Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pata_octeon_cf.c
Go to the documentation of this file.
1 /*
2  * Driver for the Octeon bootbus compact flash.
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License. See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2005 - 2009 Cavium Networks
9  * Copyright (C) 2008 Wind River Systems
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/libata.h>
15 #include <linux/irq.h>
16 #include <linux/slab.h>
17 #include <linux/platform_device.h>
18 #include <linux/workqueue.h>
19 #include <scsi/scsi_host.h>
20 
21 #include <asm/octeon/octeon.h>
22 
23 /*
24  * The Octeon bootbus compact flash interface is connected in at least
25  * 3 different configurations on various evaluation boards:
26  *
27  * -- 8 bits no irq, no DMA
28  * -- 16 bits no irq, no DMA
29  * -- 16 bits True IDE mode with DMA, but no irq.
30  *
31  * In the last case the DMA engine can generate an interrupt when the
32  * transfer is complete. For the first two cases only PIO is supported.
33  *
34  */
35 
36 #define DRV_NAME "pata_octeon_cf"
37 #define DRV_VERSION "2.1"
38 
39 
43  struct ata_port *ap;
45 };
46 
47 static struct scsi_host_template octeon_cf_sht = {
48  ATA_PIO_SHT(DRV_NAME),
49 };
50 
55 static unsigned int ns_to_tim_reg(unsigned int tim_mult, unsigned int nsecs)
56 {
57  unsigned int val;
58 
59  /*
60  * Compute # of eclock periods to get desired duration in
61  * nanoseconds.
62  */
63  val = DIV_ROUND_UP(nsecs * (octeon_get_io_clock_rate() / 1000000),
64  1000 * tim_mult);
65 
66  return val;
67 }
68 
69 static void octeon_cf_set_boot_reg_cfg(int cs)
70 {
71  union cvmx_mio_boot_reg_cfgx reg_cfg;
72  reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(cs));
73  reg_cfg.s.dmack = 0; /* Don't assert DMACK on access */
74  reg_cfg.s.tim_mult = 2; /* Timing mutiplier 2x */
75  reg_cfg.s.rd_dly = 0; /* Sample on falling edge of BOOT_OE */
76  reg_cfg.s.sam = 0; /* Don't combine write and output enable */
77  reg_cfg.s.we_ext = 0; /* No write enable extension */
78  reg_cfg.s.oe_ext = 0; /* No read enable extension */
79  reg_cfg.s.en = 1; /* Enable this region */
80  reg_cfg.s.orbit = 0; /* Don't combine with previous region */
81  reg_cfg.s.ale = 0; /* Don't do address multiplexing */
82  cvmx_write_csr(CVMX_MIO_BOOT_REG_CFGX(cs), reg_cfg.u64);
83 }
84 
93 static void octeon_cf_set_piomode(struct ata_port *ap, struct ata_device *dev)
94 {
95  struct octeon_cf_data *ocd = ap->dev->platform_data;
96  union cvmx_mio_boot_reg_timx reg_tim;
97  int cs = ocd->base_region;
98  int T;
99  struct ata_timing timing;
100 
101  int use_iordy;
102  int trh;
103  int pause;
104  /* These names are timing parameters from the ATA spec */
105  int t1;
106  int t2;
107  int t2i;
108 
109  T = (int)(2000000000000LL / octeon_get_clock_rate());
110 
111  if (ata_timing_compute(dev, dev->pio_mode, &timing, T, T))
112  BUG();
113 
114  t1 = timing.setup;
115  if (t1)
116  t1--;
117  t2 = timing.active;
118  if (t2)
