Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
osl.c
Go to the documentation of this file.
1 /*
2  * acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  * Copyright (C) 2000 Andrew Henroid
5  * Copyright (C) 2001, 2002 Andy Grover <[email protected]>
6  * Copyright (C) 2001, 2002 Paul Diefenbaugh <[email protected]>
7  * Copyright (c) 2008 Intel Corporation
8  * Author: Matthew Wilcox <[email protected]>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License, or
15  * (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25  *
26  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
27  *
28  */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/mm.h>
34 #include <linux/highmem.h>
35 #include <linux/pci.h>
36 #include <linux/interrupt.h>
37 #include <linux/kmod.h>
38 #include <linux/delay.h>
39 #include <linux/workqueue.h>
40 #include <linux/nmi.h>
41 #include <linux/acpi.h>
42 #include <linux/acpi_io.h>
43 #include <linux/efi.h>
44 #include <linux/ioport.h>
45 #include <linux/list.h>
46 #include <linux/jiffies.h>
47 #include <linux/semaphore.h>
48 
49 #include <asm/io.h>
50 #include <asm/uaccess.h>
51 
52 #include <acpi/acpi.h>
53 #include <acpi/acpi_bus.h>
54 #include <acpi/processor.h>
55 
56 #define _COMPONENT ACPI_OS_SERVICES
57 ACPI_MODULE_NAME("osl");
58 #define PREFIX "ACPI: "
59 struct acpi_os_dpc {
60  acpi_osd_exec_callback function;
61  void *context;
62  struct work_struct work;
63  int wait;
64 };
65 
66 #ifdef CONFIG_ACPI_CUSTOM_DSDT
67 #include CONFIG_ACPI_CUSTOM_DSDT_FILE
68 #endif
69 
70 #ifdef ENABLE_DEBUGGER
71 #include <linux/kdb.h>
72 
73 /* stuff for debugger support */
74 int acpi_in_debugger;
75 EXPORT_SYMBOL(acpi_in_debugger);
76 
77 extern char line_buf[80];
78 #endif /*ENABLE_DEBUGGER */
79 
80 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
81  u32 pm1b_ctrl);
82 
83 static acpi_osd_handler acpi_irq_handler;
84 static void *acpi_irq_context;
85 static struct workqueue_struct *kacpid_wq;
86 static struct workqueue_struct *kacpi_notify_wq;
88 EXPORT_SYMBOL(kacpi_hotplug_wq);
89 
90 /*
91  * This list of permanent mappings is for memory that may be accessed from
92  * interrupt context, where we can't do the ioremap().
93  */
94 struct acpi_ioremap {
95  struct list_head list;
96  void __iomem *virt;
97  acpi_physical_address phys;
98  acpi_size size;
99  unsigned long refcount;
100 };
101 
102 static LIST_HEAD(acpi_ioremaps);
103 static DEFINE_MUTEX(acpi_ioremap_lock);
104 
105 static void __init acpi_osi_setup_late(void);
106 
107 /*
108  * The story of _OSI(Linux)
109  *
110  * From pre-history through Linux-2.6.22,
111  * Linux responded TRUE upon a BIOS OSI(Linux) query.
112  *
113  * Unfortunately, reference BIOS writers got wind of this
114  * and put OSI(Linux) in their example code, quickly exposing
115  * this string as ill-conceived and opening the door to
116  * an un-bounded number of BIOS incompatibilities.
117  *
118  * For example, OSI(Linux) was used on resume to re-POST a
119  * video card on one system, because Linux at that time
120  * could not do a speedy restore in its native driver.
121  * But then upon gaining quick native restore capability,
122  * Linux has no way to tell the BIOS to skip the time-consuming
123  * POST -- putting Linux at a permanent performance disadvantage.
124  * On another system, the BIOS writer used OSI(Linux)
125  * to infer native OS support for IPMI! On other systems,
126  * OSI(Linux) simply got in the way of Linux claiming to
127  * be compatible with other operating systems, exposing
128  * BIOS issues such as skipped device initialization.
129  *
130  * So "Linux" turned out to be a really poor chose of
131  * OSI string, and from Linux-2.6.23 onward we respond FALSE.
132  *
133  * BIOS writers should NOT query _OSI(Linux) on future systems.
134  * Linux will complain on the console when it sees it, and return FALSE.
