_SW_DATA are not used */
1829  /* PMBX_DBG_IADDR and PBMX_DBG_IDATA are indirect */
1830  /* PCIE_CORE_INDIRECT is indirect */
1831  REGISTER_AB(NIC_STAT),
1832  REGISTER_AB(GPIO_CTL),
1833  REGISTER_AB(GLB_CTL),
1834  /* FATAL_INTR_KER and FATAL_INTR_CHAR are partly RC */
1835  REGISTER_BZ(DP_CTRL),
1836  REGISTER_AZ(MEM_STAT),
1837  REGISTER_AZ(CS_DEBUG),
1838  REGISTER_AZ(ALTERA_BUILD),
1839  REGISTER_AZ(CSR_SPARE),
1840  REGISTER_AB(PCIE_SD_CTL0123),
1841  REGISTER_AB(PCIE_SD_CTL45),
1842  REGISTER_AB(PCIE_PCS_CTL_STAT),
1843  /* DEBUG_DATA_OUT is not used */
1844  /* DRV_EV is WO */
1845  REGISTER_AZ(EVQ_CTL),
1846  REGISTER_AZ(EVQ_CNT1),
1847  REGISTER_AZ(EVQ_CNT2),
1848  REGISTER_AZ(BUF_TBL_CFG),
1849  REGISTER_AZ(SRM_RX_DC_CFG),
1850  REGISTER_AZ(SRM_TX_DC_CFG),
1851  REGISTER_AZ(SRM_CFG),
1852  /* BUF_TBL_UPD is WO */
1853  REGISTER_AZ(SRM_UPD_EVQ),
1854  REGISTER_AZ(SRAM_PARITY),
1856  REGISTER_BZ(RX_FILTER_CTL),
1857  /* RX_FLUSH_DESCQ is WO */
1858  REGISTER_AZ(RX_DC_CFG),
1859  REGISTER_AZ(RX_DC_PF_WM),
1860  REGISTER_BZ(RX_RSS_TKEY),
1861  /* RX_NODESC_DROP is RC */
1862  REGISTER_AA(RX_SELF_RST),
1863  /* RX_DEBUG, RX_PUSH_DROP are not used */
1864  REGISTER_CZ(RX_RSS_IPV6_REG1),
1865  REGISTER_CZ(RX_RSS_IPV6_REG2),
1866  REGISTER_CZ(RX_RSS_IPV6_REG3),
1867  /* TX_FLUSH_DESCQ is WO */
1868  REGISTER_AZ(TX_DC_CFG),
1869  REGISTER_AA(TX_CHKSM_CFG),
1871  /* TX_PUSH_DROP is not used */
1873  REGISTER_BZ(TX_PACE),
1874  /* TX_PACE_DROP_QID is RC */
1875  REGISTER_BB(TX_VLAN),
1876  REGISTER_BZ(TX_IPFIL_PORTEN),
1877  REGISTER_AB(MD_TXD),
1878  REGISTER_AB(MD_RXD),
1879  REGISTER_AB(MD_CS),
1880  REGISTER_AB(MD_PHY_ADR),
1881  REGISTER_AB(MD_ID),
1882  /* MD_STAT is RC */
1883  REGISTER_AB(MAC_STAT_DMA),
1885  REGISTER_BB(GEN_MODE),
1886  REGISTER_AB(MAC_MC_HASH_REG0),
1887  REGISTER_AB(MAC_MC_HASH_REG1),
1888  REGISTER_AB(GM_CFG1),
1889  REGISTER_AB(GM_CFG2),
1890  /* GM_IPG and GM_HD are not used */
1891  REGISTER_AB(GM_MAX_FLEN),
1892  /* GM_TEST is not used */
1893  REGISTER_AB(GM_ADR1),
1894  REGISTER_AB(GM_ADR2),
1895  REGISTER_AB(GMF_CFG0),
1896  REGISTER_AB(GMF_CFG1),
1897  REGISTER_AB(GMF_CFG2),
1898  REGISTER_AB(GMF_CFG3),
1899  REGISTER_AB(GMF_CFG4),
1900  REGISTER_AB(GMF_CFG5),
1901  REGISTER_BB(TX_SRC_MAC_CTL),
1902  REGISTER_AB(XM_ADR_LO),