119  t2--;
120  t2i = timing.act8b;
121  if (t2i)
122  t2i--;
123 
124  trh = ns_to_tim_reg(2, 20);
125  if (trh)
126  trh--;
127 
128  pause = timing.cycle - timing.active - timing.setup - trh;
129  if (pause)
130  pause--;
131 
132  octeon_cf_set_boot_reg_cfg(cs);
133  if (ocd->dma_engine >= 0)
134  /* True IDE mode, program both chip selects. */
135  octeon_cf_set_boot_reg_cfg(cs + 1);
136 
137 
138  use_iordy = ata_pio_need_iordy(dev);
139 
140  reg_tim.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_TIMX(cs));
141  /* Disable page mode */
142  reg_tim.s.pagem = 0;
143  /* Enable dynamic timing */
144  reg_tim.s.waitm = use_iordy;
145  /* Pages are disabled */
146  reg_tim.s.pages = 0;
147  /* We don't use multiplexed address mode */
148  reg_tim.s.ale = 0;
149  /* Not used */
150  reg_tim.s.page = 0;
151  /* Time after IORDY to coninue to assert the data */
152  reg_tim.s.wait = 0;
153  /* Time to wait to complete the cycle. */
154  reg_tim.s.pause = pause;
155  /* How long to hold after a write to de-assert CE. */
156  reg_tim.s.wr_hld = trh;
157  /* How long to wait after a read to de-assert CE. */
158  reg_tim.s.rd_hld = trh;
159  /* How long write enable is asserted */
160  reg_tim.s.we = t2;
161  /* How long read enable is asserted */
162  reg_tim.s.oe = t2;
163  /* Time after CE that read/write starts */
164  reg_tim.s.ce = ns_to_tim_reg(2, 5);
165  /* Time before CE that address is valid */
166  reg_tim.s.adr = 0;
167 
168  /* Program the bootbus region timing for the data port chip select. */
169  cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs), reg_tim.u64);
170  if (ocd->dma_engine >= 0)
171  /* True IDE mode, program both chip selects. */
172  cvmx_write_csr(CVMX_MIO_BOOT_REG_TIMX(cs + 1), reg_tim.u64);
173 }
174 
175 static void octeon_cf_set_dmamode(struct ata_port *ap, struct ata_device *dev)
176 {
177  struct octeon_cf_data *ocd = dev->link->ap->dev->platform_data;
178  union cvmx_mio_boot_dma_timx dma_tim;
179  unsigned int oe_a;
180  unsigned int oe_n;
181  unsigned int dma_ackh;
182  unsigned int dma_arq;
183  unsigned int pause;
184  unsigned int T0, Tkr, Td;
185  unsigned int tim_mult;
186 
187  const struct ata_timing *timing;
188 
189  timing = ata_timing_find_mode(dev->dma_mode);
190  T0 = timing->cycle;
191  Td = timing->active;
192  Tkr = timing->recover;
193  dma_ackh = timing->dmack_hold;
194 
195  dma_tim.u64 = 0;
196  /* dma_tim.s.tim_mult = 0 --> 4x */
197  tim_mult = 4;
198 
199  /* not spec'ed, value in eclocks, not affected by tim_mult */
200  dma_arq = 8;
201  pause = 25 - dma_arq * 1000 /
202  (octeon_get_clock_rate() / 1000000); /* Tz */
203 
204  oe_a = Td;
205  /* Tkr from cf spec, lengthened to meet T0 */
206  oe_n = max(T0 - oe_a, Tkr);
207 
208  dma_tim.s.dmack_pi = 1;
209 
210  dma_tim.s.oe_n = ns_to_tim_reg(tim_mult, oe_n);
211  dma_tim.s.oe_a = ns_to_tim_reg(tim_mult, oe_a);
212 
213  /*
214  * This is tI, C.F. spec. says 0, but Sony CF card requires
215  * more, we use 20 nS.