135  * To get Linux to return TRUE for your system will require
136  * a kernel source update to add a DMI entry,
137  * or boot with "acpi_osi=Linux"
138  */
139 
140 static struct osi_linux {
141  unsigned int enable:1;
142  unsigned int dmi:1;
143  unsigned int cmdline:1;
144 } osi_linux = {0, 0, 0};
145 
146 static u32 acpi_osi_handler(acpi_string interface, u32 supported)
147 {
148  if (!strcmp("Linux", interface)) {
149 
151  "BIOS _OSI(Linux) query %s%s\n",
152  osi_linux.enable ? "honored" : "ignored",
153  osi_linux.cmdline ? " via cmdline" :
154  osi_linux.dmi ? " via DMI" : "");
155  }
156 
157  return supported;
158 }
159 
160 static void __init acpi_request_region (struct acpi_generic_address *gas,
161  unsigned int length, char *desc)
162 {
163  u64 addr;
164 
165  /* Handle possible alignment issues */
166  memcpy(&addr, &gas->address, sizeof(addr));
167  if (!addr || !length)
168  return;
169 
170  /* Resources are never freed */
172  request_region(addr, length, desc);
173  else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
174  request_mem_region(addr, length, desc);
175 }
176 
177 static int __init acpi_reserve_resources(void)
178 {
179  acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
180  "ACPI PM1a_EVT_BLK");
181 
182  acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
183  "ACPI PM1b_EVT_BLK");
184 
185  acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
186  "ACPI PM1a_CNT_BLK");
187 
188  acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
189  "ACPI PM1b_CNT_BLK");
190 
191  if (acpi_gbl_FADT.pm_timer_length == 4)
192  acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
193 
194  acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
195  "ACPI PM2_CNT_BLK");
196 
197  /* Length of GPE blocks must be a non-negative multiple of 2 */
198 
199  if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
200  acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
201  acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
202 
203  if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
204  acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
205  acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
206 
207  return 0;
208 }
209 device_initcall(acpi_reserve_resources);
210 
211 void acpi_os_printf(const char *fmt, ...)
212 {
213  va_list args;
214  va_start(args, fmt);
215  acpi_os_vprintf(fmt, args);
216  va_end(args);
217 }
218 
219 void acpi_os_vprintf(const char *fmt, va_list args)
220 {
221  static char buffer[512];
222 
223  vsprintf(buffer, fmt, args);
224 
225 #ifdef ENABLE_DEBUGGER
226  if (acpi_in_debugger) {
227  kdb_printf("%s", buffer);
228  } else {
229  printk(KERN_CONT "%s", buffer);
230  }
231 #else
232  printk(KERN_CONT "%s", buffer);
233 #endif
234 }
235 
236 #ifdef CONFIG_KEXEC
237 static unsigned long acpi_rsdp;
238 static int __init setup_acpi_rsdp(char *arg)
239 {
240  acpi_rsdp = simple_strtoul(arg, NULL, 16);
241  return 0;
242 }
243 early_param("acpi_rsdp", setup_acpi_rsdp);
244 #endif
245 
246 acpi_physical_address __init acpi_os_get_root_pointer(void)
247 {
248 #ifdef CONFIG_KEXEC
249  if (acpi_rsdp)
250  return acpi_rsdp;
251 #endif
252 
253  if (efi_enabled) {
255  return efi.acpi20;
256  else if (efi.acpi != EFI_INVALID_TABLE_ADDR)
257  return efi.acpi;
258  else {
260  "System description tables not found\n");
261  return 0;
262  }
263  } else {
264  acpi_physical_address pa = 0;
265 
267  return pa;
268  }
269 }
270 
271 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
272 static struct acpi_ioremap *
273 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
274 {
275  struct acpi_ioremap *map;
276 
277  list_for_each_entry_rcu(map, &acpi_ioremaps, list)
278  if (map->phys <= phys &&
279  phys + size <= map->phys + map->size)
280  return map;
281 
282  return NULL;
283 }
284 
285 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
286 static void __iomem *
287 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
288 {
289  struct acpi_ioremap *map;
290 
291  map = acpi_map_lookup(phys, size);
292  if (map)
293  return map->virt + (phys - map->phys);
294 
295  return NULL;
296 }
297 
298 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
299 {
300  struct acpi_ioremap *map;
301  void __iomem *virt = NULL;
302 
303  mutex_lock(&acpi_ioremap_lock);
304  map = acpi_map_lookup(phys, size);
305  if (map) {
306  virt = map->virt + (phys - map->phys);
307  map->refcount++;
308  }
309  mutex_unlock(&acpi_ioremap_lock);
310  return virt;
311 }
313 
314 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
315 static struct acpi_ioremap *
316 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
317 {
318  struct acpi_ioremap *map;
319 
320  list_for_each_entry_rcu(map, &acpi_ioremaps, list)
321  if (map->virt <= virt &&
322  virt + size <= map->virt + map->size)
323  return map;
324 
325  return NULL;
326 }
327 
328 #ifndef CONFIG_IA64
329 #define should_use_kmap(pfn) page_is_ram(pfn)
330 #else
331 /* ioremap will take care of cache attributes */
332 #define should_use_kmap(pfn) 0
333 #endif
334 
335 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
336 {
337  unsigned long pfn;
338 
339  pfn = pg_off >> PAGE_SHIFT;
340  if (should_use_kmap(pfn)) {
341  if (pg_sz > PAGE_SIZE)
