Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pdc202xx_new.c
Go to the documentation of this file.
1 /*
2  * Promise TX2/TX4/TX2000/133 IDE driver
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation; either version
7  * 2 of the License, or (at your option) any later version.
8  *
9  * Split from:
10  * linux/drivers/ide/pdc202xx.c Version 0.35 Mar. 30, 2002
11  * Copyright (C) 1998-2002 Andre Hedrick <[email protected]>
12  * Copyright (C) 2005-2007 MontaVista Software, Inc.
13  * Portions Copyright (C) 1999 Promise Technology, Inc.
14  * Author: Frank Tiernan ([email protected])
15  * Released under terms of General Public License
16  */
17 
18 #include <linux/module.h>
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/delay.h>
22 #include <linux/pci.h>
23 #include <linux/init.h>
24 #include <linux/ide.h>
25 
26 #include <asm/io.h>
27 
28 #ifdef CONFIG_PPC_PMAC
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #endif
32 
33 #define DRV_NAME "pdc202xx_new"
34 
35 #undef DEBUG
36 
37 #ifdef DEBUG
38 #define DBG(fmt, args...) printk("%s: " fmt, __func__, ## args)
39 #else
40 #define DBG(fmt, args...)
41 #endif
42 
43 static u8 max_dma_rate(struct pci_dev *pdev)
44 {
45  u8 mode;
46 
47  switch(pdev->device) {
53  mode = 4;
54  break;
57  mode = 3;
58  break;
59  default:
60  return 0;
61  }
62 
63  return mode;
64 }
65 
71 static u8 get_indexed_reg(ide_hwif_t *hwif, u8 index)
72 {
73  u8 value;
74 
75  outb(index, hwif->dma_base + 1);
76  value = inb(hwif->dma_base + 3);
77 
78  DBG("index[%02X] value[%02X]\n", index, value);
79  return value;
80 }
81 
87 static void set_indexed_reg(ide_hwif_t *hwif, u8 index, u8 value)
88 {
89  outb(index, hwif->dma_base + 1);
90  outb(value, hwif->dma_base + 3);
91  DBG("index[%02X] value[%02X]\n", index, value);
92 }
93 
94 /*
95  * ATA Timing Tables based on 133 MHz PLL output clock.
96  *
97  * If the PLL outputs 100 MHz clock, the ASIC hardware will set
98  * the timing registers automatically when "set features" command is
99  * issued to the device. However, if the PLL output clock is 133 MHz,
100  * the following tables must be used.
101  */
102 static struct pio_timing {
103  u8 reg0c, reg0d, reg13;
104 } pio_timings [] = {
105  { 0xfb, 0x2b, 0xac }, /* PIO mode 0, IORDY off, Prefetch off */
106  { 0x46, 0x29, 0xa4 }, /* PIO mode 1, IORDY off, Prefetch off */
107  { 0x23, 0x26, 0x64 }, /* PIO mode 2, IORDY off, Prefetch off */
108  { 0x27, 0x0d, 0x35 }, /* PIO mode 3, IORDY on, Prefetch off */
109  { 0x23, 0x09, 0x25 }, /* PIO mode 4, IORDY on, Prefetch off */
110 };
111 
112 static struct mwdma_timing {
113  u8 reg0e, reg0f;
114 } mwdma_timings [] = {
115  { 0xdf, 0x5f }, /* MWDMA mode 0 */
116  { 0x6b, 0x27 }, /* MWDMA mode 1 */
117  { 0x69, 0x25 }, /* MWDMA mode 2 */
118 };
119 
120 static struct udma_timing {
121  u8 reg10, reg11, reg12;
122 } udma_timings [] = {
123  { 0x4a, 0x0f, 0xd5 }, /* UDMA mode 0 */
124  { 0x3a, 0x0a, 0xd0 }, /* UDMA mode 1 */
125  { 0x2a, 0x07, 0xcd }, /* UDMA mode 2 */
126  { 0x1a, 0x05, 0xcd }, /* UDMA mode 3 */
127  { 0x1a, 0x03, 0xcd }, /* UDMA mode 4 */
128  { 0x1a, 0x02, 0xcb }, /* UDMA mode 5 */
129  { 0x1a, 0x01, 0xcb }, /* UDMA mode 6 */
130 };
131 
132 static void pdcnew_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
133 {
134  struct pci_dev *dev = to_pci_dev(hwif->dev);
135  u8 adj = (drive->dn & 1) ? 0x08 : 0x00;
136  const u8 speed = drive->dma_mode;
137 
138  /*
139  * IDE core issues SETFEATURES_XFER to the drive first (thanks to
140  * IDE_HFLAG_POST_SET_MODE in ->host_flags). PDC202xx hardware will
141  * automatically set the timing registers based on 100 MHz PLL output.