216  */
217  dma_tim.s.dmack_s = ns_to_tim_reg(tim_mult, 20);
218  dma_tim.s.dmack_h = ns_to_tim_reg(tim_mult, dma_ackh);
219 
220  dma_tim.s.dmarq = dma_arq;
221  dma_tim.s.pause = ns_to_tim_reg(tim_mult, pause);
222 
223  dma_tim.s.rd_dly = 0; /* Sample right on edge */
224 
225  /* writes only */
226  dma_tim.s.we_n = ns_to_tim_reg(tim_mult, oe_n);
227  dma_tim.s.we_a = ns_to_tim_reg(tim_mult, oe_a);
228 
229  pr_debug("ns to ticks (mult %d) of %d is: %d\n", tim_mult, 60,
230  ns_to_tim_reg(tim_mult, 60));
231  pr_debug("oe_n: %d, oe_a: %d, dmack_s: %d, dmack_h: "
232  "%d, dmarq: %d, pause: %d\n",
233  dma_tim.s.oe_n, dma_tim.s.oe_a, dma_tim.s.dmack_s,
234  dma_tim.s.dmack_h, dma_tim.s.dmarq, dma_tim.s.pause);
235 
236  cvmx_write_csr(CVMX_MIO_BOOT_DMA_TIMX(ocd->dma_engine),
237  dma_tim.u64);
238 
239 }
240 
249 static unsigned int octeon_cf_data_xfer8(struct ata_device *dev,
250  unsigned char *buffer,
251  unsigned int buflen,
252  int rw)
253 {
254  struct ata_port *ap = dev->link->ap;
255  void __iomem *data_addr = ap->ioaddr.data_addr;
256  unsigned long words;
257  int count;
258 
259  words = buflen;
260  if (rw) {
261  count = 16;
262  while (words--) {
263  iowrite8(*buffer, data_addr);
264  buffer++;
265  /*
266  * Every 16 writes do a read so the bootbus
267  * FIFO doesn't fill up.
268  */
269  if (--count == 0) {
270  ioread8(ap->ioaddr.altstatus_addr);
271  count = 16;
272  }
273  }
274  } else {
275  ioread8_rep(data_addr, buffer, words);
276  }
277  return buflen;
278 }
279 
288 static unsigned int octeon_cf_data_xfer16(struct ata_device *dev,
289  unsigned char *buffer,
290  unsigned int buflen,
291  int rw)
292 {
293  struct ata_port *ap = dev->link->ap;
294  void __iomem *data_addr = ap->ioaddr.data_addr;
295  unsigned long words;
296  int count;
297 
298  words = buflen / 2;
299  if (rw) {
300  count = 16;
301  while (words--) {
302  iowrite16(*(uint16_t *)buffer, data_addr);
303  buffer += sizeof(uint16_t);
304  /*
305  * Every 16 writes do a read so the bootbus
306  * FIFO doesn't fill up.
307  */
308  if (--count == 0) {
309  ioread8(ap->ioaddr.altstatus_addr);
310  count = 16;
311  }
312  }
313  } else {
314  while (words--) {
315  *(uint16_t *)buffer = ioread16(data_addr);
316  buffer += sizeof(uint16_t);
317  }
318  }
319  /* Transfer trailing 1 byte, if any. */
320  if (unlikely(buflen & 0x01)) {
321  __le16 align_buf[1] = { 0 };
322 
323  if (rw == READ) {
324  align_buf[0] = cpu_to_le16(ioread16(data_addr));
325  memcpy(buffer, align_buf, 1);
326  } else {
327  memcpy(align_buf, buffer, 1);
328  iowrite16(le16_to_cpu(align_buf[0]), data_addr);
329  }
330  words++;
331  }
332  return buflen;
333 }
334 
338 static void octeon_cf_tf_read16(struct ata_port *ap, struct ata_taskfile *tf)
339 {
340  u16 blob;
341  /* The base of the registers is at ioaddr.data_addr. */
342  void __iomem *base = ap->ioaddr.data_addr;
343 
344  blob = __raw_readw(base + 0xc);
345  tf->feature = blob >> 8;
346 
347  blob = __raw_readw(base + 2);
348  tf->nsect = blob & 0xff;
349  tf->lbal = blob >> 8;
350 
351  blob = __raw_readw(base + 4);
352  tf->lbam = blob & 0xff;
353  tf->lbah = blob >> 8;
354 