342  return NULL;
343  return (void __iomem __force *)kmap(pfn_to_page(pfn));
344  } else
345  return acpi_os_ioremap(pg_off, pg_sz);
346 }
347 
348 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
349 {
350  unsigned long pfn;
351 
352  pfn = pg_off >> PAGE_SHIFT;
353  if (should_use_kmap(pfn))
354  kunmap(pfn_to_page(pfn));
355  else
356  iounmap(vaddr);
357 }
358 
359 void __iomem *__init_refok
360 acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
361 {
362  struct acpi_ioremap *map;
363  void __iomem *virt;
364  acpi_physical_address pg_off;
365  acpi_size pg_sz;
366 
367  if (phys > ULONG_MAX) {
368  printk(KERN_ERR PREFIX "Cannot map memory that high\n");
369  return NULL;
370  }
371 
373  return __acpi_map_table((unsigned long)phys, size);
374 
375  mutex_lock(&acpi_ioremap_lock);
376  /* Check if there's a suitable mapping already. */
377  map = acpi_map_lookup(phys, size);
378  if (map) {
379  map->refcount++;
380  goto out;
381  }
382 
383  map = kzalloc(sizeof(*map), GFP_KERNEL);
384  if (!map) {
385  mutex_unlock(&acpi_ioremap_lock);
386  return NULL;
387  }
388 
389  pg_off = round_down(phys, PAGE_SIZE);
390  pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
391  virt = acpi_map(pg_off, pg_sz);
392  if (!virt) {
393  mutex_unlock(&acpi_ioremap_lock);
394  kfree(map);
395  return NULL;
396  }
397 
398  INIT_LIST_HEAD(&map->list);
399  map->virt = virt;
400  map->phys = pg_off;
401  map->size = pg_sz;
402  map->refcount = 1;
403 
404  list_add_tail_rcu(&map->list, &acpi_ioremaps);
405 
406  out:
407  mutex_unlock(&acpi_ioremap_lock);
408  return map->virt + (phys - map->phys);
409 }
411 
412 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
413 {
414  if (!--map->refcount)
415  list_del_rcu(&map->list);
416 }
417 
418 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
419 {
420  if (!map->refcount) {
421  synchronize_rcu();
422  acpi_unmap(map->phys, map->virt);
423  kfree(map);
424  }
425 }
426 
427 void __ref acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
428 {
429  struct acpi_ioremap *map;
430 
432  __acpi_unmap_table(virt, size);
433  return;
434  }
435 
436  mutex_lock(&acpi_ioremap_lock);
437  map = acpi_map_lookup_virt(virt, size);
438  if (!map) {
439  mutex_unlock(&acpi_ioremap_lock);
440  WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
441  return;
442  }
443  acpi_os_drop_map_ref(map);
444  mutex_unlock(&acpi_ioremap_lock);
445 
446  acpi_os_map_cleanup(map);
447 }
449 
450 void __init early_acpi_os_unmap_memory(void __iomem *virt, acpi_size size)
451 {
453  __acpi_unmap_table(virt, size);
454 }
455 
457 {
458  u64 addr;
459  void __iomem *virt;
460 
462  return 0;
463 
464  /* Handle possible alignment issues */
465  memcpy(&addr, &gas->address, sizeof(addr));
466  if (!addr || !gas->bit_width)
467  return -EINVAL;
468 
469  virt = acpi_os_map_memory(addr, gas->bit_width / 8);
470  if (!virt)
471  return -EIO;
472 
473  return 0;
474 }
476 
478 {
479  u64 addr;
480  struct acpi_ioremap *map;
481 
483  return;
484 
485  /* Handle possible alignment issues */
486  memcpy(&addr, &gas->address, sizeof(addr));
487  if (!addr || !gas->bit_width)
488  return;
489 
490  mutex_lock(&acpi_ioremap_lock);
491  map = acpi_map_lookup(addr, gas->bit_width / 8);
492  if (!map) {
493  mutex_unlock(&acpi_ioremap_lock);
494  return;
495  }
496  acpi_os_drop_map_ref(map);
497  mutex_unlock(&acpi_ioremap_lock);
498 
499  acpi_os_map_cleanup(map);
500 }
502 
503 #ifdef ACPI_FUTURE_USAGE
505 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
506 {
507  if (!phys || !virt)
508  return AE_BAD_PARAMETER;
509 
510  *phys = virt_to_phys(virt);
511 
512  return AE_OK;
513 }
514 #endif
515 
516 #define ACPI_MAX_OVERRIDE_LEN 100
517 
518 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
519 
522  acpi_string * new_val)
523 {
524  if (!init_val || !new_val)
525  return AE_BAD_PARAMETER;
526 
527  *new_val = NULL;
528  if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
529  printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
530  acpi_os_name);
531  *new_val = acpi_os_name;
532  }
533 
534  return AE_OK;
535 }
536 
539  struct acpi_table_header ** new_table)
540 {
541  if (!existing_table || !new_table)
542  return AE_BAD_PARAMETER;
543 
544  *new_table = NULL;
545 
546 #ifdef CONFIG_ACPI_CUSTOM_DSDT
547  if (strncmp(existing_table->signature, "DSDT", 4) == 0)
548  *new_table = (struct acpi_table_header *)AmlCode;
549 #endif
550  if (*new_table != NULL) {
551  printk(KERN_WARNING PREFIX "Override [%4.4s-%8.8s], "
552  "this is unsafe: tainting kernel\n",
553  existing_table->signature,
554  existing_table->oem_table_id);
556  }
557  return AE_OK;
558 }
559 
562  acpi_physical_address * new_address,
563  u32 *new_table_length)
564 {
565  return AE_SUPPORT;
566 }
567 
568 
569 static irqreturn_t acpi_irq(int irq, void *dev_id)
570 {
571  u32 handled;
572 
573  handled = (*acpi_irq_handler) (acpi_irq_context);
574 
575  if (handled) {
577  return IRQ_HANDLED;
578  } else {
580  return IRQ_NONE;
581  }
582 }
583 
585 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
586  void *context)
587 {
588  unsigned int irq;
589 
591 
592  /*
593  * ACPI interrupts different from the SCI in our copy of the FADT are
594  * not supported.