142  *
143  * As we set up the PLL to output 133 MHz for UltraDMA/133 capable
144  * chips, we must override the default register settings...
145  */
146  if (max_dma_rate(dev) == 4) {
147  u8 mode = speed & 0x07;
148 
149  if (speed >= XFER_UDMA_0) {
150  set_indexed_reg(hwif, 0x10 + adj,
151  udma_timings[mode].reg10);
152  set_indexed_reg(hwif, 0x11 + adj,
153  udma_timings[mode].reg11);
154  set_indexed_reg(hwif, 0x12 + adj,
155  udma_timings[mode].reg12);
156  } else {
157  set_indexed_reg(hwif, 0x0e + adj,
158  mwdma_timings[mode].reg0e);
159  set_indexed_reg(hwif, 0x0f + adj,
160  mwdma_timings[mode].reg0f);
161  }
162  } else if (speed == XFER_UDMA_2) {
163  /* Set tHOLD bit to 0 if using UDMA mode 2 */
164  u8 tmp = get_indexed_reg(hwif, 0x10 + adj);
165 
166  set_indexed_reg(hwif, 0x10 + adj, tmp & 0x7f);
167  }
168 }
169 
170 static void pdcnew_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
171 {
172  struct pci_dev *dev = to_pci_dev(hwif->dev);
173  u8 adj = (drive->dn & 1) ? 0x08 : 0x00;
174  const u8 pio = drive->pio_mode - XFER_PIO_0;
175 
176  if (max_dma_rate(dev) == 4) {
177  set_indexed_reg(hwif, 0x0c + adj, pio_timings[pio].reg0c);
178  set_indexed_reg(hwif, 0x0d + adj, pio_timings[pio].reg0d);
179  set_indexed_reg(hwif, 0x13 + adj, pio_timings[pio].reg13);
180  }
181 }
182 
183 static u8 pdcnew_cable_detect(ide_hwif_t *hwif)
184 {
185  if (get_indexed_reg(hwif, 0x0b) & 0x04)
186  return ATA_CBL_PATA40;
187  else
188  return ATA_CBL_PATA80;
189 }
190 
191 static void pdcnew_reset(ide_drive_t *drive)
192 {
193  /*
194  * Deleted this because it is redundant from the caller.
195  */
196  printk(KERN_WARNING "pdc202xx_new: %s channel reset.\n",
197  drive->hwif->channel ? "Secondary" : "Primary");
198 }
199 
204 static long read_counter(u32 dma_base)
205 {
206  u32 pri_dma_base = dma_base, sec_dma_base = dma_base + 0x08;
207  u8 cnt0, cnt1, cnt2, cnt3;
208  long count = 0, last;
209  int retry = 3;
210 
211  do {
212  last = count;
213 
214  /* Read the current count */
215  outb(0x20, pri_dma_base + 0x01);
216  cnt0 = inb(pri_dma_base + 0x03);
217  outb(0x21, pri_dma_base + 0x01);
218  cnt1 = inb(pri_dma_base + 0x03);
219  outb(0x20, sec_dma_base + 0x01);
220  cnt2 = inb(sec_dma_base + 0x03);
221  outb(0x21, sec_dma_base + 0x01);
222  cnt3 = inb(sec_dma_base + 0x03);
223 
224  count = (cnt3 << 23) | (cnt2 << 15) | (cnt1 << 8) | cnt0;
225 
226  /*
227  * The 30-bit decrementing counter is read in 4 pieces.
228  * Incorrect value may be read when the most significant bytes
229  * are changing...