355  blob = __raw_readw(base + 6);
356  tf->device = blob & 0xff;
357  tf->command = blob >> 8;
358 
359  if (tf->flags & ATA_TFLAG_LBA48) {
360  if (likely(ap->ioaddr.ctl_addr)) {
361  iowrite8(tf->ctl | ATA_HOB, ap->ioaddr.ctl_addr);
362 
363  blob = __raw_readw(base + 0xc);
364  tf->hob_feature = blob >> 8;
365 
366  blob = __raw_readw(base + 2);
367  tf->hob_nsect = blob & 0xff;
368  tf->hob_lbal = blob >> 8;
369 
370  blob = __raw_readw(base + 4);
371  tf->hob_lbam = blob & 0xff;
372  tf->hob_lbah = blob >> 8;
373 
374  iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
375  ap->last_ctl = tf->ctl;
376  } else {
377  WARN_ON(1);
378  }
379  }
380 }
381 
382 static u8 octeon_cf_check_status16(struct ata_port *ap)
383 {
384  u16 blob;
385  void __iomem *base = ap->ioaddr.data_addr;
386 
387  blob = __raw_readw(base + 6);
388  return blob >> 8;
389 }
390 
391 static int octeon_cf_softreset16(struct ata_link *link, unsigned int *classes,
392  unsigned long deadline)
393 {
394  struct ata_port *ap = link->ap;
395  void __iomem *base = ap->ioaddr.data_addr;
396  int rc;
397  u8 err;
398 
399  DPRINTK("about to softreset\n");
400  __raw_writew(ap->ctl, base + 0xe);
401  udelay(20);
402  __raw_writew(ap->ctl | ATA_SRST, base + 0xe);
403  udelay(20);
404  __raw_writew(ap->ctl, base + 0xe);
405 
406  rc = ata_sff_wait_after_reset(link, 1, deadline);
407  if (rc) {
408  ata_link_err(link, "SRST failed (errno=%d)\n", rc);
409  return rc;
410  }
411 
412  /* determine by signature whether we have ATA or ATAPI devices */
413  classes[0] = ata_sff_dev_classify(&link->device[0], 1, &err);
414  DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
415  return 0;
416 }
417 
422 static void octeon_cf_tf_load16(struct ata_port *ap,
423  const struct ata_taskfile *tf)
424 {
425  unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
426  /* The base of the registers is at ioaddr.data_addr. */
427  void __iomem *base = ap->ioaddr.data_addr;
428 
429  if (tf->ctl != ap->last_ctl) {
430  iowrite8(tf->ctl, ap->ioaddr.ctl_addr);
431  ap->last_ctl = tf->ctl;
432  ata_wait_idle(ap);
433  }
434  if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
435  __raw_writew(tf->hob_feature << 8, base + 0xc);
436  __raw_writew(tf->hob_nsect | tf->hob_lbal << 8, base + 2);
437  __raw_writew(tf->hob_lbam | tf->hob_lbah << 8, base + 4);
438  VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
439  tf->hob_feature,
440  tf->hob_nsect,
441  tf->hob_lbal,
442  tf->hob_lbam,
443  tf->hob_lbah);
444  }
445  if (is_addr) {
446  __raw_writew(tf->feature << 8, base + 0xc);
447  __raw_writew(tf->nsect | tf->lbal << 8, base + 2);
448  __raw_writew(tf->lbam | tf->lbah << 8, base + 4);
449  VPRINTK("feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
450  tf->feature,
451  tf->nsect,
452  tf->lbal,
453  tf->lbam,
454  tf->lbah);
455  }
456  ata_wait_idle(ap);
457 }
458 
459 
460 static void octeon_cf_dev_select(struct ata_port *ap, unsigned int device)
461 {
462 /* There is only one device, do nothing. */
463  return;
464 }
465 
466 /*
467  * Issue ATA command to host controller. The device_addr is also sent
468  * as it must be written in a combined write with the command.