595  */
596  if (gsi != acpi_gbl_FADT.sci_interrupt)
597  return AE_BAD_PARAMETER;
598 
599  if (acpi_irq_handler)
600  return AE_ALREADY_ACQUIRED;
601 
602  if (acpi_gsi_to_irq(gsi, &irq) < 0) {
603  printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
604  gsi);
605  return AE_OK;
606  }
607 
608  acpi_irq_handler = handler;
609  acpi_irq_context = context;
610  if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
611  printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
612  acpi_irq_handler = NULL;
613  return AE_NOT_ACQUIRED;
614  }
615 
616  return AE_OK;
617 }
618 
619 acpi_status acpi_os_remove_interrupt_handler(u32 irq, acpi_osd_handler handler)
620 {
621  if (irq != acpi_gbl_FADT.sci_interrupt)
622  return AE_BAD_PARAMETER;
623 
624  free_irq(irq, acpi_irq);
625  acpi_irq_handler = NULL;
626 
627  return AE_OK;
628 }
629 
630 /*
631  * Running in interpreter thread context, safe to sleep
632  */
633 
635 {
637 }
638 
640 {
641  while (us) {
642  u32 delay = 1000;
643 
644  if (delay > us)
645  delay = us;
646  udelay(delay);
648  us -= delay;
649  }
650 }
651 
652 /*
653  * Support ACPI 3.0 AML Timer operand
654  * Returns 64-bit free-running, monotonically increasing timer
655  * with 100ns granularity
656  */
658 {
659  static u64 t;
660 
661 #ifdef CONFIG_HPET
662  /* TBD: use HPET if available */
663 #endif
664 
665 #ifdef CONFIG_X86_PM_TIMER
666  /* TBD: default to PM timer if HPET was not available */
667 #endif
668  if (!t)
669  printk(KERN_ERR PREFIX "acpi_os_get_timer() TBD\n");
670 
671  return ++t;
672 }
673 
675 {
676  u32 dummy;
677 
678  if (!value)
679  value = &dummy;
680 
681  *value = 0;
682  if (width <= 8) {
683  *(u8 *) value = inb(port);
684  } else if (width <= 16) {
685  *(u16 *) value = inw(port);
686  } else if (width <= 32) {
687  *(u32 *) value = inl(port);
688  } else {
689  BUG();
690  }
691 
692  return AE_OK;
693 }
694 
696 
698 {
699  if (width <= 8) {
700  outb(value, port);
701  } else if (width <= 16) {
702  outw(value, port);
703  } else if (width <= 32) {
704  outl(value, port);
705  } else {
706  BUG();
707  }
708 
709  return AE_OK;
710 }
711 
713 
714 #ifdef readq
715 static inline u64 read64(const volatile void __iomem *addr)
716 {
717  return readq(addr);
718 }
719 #else
720 static inline u64 read64(const volatile void __iomem *addr)
721 {
722  u64 l, h;
723  l = readl(addr);
724  h = readl(addr+4);
725  return l | (h << 32);
726 }
727 #endif
728 
730 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
731 {
732  void __iomem *virt_addr;
733  unsigned int size = width / 8;
734  bool unmap = false;
735  u64 dummy;
736 
737  rcu_read_lock();
738  virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
739  if (!virt_addr) {
740  rcu_read_unlock();
741  virt_addr = acpi_os_ioremap(phys_addr, size);
742  if (!virt_addr)
743  return AE_BAD_ADDRESS;
744  unmap = true;
745  }
746 
747  if (!value)
748  value = &dummy;
749 
750  switch (width) {
751  case 8:
752  *(u8 *) value = readb(virt_addr);
753  break;
754  case 16:
755  *(u16 *) value = readw(virt_addr);
756  break;
757  case 32:
758  *(u32 *) value = readl(virt_addr);
759  break;
760  case 64:
761  *(u64 *) value = read64(virt_addr);
762  break;
763  default:
764  BUG();
765  }
766 
767  if (unmap)
768  iounmap(virt_addr);
769  else
770  rcu_read_unlock();
771 
772  return AE_OK;
773 }
774 
775 #ifdef writeq
776 static inline void write64(u64 val, volatile void __iomem *addr)
777 {
778  writeq(val, addr);
779 }
780 #else
781 static inline void write64(u64 val, volatile void __iomem *addr)
782 {
783  writel(val, addr);
784  writel(val>>32, addr+4);
785 }
786 #endif
787 
790 {
791  void __iomem *virt_addr;
792  unsigned int size = width / 8;
793  bool unmap = false;
794 
795  rcu_read_lock();
796  virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
797  if (!virt_addr) {
798  rcu_read_unlock();
799  virt_addr = acpi_os_ioremap(phys_addr, size);
800  if (!virt_addr)
801  return AE_BAD_ADDRESS;
802  unmap = true;
803  }
804 
805  switch (width) {
806  case 8:
807  writeb(value, virt_addr);
808  break;
809  case 16:
810  writew(value, virt_addr);
811  break;
812  case 32:
813  writel(value, virt_addr);
814  break;
815  case 64:
816  write64(value, virt_addr);
817  break;
818  default:
819  BUG();
820  }
821 
822  if (unmap)
823  iounmap(virt_addr);
824  else
825  rcu_read_unlock();
826 
827  return AE_OK;
828 }
829 
832  u64 *value, u32 width)
833 {
834  int result, size;
835  u32 value32;
836 
837  if (!value)
838  return AE_BAD_PARAMETER;
839 
840  switch (width) {
841  case 8:
842  size = 1;
843  break;
844  case 16:
845  size = 2;
846  break;
847  case 32:
848  size = 4;