230  */
231  } while (retry-- && (((last ^ count) & 0x3fff8000) || last < count));
232 
233  DBG("cnt0[%02X] cnt1[%02X] cnt2[%02X] cnt3[%02X]\n",
234  cnt0, cnt1, cnt2, cnt3);
235 
236  return count;
237 }
238 
244 static long detect_pll_input_clock(unsigned long dma_base)
245 {
246  struct timeval start_time, end_time;
247  long start_count, end_count;
248  long pll_input, usec_elapsed;
249  u8 scr1;
250 
251  start_count = read_counter(dma_base);
253 
254  /* Start the test mode */
255  outb(0x01, dma_base + 0x01);
256  scr1 = inb(dma_base + 0x03);
257  DBG("scr1[%02X]\n", scr1);
258  outb(scr1 | 0x40, dma_base + 0x03);
259 
260  /* Let the counter run for 10 ms. */
261  mdelay(10);
262 
263  end_count = read_counter(dma_base);
264  do_gettimeofday(&end_time);
265 
266  /* Stop the test mode */
267  outb(0x01, dma_base + 0x01);
268  scr1 = inb(dma_base + 0x03);
269  DBG("scr1[%02X]\n", scr1);
270  outb(scr1 & ~0x40, dma_base + 0x03);
271 
272  /*
273  * Calculate the input clock in Hz
274  * (the clock counter is 30 bit wide and counts down)
275  */
276  usec_elapsed = (end_time.tv_sec - start_time.tv_sec) * 1000000 +
277  (end_time.tv_usec - start_time.tv_usec);
278  pll_input = ((start_count - end_count) & 0x3fffffff) / 10 *
279  (10000000 / usec_elapsed);
280 
281  DBG("start[%ld] end[%ld]\n", start_count, end_count);
282 
283  return pll_input;
284 }
285 
286 #ifdef CONFIG_PPC_PMAC
287 static void apple_kiwi_init(struct pci_dev *pdev)
288 {
289  struct device_node *np = pci_device_to_OF_node(pdev);
290  u8 conf;
291 
292  if (np == NULL || !of_device_is_compatible(np, "kiwi-root"))
293  return;
294 
295  if (pdev->revision >= 0x03) {
296  /* Setup chip magic config stuff (from darwin) */
297  pci_read_config_byte (pdev, 0x40, &conf);
298  pci_write_config_byte(pdev, 0x40, (conf | 0x01));
299  }
300 }
301 #endif /* CONFIG_PPC_PMAC */
302 
303 static int init_chipset_pdcnew(struct pci_dev *dev)
304 {
305  const char *name = DRV_NAME;
306  unsigned long dma_base = pci_resource_start(dev, 4);
307  unsigned long sec_dma_base = dma_base + 0x08;
308  long pll_input, pll_output, ratio;
309  int f, r;
310  u8 pll_ctl0, pll_ctl1;
311 
312  if (dma_base == 0)
313  return -EFAULT;
314 
315 #ifdef CONFIG_PPC_PMAC
316  apple_kiwi_init(dev);
317 #endif
318 
319  /* Calculate the required PLL output frequency */
320  switch(max_dma_rate(dev)) {
321  case 4: /* it's 133 MHz for Ultra133 chips */
322  pll_output = 133333333;
323  break;
324  case 3: /* and 100 MHz for Ultra100 chips */
325  default:
326  pll_output = 100000000;
327  break;
328  }
329 
330  /*
331  * Detect PLL input clock.
332  * On some systems, where PCI bus is running at non-standard clock rate
333  * (e.g. 25 or 40 MHz), we have to adjust the cycle time.
334  * PDC20268 and newer chips employ PLL circuit to help correct timing
335  * registers setting.
336  */
337  pll_input = detect_pll_input_clock(dma_base);
338  printk(KERN_INFO "%s %s: PLL input clock is %ld kHz\n",
339  name, pci_name(dev), pll_input / 1000);
340 
341  /* Sanity check */
342  if (unlikely(pll_input < 5000000L || pll_input > 70000000L)) {
343  printk(KERN_ERR "%s %s: Bad PLL input clock %ld Hz, giving up!"