469  */
470 static void octeon_cf_exec_command16(struct ata_port *ap,
471  const struct ata_taskfile *tf)
472 {
473  /* The base of the registers is at ioaddr.data_addr. */
474  void __iomem *base = ap->ioaddr.data_addr;
475  u16 blob;
476 
477  if (tf->flags & ATA_TFLAG_DEVICE) {
478  VPRINTK("device 0x%X\n", tf->device);
479  blob = tf->device;
480  } else {
481  blob = 0;
482  }
483 
484  DPRINTK("ata%u: cmd 0x%X\n", ap->print_id, tf->command);
485  blob |= (tf->command << 8);
486  __raw_writew(blob, base + 6);
487 
488 
489  ata_wait_idle(ap);
490 }
491 
492 static void octeon_cf_irq_on(struct ata_port *ap)
493 {
494 }
495 
496 static void octeon_cf_irq_clear(struct ata_port *ap)
497 {
498  return;
499 }
500 
501 static void octeon_cf_dma_setup(struct ata_queued_cmd *qc)
502 {
503  struct ata_port *ap = qc->ap;
504  struct octeon_cf_port *cf_port;
505 
506  cf_port = ap->private_data;
507  DPRINTK("ENTER\n");
508  /* issue r/w command */
509  qc->cursg = qc->sg;
510  cf_port->dma_finished = 0;
511  ap->ops->sff_exec_command(ap, &qc->tf);
512  DPRINTK("EXIT\n");
513 }
514 
520 static void octeon_cf_dma_start(struct ata_queued_cmd *qc)
521 {
522  struct octeon_cf_data *ocd = qc->ap->dev->platform_data;
523  union cvmx_mio_boot_dma_cfgx mio_boot_dma_cfg;
524  union cvmx_mio_boot_dma_intx mio_boot_dma_int;
525  struct scatterlist *sg;
526 
527  VPRINTK("%d scatterlists\n", qc->n_elem);
528 
529  /* Get the scatter list entry we need to DMA into */
530  sg = qc->cursg;
531  BUG_ON(!sg);
532 
533  /*
534  * Clear the DMA complete status.
535  */
536  mio_boot_dma_int.u64 = 0;
537  mio_boot_dma_int.s.done = 1;
538  cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
539  mio_boot_dma_int.u64);
540 
541  /* Enable the interrupt. */
542  cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine),
543  mio_boot_dma_int.u64);
544 
545  /* Set the direction of the DMA */
546  mio_boot_dma_cfg.u64 = 0;
547  mio_boot_dma_cfg.s.en = 1;
548  mio_boot_dma_cfg.s.rw = ((qc->tf.flags & ATA_TFLAG_WRITE) != 0);
549 
550  /*
551  * Don't stop the DMA if the device deasserts DMARQ. Many
552  * compact flashes deassert DMARQ for a short time between
553  * sectors. Instead of stopping and restarting the DMA, we'll
554  * let the hardware do it. If the DMA is really stopped early
555  * due to an error condition, a later timeout will force us to
556  * stop.
557  */
558  mio_boot_dma_cfg.s.clr = 0;
559 
560  /* Size is specified in 16bit words and minus one notation */
561  mio_boot_dma_cfg.s.size = sg_dma_len(sg) / 2 - 1;
562 
563  /* We need to swap the high and low bytes of every 16 bits */
564  mio_boot_dma_cfg.s.swap8 = 1;
565 
566  mio_boot_dma_cfg.s.adr = sg_dma_address(sg);
567 
568  VPRINTK("%s %d bytes address=%p\n",
569  (mio_boot_dma_cfg.s.rw) ? "write" : "read", sg->length,
570  (void *)(unsigned long)mio_boot_dma_cfg.s.adr);
571 
572  cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine),
573  mio_boot_dma_cfg.u64);
574 }
575 
582 static unsigned int octeon_cf_dma_finished(struct ata_port *ap,
583  struct ata_queued_cmd *qc)
584 {
585  struct ata_eh_info *ehi = &ap->link.eh_info;
586  struct octeon_cf_data *ocd = ap->dev->platform_data;
588  union cvmx_mio_boot_dma_intx dma_int;
589  struct octeon_cf_port *cf_port;
590  u8 status;
591 
592  VPRINTK("ata%u: protocol %d task_state %d\n",
593  ap->print_id, qc->tf.protocol, ap->hsm_task_state);
594 
595 
596  if (ap->hsm_task_state != HSM_ST_LAST)
597  return 0;
598 
599  cf_port = ap->private_data;
600 
601  dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
602  if (dma_cfg.s.size != 0xfffff) {
603  /* Error, the transfer was not complete. */
604  qc->err_mask |= AC_ERR_HOST_BUS;
606  }
607 
608  /* Stop and clear the dma engine. */
609  dma_cfg.u64 = 0;
610  dma_cfg.s.size = -1;
611  cvmx_write_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine), dma_cfg.u64);
612 
613  /* Disable the interrupt. */
614  dma_int.u64 = 0;
615  cvmx_write_csr(CVMX_MIO_BOOT_DMA_INT_ENX(ocd->dma_engine), dma_int.u64);
616 
617  /* Clear the DMA complete status */
618  dma_int.s.done = 1;
619  cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine), dma_int.u64);
620 
621  status = ap->ops->sff_check_status(ap);
622 
623  ata_sff_hsm_move(ap, qc, status, 0);
624 
625  if (unlikely(qc->err_mask) && (qc->tf.protocol == ATA_PROT_DMA))
626  ata_ehi_push_desc(ehi, "DMA stat 0x%x", status);
627 
628  return 1;
629 }
630 
631 /*
632  * Check if any queued commands have more DMAs, if so start the next
633  * transfer, else do end of transfer handling.