849  break;
850  default:
851  return AE_ERROR;
852  }
853 
854  result = raw_pci_read(pci_id->segment, pci_id->bus,
855  PCI_DEVFN(pci_id->device, pci_id->function),
856  reg, size, &value32);
857  *value = value32;
858 
859  return (result ? AE_ERROR : AE_OK);
860 }
861 
864  u64 value, u32 width)
865 {
866  int result, size;
867 
868  switch (width) {
869  case 8:
870  size = 1;
871  break;
872  case 16:
873  size = 2;
874  break;
875  case 32:
876  size = 4;
877  break;
878  default:
879  return AE_ERROR;
880  }
881 
882  result = raw_pci_write(pci_id->segment, pci_id->bus,
883  PCI_DEVFN(pci_id->device, pci_id->function),
884  reg, size, value);
885 
886  return (result ? AE_ERROR : AE_OK);
887 }
888 
889 static void acpi_os_execute_deferred(struct work_struct *work)
890 {
891  struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
892 
893  if (dpc->wait)
895 
896  dpc->function(dpc->context);
897  kfree(dpc);
898 }
899 
900 /*******************************************************************************
901  *
902  * FUNCTION: acpi_os_execute
903  *
904  * PARAMETERS: Type - Type of the callback
905  * Function - Function to be executed
906  * Context - Function parameters
907  *
908  * RETURN: Status
909  *
910  * DESCRIPTION: Depending on type, either queues function for deferred execution or
911  * immediately executes function on a separate thread.
912  *
913  ******************************************************************************/
914 
915 static acpi_status __acpi_os_execute(acpi_execute_type type,
916  acpi_osd_exec_callback function, void *context, int hp)
917 {
919  struct acpi_os_dpc *dpc;
920  struct workqueue_struct *queue;
921  int ret;
923  "Scheduling function [%p(%p)] for deferred execution.\n",
924  function, context));
925 
926  /*
927  * Allocate/initialize DPC structure. Note that this memory will be
928  * freed by the callee. The kernel handles the work_struct list in a
929  * way that allows us to also free its memory inside the callee.
930  * Because we may want to schedule several tasks with different
931  * parameters we can't use the approach some kernel code uses of
932  * having a static work_struct.
933  */
934 
935  dpc = kmalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
936  if (!dpc)
937  return AE_NO_MEMORY;
938 
939  dpc->function = function;
940  dpc->context = context;
941 
942  /*
943  * We can't run hotplug code in keventd_wq/kacpid_wq/kacpid_notify_wq
944  * because the hotplug code may call driver .remove() functions,
945  * which invoke flush_scheduled_work/acpi_os_wait_events_complete
946  * to flush these workqueues.
947  */
948  queue = hp ? kacpi_hotplug_wq :
949  (type == OSL_NOTIFY_HANDLER ? kacpi_notify_wq : kacpid_wq);
950  dpc->wait = hp ? 1 : 0;
951 
952  if (queue == kacpi_hotplug_wq)
953  INIT_WORK(&dpc->work, acpi_os_execute_deferred);
954  else if (queue == kacpi_notify_wq)
955  INIT_WORK(&dpc->work, acpi_os_execute_deferred);
956  else
957  INIT_WORK(&dpc->work, acpi_os_execute_deferred);
958 
959  /*
960  * On some machines, a software-initiated SMI causes corruption unless
961  * the SMI runs on CPU 0. An SMI can be initiated by any AML, but
962  * typically it's done in GPE-related methods that are run via
963  * workqueues, so we can avoid the known corruption cases by always
964  * queueing on CPU 0.
965  */
966  ret = queue_work_on(0, queue, &dpc->work);
967 
968  if (!ret) {
970  "Call to queue_work() failed.\n");
971  status = AE_ERROR;
972  kfree(dpc);
973  }
974  return status;
975 }
976 
978  acpi_osd_exec_callback function, void *context)
979 {
980  return __acpi_os_execute(type, function, context, 0);
981 }
983 
984 acpi_status acpi_os_hotplug_execute(acpi_osd_exec_callback function,
985  void *context)
986 {
987  return __acpi_os_execute(0, function, context, 1);
988 }
989 
991 {
992  flush_workqueue(kacpid_wq);
993  flush_workqueue(kacpi_notify_wq);
994 }
995 
997 
999 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1000 {
1001  struct semaphore *sem = NULL;
1002 
1003  sem = acpi_os_allocate(sizeof(struct semaphore));
1004  if (!sem)
1005  return AE_NO_MEMORY;
1006  memset(sem, 0, sizeof(struct semaphore));
1007 
1008  sema_init(sem, initial_units);
1009 
1010  *handle = (acpi_handle *) sem;
1011 
1012  ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1013  *handle, initial_units));
1014 
1015  return AE_OK;
1016 }
1017 
1018 /*
1019  * TODO: A better way to delete semaphores? Linux doesn't have a
1020  * 'delete_semaphore()' function -- may result in an invalid
1021  * pointer dereference for non-synchronized consumers. Should
1022  * we at least check for blocked threads and signal/cancel them?