344  "\n", name, pci_name(dev), pll_input);
345  goto out;
346  }
347 
348 #ifdef DEBUG
349  DBG("pll_output is %ld Hz\n", pll_output);
350 
351  /* Show the current clock value of PLL control register
352  * (maybe already configured by the BIOS)
353  */
354  outb(0x02, sec_dma_base + 0x01);
355  pll_ctl0 = inb(sec_dma_base + 0x03);
356  outb(0x03, sec_dma_base + 0x01);
357  pll_ctl1 = inb(sec_dma_base + 0x03);
358 
359  DBG("pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
360 #endif
361 
362  /*
363  * Calculate the ratio of F, R and NO
364  * POUT = (F + 2) / (( R + 2) * NO)
365  */
366  ratio = pll_output / (pll_input / 1000);
367  if (ratio < 8600L) { /* 8.6x */
368  /* Using NO = 0x01, R = 0x0d */
369  r = 0x0d;
370  } else if (ratio < 12900L) { /* 12.9x */
371  /* Using NO = 0x01, R = 0x08 */
372  r = 0x08;
373  } else if (ratio < 16100L) { /* 16.1x */
374  /* Using NO = 0x01, R = 0x06 */
375  r = 0x06;
376  } else if (ratio < 64000L) { /* 64x */
377  r = 0x00;
378  } else {
379  /* Invalid ratio */
380  printk(KERN_ERR "%s %s: Bad ratio %ld, giving up!\n",
381  name, pci_name(dev), ratio);
382  goto out;
383  }
384 
385  f = (ratio * (r + 2)) / 1000 - 2;
386 
387  DBG("F[%d] R[%d] ratio*1000[%ld]\n", f, r, ratio);
388 
389  if (unlikely(f < 0 || f > 127)) {
390  /* Invalid F */
391  printk(KERN_ERR "%s %s: F[%d] invalid!\n",
392  name, pci_name(dev), f);
393  goto out;
394  }
395 
396  pll_ctl0 = (u8) f;
397  pll_ctl1 = (u8) r;
398 
399  DBG("Writing pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
400 
401  outb(0x02, sec_dma_base + 0x01);
402  outb(pll_ctl0, sec_dma_base + 0x03);
403  outb(0x03, sec_dma_base + 0x01);
404  outb(pll_ctl1, sec_dma_base + 0x03);
405 
406  /* Wait the PLL circuit to be stable */
407  mdelay(30);
408 
409 #ifdef DEBUG
410  /*
411  * Show the current clock value of PLL control register
412  */
413  outb(0x02, sec_dma_base + 0x01);
414  pll_ctl0 = inb(sec_dma_base + 0x03);
415  outb(0x03, sec_dma_base + 0x01);
416  pll_ctl1 = inb(sec_dma_base + 0x03);
417 
418  DBG("pll_ctl[%02X][%02X]\n", pll_ctl0, pll_ctl1);
419 #endif
420 
421  out:
422  return 0;
423 }
424 
425 static struct pci_dev * __devinit pdc20270_get_dev2(struct pci_dev *dev)
426 {
427  struct pci_dev *dev2;
428 
429  dev2 = pci_get_slot(dev->bus, PCI_DEVFN(PCI_SLOT(dev->devfn) + 1,
430  PCI_FUNC(dev->devfn)));
431 
432  if (dev2 &&
433  dev2->vendor == dev->vendor &&
434  dev2->device == dev->device) {
435 
436  if (dev2->irq != dev->irq) {
437  dev2->irq = dev->irq;
438  printk(KERN_INFO DRV_NAME " %s: PCI config space "
439  "interrupt fixed\n", pci_name(dev));
440  }
441 
442  return dev2;
443  }
444 
445  return NULL;
446 }
447 
448 static const struct ide_port_ops pdcnew_port_ops = {
449  .set_pio_mode = pdcnew_set_pio_mode,
450  .set_dma_mode = pdcnew_set_dma_mode,
451  .resetproc = pdcnew_reset,
452  .cable_detect = pdcnew_cable_detect,
453 };
454 
455 #define DECLARE_PDCNEW_DEV(udma) \
456  { \
457  .name = DRV_NAME, \
458  .init_chipset = init_chipset_pdcnew, \
459  .port_ops = &pdcnew_port_ops, \
460  .host_flags = IDE_HFLAG_POST_SET_MODE | \