634  */
635 static irqreturn_t octeon_cf_interrupt(int irq, void *dev_instance)
636 {
637  struct ata_host *host = dev_instance;
638  struct octeon_cf_port *cf_port;
639  int i;
640  unsigned int handled = 0;
641  unsigned long flags;
642 
643  spin_lock_irqsave(&host->lock, flags);
644 
645  DPRINTK("ENTER\n");
646  for (i = 0; i < host->n_ports; i++) {
647  u8 status;
648  struct ata_port *ap;
649  struct ata_queued_cmd *qc;
650  union cvmx_mio_boot_dma_intx dma_int;
652  struct octeon_cf_data *ocd;
653 
654  ap = host->ports[i];
655  ocd = ap->dev->platform_data;
656  cf_port = ap->private_data;
657  dma_int.u64 =
658  cvmx_read_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine));
659  dma_cfg.u64 =
660  cvmx_read_csr(CVMX_MIO_BOOT_DMA_CFGX(ocd->dma_engine));
661 
662  qc = ata_qc_from_tag(ap, ap->link.active_tag);
663 
664  if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) {
665  if (dma_int.s.done && !dma_cfg.s.en) {
666  if (!sg_is_last(qc->cursg)) {
667  qc->cursg = sg_next(qc->cursg);
668  handled = 1;
669  octeon_cf_dma_start(qc);
670  continue;
671  } else {
672  cf_port->dma_finished = 1;
673  }
674  }
675  if (!cf_port->dma_finished)
676  continue;
677  status = ioread8(ap->ioaddr.altstatus_addr);
678  if (status & (ATA_BUSY | ATA_DRQ)) {
679  /*
680  * We are busy, try to handle it
681  * later. This is the DMA finished
682  * interrupt, and it could take a
683  * little while for the card to be
684  * ready for more commands.
685  */
686  /* Clear DMA irq. */
687  dma_int.u64 = 0;
688  dma_int.s.done = 1;
689  cvmx_write_csr(CVMX_MIO_BOOT_DMA_INTX(ocd->dma_engine),
690  dma_int.u64);
691 
692  queue_delayed_work(cf_port->wq,
693  &cf_port->delayed_finish, 1);
694  handled = 1;
695  } else {
696  handled |= octeon_cf_dma_finished(ap, qc);
697  }
698  }
699  }
700  spin_unlock_irqrestore(&host->lock, flags);
701  DPRINTK("EXIT\n");
702  return IRQ_RETVAL(handled);
703 }
704 
705 static void octeon_cf_delayed_finish(struct work_struct *work)
706 {
707  struct octeon_cf_port *cf_port = container_of(work,
708  struct octeon_cf_port,
709  delayed_finish.work);
710  struct ata_port *ap = cf_port->ap;
711  struct ata_host *host = ap->host;
712  struct ata_queued_cmd *qc;
713  unsigned long flags;
714  u8 status;
715 
716  spin_lock_irqsave(&host->lock, flags);
717 
718  /*
719  * If the port is not waiting for completion, it must have
720  * handled it previously. The hsm_task_state is
721  * protected by host->lock.