1023  */
1024 
1026 {
1027  struct semaphore *sem = (struct semaphore *)handle;
1028 
1029  if (!sem)
1030  return AE_BAD_PARAMETER;
1031 
1032  ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1033 
1034  BUG_ON(!list_empty(&sem->wait_list));
1035  kfree(sem);
1036  sem = NULL;
1037 
1038  return AE_OK;
1039 }
1040 
1041 /*
1042  * TODO: Support for units > 1?
1043  */
1045 {
1046  acpi_status status = AE_OK;
1047  struct semaphore *sem = (struct semaphore *)handle;
1048  long jiffies;
1049  int ret = 0;
1050 
1051  if (!sem || (units < 1))
1052  return AE_BAD_PARAMETER;
1053 
1054  if (units > 1)
1055  return AE_SUPPORT;
1056 
1057  ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1058  handle, units, timeout));
1059 
1060  if (timeout == ACPI_WAIT_FOREVER)
1061  jiffies = MAX_SCHEDULE_TIMEOUT;
1062  else
1063  jiffies = msecs_to_jiffies(timeout);
1064 
1065  ret = down_timeout(sem, jiffies);
1066  if (ret)
1067  status = AE_TIME;
1068 
1069  if (ACPI_FAILURE(status)) {
1071  "Failed to acquire semaphore[%p|%d|%d], %s",
1072  handle, units, timeout,
1073  acpi_format_exception(status)));
1074  } else {
1076  "Acquired semaphore[%p|%d|%d]", handle,
1077  units, timeout));
1078  }
1079 
1080  return status;
1081 }
1082 
1083 /*
1084  * TODO: Support for units > 1?
1085  */
1087 {
1088  struct semaphore *sem = (struct semaphore *)handle;
1089 
1090  if (!sem || (units < 1))
1091  return AE_BAD_PARAMETER;
1092 
1093  if (units > 1)
1094  return AE_SUPPORT;
1095 
1096  ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1097  units));
1098 
1099  up(sem);
1100 
1101  return AE_OK;
1102 }
1103 
1104 #ifdef ACPI_FUTURE_USAGE
1105 u32 acpi_os_get_line(char *buffer)
1106 {
1107 
1108 #ifdef ENABLE_DEBUGGER
1109  if (acpi_in_debugger) {
1110  u32 chars;
1111 
1112  kdb_read(buffer, sizeof(line_buf));
1113 
1114  /* remove the CR kdb includes */
1115  chars = strlen(buffer) - 1;
1116  buffer[chars] = '\0';
1117  }
1118 #endif
1119 
1120  return 0;
1121 }
1122 #endif /* ACPI_FUTURE_USAGE */
1123 
1125 {
1126  switch (function) {
1127  case ACPI_SIGNAL_FATAL:
1128  printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1129  break;
1131  /*
1132  * AML Breakpoint
1133  * ACPI spec. says to treat it as a NOP unless
1134  * you are debugging. So if/when we integrate
1135  * AML debugger into the kernel debugger its
1136  * hook will go here. But until then it is
1137  * not useful to print anything on breakpoints.
1138  */
1139  break;
1140  default:
1141  break;
1142  }
1143 
1144  return AE_OK;
1145 }
1146 
1147 static int __init acpi_os_name_setup(char *str)
1148 {
1149  char *p = acpi_os_name;
1150  int count = ACPI_MAX_OVERRIDE_LEN - 1;
1151 
1152  if (!str || !*str)
1153  return 0;
1154 
1155  for (; count-- && str && *str; str++) {
1156  if (isalnum(*str) || *str == ' ' || *str == ':')
1157  *p++ = *str;
1158  else if (*str == '\'' || *str == '"')
1159  continue;
1160  else
1161  break;
1162  }
1163  *p = 0;
1164 
1165  return 1;
1166 
1167 }
1168 
1169 __setup("acpi_os_name=", acpi_os_name_setup);
1170 
1171 #define OSI_STRING_LENGTH_MAX 64 /* arbitrary */
1172 #define OSI_STRING_ENTRIES_MAX 16 /* arbitrary */
1173 
1176  bool enable;
1177 };
1178 
1179 static struct osi_setup_entry __initdata
1180  osi_setup_entries[OSI_STRING_ENTRIES_MAX] = {
1181  {"Module Device", true},
1182  {"Processor Device", true},
1183  {"3.0 _SCP Extensions", true},
1184  {"Processor Aggregator Device", true},
1185 };
1186 
1187 void __init acpi_osi_setup(char *str)
1188 {
1189  struct osi_setup_entry *osi;
1190  bool enable = true;
1191  int i;
1192 
1194  return;
1195 
1196  if (str == NULL || *str == '\0') {
1197  printk(KERN_INFO PREFIX "_OSI method disabled\n");
1199  return;
1200  }
1201 
1202  if (*str == '!') {
1203  str++;
1204  enable = false;
1205  }
1206 
1207  for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1208  osi = &osi_setup_entries[i];
1209  if (!strcmp(osi->string, str)) {
1210  osi->enable = enable;
1211  break;
1212  } else if (osi->string[0] == '\0') {
1213  osi->enable = enable;
1214  strncpy(osi->string, str, OSI_STRING_LENGTH_MAX);
1215  break;
1216  }
1217  }
1218 }
1219 
1220 static void __init set_osi_linux(unsigned int enable)
1221 {
1222  if (osi_linux.enable != enable)
1223  osi_linux.enable = enable;
1224 
1225  if (osi_linux.enable)
1226  acpi_osi_setup("Linux");
1227  else
1228  acpi_osi_setup("!Linux");
1229 
1230  return;
1231 }
1232 
1233 static void __init acpi_cmdline_osi_linux(unsigned int enable)
1234 {
1235  osi_linux.cmdline = 1; /* cmdline set the default and override DMI */
1236  osi_linux.dmi = 0;
1237  set_osi_linux(enable);
1238 
1239  return;
1240 }
1241 
1242 void __init acpi_dmi_osi_linux(int enable, const struct dmi_system_id *d)
1243 {