1903  REGISTER_AB(XM_ADR_HI),
1904  REGISTER_AB(XM_GLB_CFG),
1905  REGISTER_AB(XM_TX_CFG),
1906  REGISTER_AB(XM_RX_CFG),
1907  REGISTER_AB(XM_MGT_INT_MASK),
1908  REGISTER_AB(XM_FC),
1909  REGISTER_AB(XM_PAUSE_TIME),
1910  REGISTER_AB(XM_TX_PARAM),
1911  REGISTER_AB(XM_RX_PARAM),
1912  /* XM_MGT_INT_MSK (note no 'A') is RC */
1913  REGISTER_AB(XX_PWR_RST),
1914  REGISTER_AB(XX_SD_CTL),
1915  REGISTER_AB(XX_TXDRV_CTL),
1916  /* XX_PRBS_CTL, XX_PRBS_CHK and XX_PRBS_ERR are not used */
1917  /* XX_CORE_STAT is partly RC */
1918 };
1919 
1923  u32 step:6, rows:21;
1924 };
1925 
1926 #define REGISTER_TABLE_DIMENSIONS(_, offset, min_rev, max_rev, step, rows) { \
1927  offset, \
1928  REGISTER_REVISION_ ## min_rev, REGISTER_REVISION_ ## max_rev, \
1929  step, rows \
1930 }
1931 #define REGISTER_TABLE(name, min_rev, max_rev) \
1932  REGISTER_TABLE_DIMENSIONS( \
1933  name, FR_ ## min_rev ## max_rev ## _ ## name, \
1934  min_rev, max_rev, \
1935  FR_ ## min_rev ## max_rev ## _ ## name ## _STEP, \
1936  FR_ ## min_rev ## max_rev ## _ ## name ## _ROWS)
1937 #define REGISTER_TABLE_AA(name) REGISTER_TABLE(name, A, A)
1938 #define REGISTER_TABLE_AZ(name) REGISTER_TABLE(name, A, Z)
1939 #define REGISTER_TABLE_BB(name) REGISTER_TABLE(name, B, B)
1940 #define REGISTER_TABLE_BZ(name) REGISTER_TABLE(name, B, Z)
1941 #define REGISTER_TABLE_BB_CZ(name) \
1942  REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, B, B, \
1943  FR_BZ_ ## name ## _STEP, \
1944  FR_BB_ ## name ## _ROWS), \
1945  REGISTER_TABLE_DIMENSIONS(name, FR_BZ_ ## name, C, Z, \
1946  FR_BZ_ ## name ## _STEP, \
1947  FR_CZ_ ## name ## _ROWS)
1948 #define REGISTER_TABLE_CZ(name) REGISTER_TABLE(name, C, Z)
1949 
1950 static const struct efx_nic_reg_table efx_nic_reg_tables[] = {
1951  /* DRIVER is not used */
1952  /* EVQ_RPTR, TIMER_COMMAND, USR_EV and {RX,TX}_DESC_UPD are WO */
1953  REGISTER_TABLE_BB(TX_IPFIL_TBL),
1954  REGISTER_TABLE_BB(TX_SRC_MAC_TBL),
1955  REGISTER_TABLE_AA(RX_DESC_PTR_TBL_KER),
1956  REGISTER_TABLE_BB_CZ(RX_DESC_PTR_TBL),
1957  REGISTER_TABLE_AA(TX_DESC_PTR_TBL_KER),
1958  REGISTER_TABLE_BB_CZ(TX_DESC_PTR_TBL),
1959  REGISTER_TABLE_AA(EVQ_PTR_TBL_KER),
1960  REGISTER_TABLE_BB_CZ(EVQ_PTR_TBL),
1961  /* We can't reasonably read all of the buffer table (up to 8MB!).