722  */
723  if (ap->hsm_task_state != HSM_ST_LAST || !cf_port->dma_finished)
724  goto out;
725 
726  status = ioread8(ap->ioaddr.altstatus_addr);
727  if (status & (ATA_BUSY | ATA_DRQ)) {
728  /* Still busy, try again. */
729  queue_delayed_work(cf_port->wq,
730  &cf_port->delayed_finish, 1);
731  goto out;
732  }
733  qc = ata_qc_from_tag(ap, ap->link.active_tag);
734  if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING))
735  octeon_cf_dma_finished(ap, qc);
736 out:
737  spin_unlock_irqrestore(&host->lock, flags);
738 }
739 
740 static void octeon_cf_dev_config(struct ata_device *dev)
741 {
742  /*
743  * A maximum of 2^20 - 1 16 bit transfers are possible with
744  * the bootbus DMA. So we need to throttle max_sectors to
745  * (2^12 - 1 == 4095) to assure that this can never happen.
746  */
747  dev->max_sectors = min(dev->max_sectors, 4095U);
748 }
749 
750 /*
751  * We don't do ATAPI DMA so return 0.
752  */
753 static int octeon_cf_check_atapi_dma(struct ata_queued_cmd *qc)
754 {
755  return 0;
756 }
757 
758 static unsigned int octeon_cf_qc_issue(struct ata_queued_cmd *qc)
759 {
760  struct ata_port *ap = qc->ap;
761 
762  switch (qc->tf.protocol) {
763  case ATA_PROT_DMA:
764  WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
765 
766  ap->ops->sff_tf_load(ap, &qc->tf); /* load tf registers */
767  octeon_cf_dma_setup(qc); /* set up dma */
768  octeon_cf_dma_start(qc); /* initiate dma */
770  break;
771 
772  case ATAPI_PROT_DMA:
773  dev_err(ap->dev, "Error, ATAPI not supported\n");
774  BUG();
775 
776  default:
777  return ata_sff_qc_issue(qc);
778  }
779 
780  return 0;
781 }
782 
783 static struct ata_port_operations octeon_cf_ops = {
784  .inherits = &ata_sff_port_ops,
785  .check_atapi_dma = octeon_cf_check_atapi_dma,
786  .qc_prep = ata_noop_qc_prep,
787  .qc_issue = octeon_cf_qc_issue,
788  .sff_dev_select = octeon_cf_dev_select,
789  .sff_irq_on = octeon_cf_irq_on,
790  .sff_irq_clear = octeon_cf_irq_clear,
791  .cable_detect = ata_cable_40wire,
792  .set_piomode = octeon_cf_set_piomode,
793  .set_dmamode = octeon_cf_set_dmamode,
794  .dev_config = octeon_cf_dev_config,
795 };
796 
797 static int __devinit octeon_cf_probe(struct platform_device *pdev)
798 {
799  struct resource *res_cs0, *res_cs1;
800 
801  void __iomem *cs0;
802  void __iomem *cs1 = NULL;
803  struct ata_host *host;
804  struct ata_port *ap;
805  struct octeon_cf_data *ocd;
806  int irq = 0;
808  void __iomem *base;
809  struct octeon_cf_port *cf_port;
810  char version[32];
811 
812  res_cs0 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
813 
814  if (!res_cs0)
815  return -EINVAL;
816 
817  ocd = pdev->dev.platform_data;
818 
819  cs0 = devm_ioremap_nocache(&pdev->dev, res_cs0->start,
820  resource_size(res_cs0));
821 
822  if (!cs0)
823  return -ENOMEM;
824 
825  /* Determine from availability of DMA if True IDE mode or not */
826  if (ocd->dma_engine >= 0) {
827  res_cs1 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
828  if (!res_cs1)
829  return -EINVAL;
830 
831  cs1 = devm_ioremap_nocache(&pdev->dev, res_cs1->start,
832  resource_size(res_cs1));
833 
834  if (!cs1)
835  return -ENOMEM;
836  }
837 
838  cf_port = kzalloc(sizeof(*cf_port), GFP_KERNEL);
839  if (!cf_port)
840  return -ENOMEM;
841 
842  /* allocate host */