1244  printk(KERN_NOTICE PREFIX "DMI detected: %s\n", d->ident);
1245 
1246  if (enable == -1)
1247  return;
1248 
1249  osi_linux.dmi = 1; /* DMI knows that this box asks OSI(Linux) */
1250  set_osi_linux(enable);
1251 
1252  return;
1253 }
1254 
1255 /*
1256  * Modify the list of "OS Interfaces" reported to BIOS via _OSI
1257  *
1258  * empty string disables _OSI
1259  * string starting with '!' disables that string
1260  * otherwise string is added to list, augmenting built-in strings
1261  */
1262 static void __init acpi_osi_setup_late(void)
1263 {
1264  struct osi_setup_entry *osi;
1265  char *str;
1266  int i;
1268 
1269  for (i = 0; i < OSI_STRING_ENTRIES_MAX; i++) {
1270  osi = &osi_setup_entries[i];
1271  str = osi->string;
1272 
1273  if (*str == '\0')
1274  break;
1275  if (osi->enable) {
1276  status = acpi_install_interface(str);
1277 
1278  if (ACPI_SUCCESS(status))
1279  printk(KERN_INFO PREFIX "Added _OSI(%s)\n", str);
1280  } else {
1281  status = acpi_remove_interface(str);
1282 
1283  if (ACPI_SUCCESS(status))
1284  printk(KERN_INFO PREFIX "Deleted _OSI(%s)\n", str);
1285  }
1286  }
1287 }
1288 
1289 static int __init osi_setup(char *str)
1290 {
1291  if (str && !strcmp("Linux", str))
1292  acpi_cmdline_osi_linux(1);
1293  else if (str && !strcmp("!Linux", str))
1294  acpi_cmdline_osi_linux(0);
1295  else
1296  acpi_osi_setup(str);
1297 
1298  return 1;
1299 }
1300 
1301 __setup("acpi_osi=", osi_setup);
1302 
1303 /* enable serialization to combat AE_ALREADY_EXISTS errors */
1304 static int __init acpi_serialize_setup(char *str)
1305 {
1306  printk(KERN_INFO PREFIX "serialize enabled\n");
1307 
1309 
1310  return 1;
1311 }
1312 
1313 __setup("acpi_serialize", acpi_serialize_setup);
1314 
1315 /* Check of resource interference between native drivers and ACPI
1316  * OperationRegions (SystemIO and System Memory only).
1317  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1318  * in arbitrary AML code and can interfere with legacy drivers.
1319  * acpi_enforce_resources= can be set to:
1320  *
1321  * - strict (default) (2)
1322  * -> further driver trying to access the resources will not load
1323  * - lax (1)
1324  * -> further driver trying to access the resources will load, but you
1325  * get a system message that something might go wrong...
1326  *
1327  * - no (0)
1328  * -> ACPI Operation Region resources will not be registered
1329  *
1330  */
1331 #define ENFORCE_RESOURCES_STRICT 2
1332 #define ENFORCE_RESOURCES_LAX 1
1333 #define ENFORCE_RESOURCES_NO 0
1334 
1335 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1336 
1337 static int __init acpi_enforce_resources_setup(char *str)
1338 {
1339  if (str == NULL || *str == '\0')
1340  return 0;
1341 
1342  if (!strcmp("strict", str))
1343  acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1344  else if (!strcmp("lax", str))
1345  acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1346  else if (!strcmp("no", str))
1347  acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1348 
1349  return 1;
1350 }
1351 
1352 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1353 
1354 /* Check for resource conflicts between ACPI OperationRegions and native
1355  * drivers */
1357 {
1359  acpi_size length;
1360  u8 warn = 0;
1361  int clash = 0;
1362 
1363  if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1364  return 0;
1365  if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1366  return 0;
1367 
1368  if (res->flags & IORESOURCE_IO)
1369  space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1370  else
1371  space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1372 
1373  length = res->end - res->start + 1;
1374  if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1375  warn = 1;
1376  clash = acpi_check_address_range(space_id, res->start, length, warn);
1377 
1378  if (clash) {
1379  if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1380  if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1381  printk(KERN_NOTICE "ACPI: This conflict may"
1382  " cause random problems and system"
1383  " instability\n");
1384  printk(KERN_INFO "ACPI: If an ACPI driver is available"
1385  " for this device, you should use it instead of"
1386  " the native driver\n");
1387  }
1388  if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1389  return -EBUSY;
1390  }
1391  return 0;
1392 }
1394 
1396  const char *name)
1397 {
1398  struct resource res = {
1399  .start = start,
1400  .end = start + n - 1,
1401  .name = name,
1402  .flags = IORESOURCE_IO,
1403  };
1404 
1405  return acpi_check_resource_conflict(&res);
1406 }
1408 
1409 /*
1410  * Let drivers know whether the resource checks are effective
1411  */
1413 {
1414  return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1415 }
1417 
1418 /*
1419  * Deallocate the memory for a spinlock.