1962  * However this driver will only use a few entries. Reading
1963  * 1K entries allows for some expansion of queue count and
1964  * size before we need to change the version. */
1966  A, A, 8, 1024),
1968  B, Z, 8, 1024),
1969  REGISTER_TABLE_CZ(RX_MAC_FILTER_TBL0),
1970  REGISTER_TABLE_BB_CZ(TIMER_TBL),
1971  REGISTER_TABLE_BB_CZ(TX_PACE_TBL),
1972  REGISTER_TABLE_BZ(RX_INDIRECTION_TBL),
1973  /* TX_FILTER_TBL0 is huge and not used by this driver */
1974  REGISTER_TABLE_CZ(TX_MAC_FILTER_TBL0),
1975  REGISTER_TABLE_CZ(MC_TREG_SMEM),
1976  /* MSIX_PBA_TABLE is not mapped */
1977  /* SRM_DBG is not mapped (and is redundant with BUF_FLL_TBL) */
1978  REGISTER_TABLE_BZ(RX_FILTER_TBL0),
1979 };
1980 
1981 size_t efx_nic_get_regs_len(struct efx_nic *efx)
1982 {
1983  const struct efx_nic_reg *reg;
1984  const struct efx_nic_reg_table *table;
1985  size_t len = 0;
1986 
1987  for (reg = efx_nic_regs;
1988  reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
1989  reg++)
1990  if (efx->type->revision >= reg->min_revision &&
1991  efx->type->revision <= reg->max_revision)
1992  len += sizeof(efx_oword_t);
1993 
1994  for (table = efx_nic_reg_tables;
1995  table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
1996  table++)
1997  if (efx->type->revision >= table->min_revision &&
1998  efx->type->revision <= table->max_revision)
1999  len += table->rows * min_t(size_t, table->step, 16);
2000 
2001  return len;
2002 }
2003 
2004 void efx_nic_get_regs(struct efx_nic *efx, void *buf)
2005 {
2006  const struct efx_nic_reg *reg;
2007  const struct efx_nic_reg_table *table;
2008 
2009  for (reg = efx_nic_regs;
2010  reg < efx_nic_regs + ARRAY_SIZE(efx_nic_regs);
2011  reg++) {
2012  if (efx->type->revision >= reg->min_revision &&
2013  efx->type->revision <= reg->max_revision) {
2014  efx_reado(efx, (efx_oword_t *)buf, reg->offset);
2015  buf += sizeof(efx_oword_t);
2016  }
2017  }
2018 
2019  for (table = efx_nic_reg_tables;
2020  table < efx_nic_reg_tables + ARRAY_SIZE(efx_nic_reg_tables);
2021  table++) {
2022  size_t size, i;
2023 
2024  if (!(efx->type->revision >= table->min_revision &&
2025  efx->type->revision <= table->max_revision))
2026  continue;
2027 
2028  size = min_t(size_t, table->step, 16);
2029 
2030  for (i = 0; i < table->rows; i++) {
2031  switch (table->step) {
2032  case 4: /* 32-bit register or SRAM */
2033  efx_readd_table(efx, buf, table->offset, i);
2034  break;
2035  case 8: /* 64-bit SRAM */
2036  efx_sram_readq(efx,
2037  efx->membase + table->offset,
2038  buf, i);
2039  break;
2040  case 16: /* 128-bit register */
2041  efx_reado_table(efx, buf, table->offset, i);
2042  break;
2043  case 32: /* 128-bit register, interleaved */
2044  efx_reado_table(efx, buf, table->offset, 2 * i);
2045  break;
2046  default:
2047  WARN_ON(1);
2048  return;
2049  }
2050  buf += size;
2051  }
2052  }
2053 }