843  host = ata_host_alloc(&pdev->dev, 1);
844  if (!host)
845  goto free_cf_port;
846 
847  ap = host->ports[0];
848  ap->private_data = cf_port;
849  cf_port->ap = ap;
850  ap->ops = &octeon_cf_ops;
851  ap->pio_mask = ATA_PIO6;
853 
854  base = cs0 + ocd->base_region_bias;
855  if (!ocd->is16bit) {
856  ap->ioaddr.cmd_addr = base;
857  ata_sff_std_ports(&ap->ioaddr);
858 
859  ap->ioaddr.altstatus_addr = base + 0xe;
860  ap->ioaddr.ctl_addr = base + 0xe;
861  octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer8;
862  } else if (cs1) {
863  /* Presence of cs1 indicates True IDE mode. */
864  ap->ioaddr.cmd_addr = base + (ATA_REG_CMD << 1) + 1;
865  ap->ioaddr.data_addr = base + (ATA_REG_DATA << 1);
866  ap->ioaddr.error_addr = base + (ATA_REG_ERR << 1) + 1;
867  ap->ioaddr.feature_addr = base + (ATA_REG_FEATURE << 1) + 1;
868  ap->ioaddr.nsect_addr = base + (ATA_REG_NSECT << 1) + 1;
869  ap->ioaddr.lbal_addr = base + (ATA_REG_LBAL << 1) + 1;
870  ap->ioaddr.lbam_addr = base + (ATA_REG_LBAM << 1) + 1;
871  ap->ioaddr.lbah_addr = base + (ATA_REG_LBAH << 1) + 1;
872  ap->ioaddr.device_addr = base + (ATA_REG_DEVICE << 1) + 1;
873  ap->ioaddr.status_addr = base + (ATA_REG_STATUS << 1) + 1;
874  ap->ioaddr.command_addr = base + (ATA_REG_CMD << 1) + 1;
875  ap->ioaddr.altstatus_addr = cs1 + (6 << 1) + 1;
876  ap->ioaddr.ctl_addr = cs1 + (6 << 1) + 1;
877  octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
878 
879  ap->mwdma_mask = ATA_MWDMA4;
880  irq = platform_get_irq(pdev, 0);
881  irq_handler = octeon_cf_interrupt;
882 
883  /* True IDE mode needs delayed work to poll for not-busy. */
885  if (!cf_port->wq)
886  goto free_cf_port;
888  octeon_cf_delayed_finish);
889 
890  } else {
891  /* 16 bit but not True IDE */
892  octeon_cf_ops.sff_data_xfer = octeon_cf_data_xfer16;
893  octeon_cf_ops.softreset = octeon_cf_softreset16;
894  octeon_cf_ops.sff_check_status = octeon_cf_check_status16;
895  octeon_cf_ops.sff_tf_read = octeon_cf_tf_read16;
896  octeon_cf_ops.sff_tf_load = octeon_cf_tf_load16;
897  octeon_cf_ops.sff_exec_command = octeon_cf_exec_command16;
898 
899  ap->ioaddr.data_addr = base + ATA_REG_DATA;
900  ap->ioaddr.nsect_addr = base + ATA_REG_NSECT;
901  ap->ioaddr.lbal_addr = base + ATA_REG_LBAL;
902  ap->ioaddr.ctl_addr = base + 0xe;
903  ap->ioaddr.altstatus_addr = base + 0xe;
904  }
905 
906  ata_port_desc(ap, "cmd %p ctl %p", base, ap->ioaddr.ctl_addr);
907 
908 
909  snprintf(version, sizeof(version), "%s %d bit%s",
910  DRV_VERSION,
911  (ocd->is16bit) ? 16 : 8,
912  (cs1) ? ", True IDE" : "");
913  ata_print_version_once(&pdev->dev, version);
914 
915  return ata_host_activate(host, irq, irq_handler, 0, &octeon_cf_sht);
916 
917 free_cf_port:
918  kfree(cf_port);
919  return -ENOMEM;
920 }
921 
922 static struct platform_driver octeon_cf_driver = {
923  .probe = octeon_cf_probe,
924  .driver = {
925  .name = DRV_NAME,
926  .owner = THIS_MODULE,
927  },
928 };
929 
930 static int __init octeon_cf_init(void)
931 {
932  return platform_driver_register(&octeon_cf_driver);
933 }
934 
935 
936 MODULE_AUTHOR("David Daney <[email protected]>");
937 MODULE_DESCRIPTION("low-level driver for Cavium OCTEON Compact Flash PATA");
938 MODULE_LICENSE("GPL");
940 MODULE_ALIAS("platform:" DRV_NAME);
941 
942 module_init(octeon_cf_init);