1420  */
1422 {
1423  ACPI_FREE(handle);
1424 }
1425 
1426 /*
1427  * Acquire a spinlock.
1428  *
1429  * handle is a pointer to the spinlock_t.
1430  */
1431 
1433 {
1435  spin_lock_irqsave(lockp, flags);
1436  return flags;
1437 }
1438 
1439 /*
1440  * Release a spinlock. See above.
1441  */
1442 
1444 {
1445  spin_unlock_irqrestore(lockp, flags);
1446 }
1447 
1448 #ifndef ACPI_USE_LOCAL_CACHE
1449 
1450 /*******************************************************************************
1451  *
1452  * FUNCTION: acpi_os_create_cache
1453  *
1454  * PARAMETERS: name - Ascii name for the cache
1455  * size - Size of each cached object
1456  * depth - Maximum depth of the cache (in objects) <ignored>
1457  * cache - Where the new cache object is returned
1458  *
1459  * RETURN: status
1460  *
1461  * DESCRIPTION: Create a cache object
1462  *
1463  ******************************************************************************/
1464 
1467 {
1468  *cache = kmem_cache_create(name, size, 0, 0, NULL);
1469  if (*cache == NULL)
1470  return AE_ERROR;
1471  else
1472  return AE_OK;
1473 }
1474 
1475 /*******************************************************************************
1476  *
1477  * FUNCTION: acpi_os_purge_cache
1478  *
1479  * PARAMETERS: Cache - Handle to cache object
1480  *
1481  * RETURN: Status
1482  *
1483  * DESCRIPTION: Free all objects within the requested cache.
1484  *
1485  ******************************************************************************/
1486 
1488 {
1489  kmem_cache_shrink(cache);
1490  return (AE_OK);
1491 }
1492 
1493 /*******************************************************************************
1494  *
1495  * FUNCTION: acpi_os_delete_cache
1496  *
1497  * PARAMETERS: Cache - Handle to cache object
1498  *
1499  * RETURN: Status
1500  *
1501  * DESCRIPTION: Free all objects within the requested cache and delete the
1502  * cache object.
1503  *
1504  ******************************************************************************/
1505 
1507 {
1508  kmem_cache_destroy(cache);
1509  return (AE_OK);
1510 }
1511 
1512 /*******************************************************************************
1513  *
1514  * FUNCTION: acpi_os_release_object
1515  *
1516  * PARAMETERS: Cache - Handle to cache object
1517  * Object - The object to be released
1518  *
1519  * RETURN: None
1520  *
1521  * DESCRIPTION: Release an object to the specified cache. If cache is full,
1522  * the object is deleted.
1523  *
1524  ******************************************************************************/
1525 
1527 {
1528  kmem_cache_free(cache, object);
1529  return (AE_OK);
1530 }
1531 #endif
1532 
1534 {
1535  acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1536  acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1539 
1540  return AE_OK;
1541 }
1542 
1544 {
1545  kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1546  kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1547  kacpi_hotplug_wq = alloc_workqueue("kacpi_hotplug", 0, 1);
1548  BUG_ON(!kacpid_wq);
1549  BUG_ON(!kacpi_notify_wq);
1550  BUG_ON(!kacpi_hotplug_wq);
1551  acpi_install_interface_handler(acpi_osi_handler);
1552  acpi_osi_setup_late();
1553  return AE_OK;
1554 }
1555 
1557 {
1558  if (acpi_irq_handler) {
1560  acpi_irq_handler);
1561  }
1562 
1565  acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1566  acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1567 
1568  destroy_workqueue(kacpid_wq);
1569  destroy_workqueue(kacpi_notify_wq);
1570  destroy_workqueue(kacpi_hotplug_wq);
1571 
1572  return AE_OK;
1573 }
1574 
1575 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1576  u32 pm1b_control)
1577 {
1578  int rc = 0;
1579  if (__acpi_os_prepare_sleep)
1580  rc = __acpi_os_prepare_sleep(sleep_state,
1581  pm1a_control, pm1b_control);
1582  if (rc < 0)
1583  return AE_ERROR;
1584  else if (rc > 0)
1585  return AE_CTRL_SKIP;
1586 
1587  return AE_OK;
1588 }
1589 
1590 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1591  u32 pm1a_ctrl, u32 pm1b_ctrl))
1592 {
1593  __acpi_os_prepare_sleep = func;
1594 }