461  IDE_HFLAG_ERROR_STOPS_FIFO | \
462  IDE_HFLAG_OFF_BOARD, \
463  .pio_mask = ATA_PIO4, \
464  .mwdma_mask = ATA_MWDMA2, \
465  .udma_mask = udma, \
466  }
467 
468 static const struct ide_port_info pdcnew_chipsets[] __devinitconst = {
469  /* 0: PDC202{68,70} */ DECLARE_PDCNEW_DEV(ATA_UDMA5),
470  /* 1: PDC202{69,71,75,76,77} */ DECLARE_PDCNEW_DEV(ATA_UDMA6),
471 };
472 
482 static int __devinit pdc202new_init_one(struct pci_dev *dev, const struct pci_device_id *id)
483 {
484  const struct ide_port_info *d = &pdcnew_chipsets[id->driver_data];
485  struct pci_dev *bridge = dev->bus->self;
486 
487  if (dev->device == PCI_DEVICE_ID_PROMISE_20270 && bridge &&
488  bridge->vendor == PCI_VENDOR_ID_DEC &&
489  bridge->device == PCI_DEVICE_ID_DEC_21150) {
490  struct pci_dev *dev2;
491 
492  if (PCI_SLOT(dev->devfn) & 2)
493  return -ENODEV;
494 
495  dev2 = pdc20270_get_dev2(dev);
496 
497  if (dev2) {
498  int ret = ide_pci_init_two(dev, dev2, d, NULL);
499  if (ret < 0)
500  pci_dev_put(dev2);
501  return ret;
502  }
503  }
504 
505  if (dev->device == PCI_DEVICE_ID_PROMISE_20276 && bridge &&
506  bridge->vendor == PCI_VENDOR_ID_INTEL &&
507  (bridge->device == PCI_DEVICE_ID_INTEL_I960 ||
508  bridge->device == PCI_DEVICE_ID_INTEL_I960RM)) {
509  printk(KERN_INFO DRV_NAME " %s: attached to I2O RAID controller,"
510  " skipping\n", pci_name(dev));
511  return -ENODEV;
512  }
513 
514  return ide_pci_init_one(dev, d, NULL);
515 }
516 
517 static void __devexit pdc202new_remove(struct pci_dev *dev)
518 {
519  struct ide_host *host = pci_get_drvdata(dev);
520  struct pci_dev *dev2 = host->dev[1] ? to_pci_dev(host->dev[1]) : NULL;
521 
522  ide_pci_remove(dev);
523  pci_dev_put(dev2);
524 }
525 
526 static const struct pci_device_id pdc202new_pci_tbl[] = {
527  { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20268), 0 },
528  { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20269), 1 },
529  { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20270), 0 },
530  { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20271), 1 },
531  { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20275), 1 },
532  { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20276), 1 },
533  { PCI_VDEVICE(PROMISE, PCI_DEVICE_ID_PROMISE_20277), 1 },
534  { 0, },
535 };
536 MODULE_DEVICE_TABLE(pci, pdc202new_pci_tbl);
537 
538 static struct pci_driver pdc202new_pci_driver = {
539  .name = "Promise_IDE",
540  .id_table = pdc202new_pci_tbl,
541  .probe = pdc202new_init_one,
542  .remove = __devexit_p(pdc202new_remove),
543  .suspend = ide_pci_suspend,
544  .resume = ide_pci_resume,
545 };
546 
547 static int __init pdc202new_ide_init(void)
548 {
549  return ide_pci_register_driver(&pdc202new_pci_driver);
550 }
551 
552 static void __exit pdc202new_ide_exit(void)
553 {
554  pci_unregister_driver(&pdc202new_pci_driver);
555 }
556 
557 module_init(pdc202new_ide_init);
558 module_exit(pdc202new_ide_exit);
559 
560 MODULE_AUTHOR("Andre Hedrick, Frank Tiernan");
561 MODULE_DESCRIPTION("PCI driver module for Promise PDC20268 and higher");
562 MODULE_LICENSE("GPL");