Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ppp_generic.c
Go to the documentation of this file.
1 /*
2  * Generic PPP layer for Linux.
3  *
4  * Copyright 1999-2002 Paul Mackerras.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  *
11  * The generic PPP layer handles the PPP network interfaces, the
12  * /dev/ppp device, packet and VJ compression, and multilink.
13  * It talks to PPP `channels' via the interface defined in
14  * include/linux/ppp_channel.h. Channels provide the basic means for
15  * sending and receiving PPP frames on some kind of communications
16  * channel.
17  *
18  * Part of the code in this driver was inspired by the old async-only
19  * PPP driver, written by Michael Callahan and Al Longyear, and
20  * subsequently hacked by Paul Mackerras.
21  *
22  * ==FILEVERSION 20041108==
23  */
24 
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52 
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56 
57 #define PPP_VERSION "2.4.2"
58 
59 /*
60  * Network protocols we support.
61  */
62 #define NP_IP 0 /* Internet Protocol V4 */
63 #define NP_IPV6 1 /* Internet Protocol V6 */
64 #define NP_IPX 2 /* IPX protocol */
65 #define NP_AT 3 /* Appletalk protocol */
66 #define NP_MPLS_UC 4 /* MPLS unicast */
67 #define NP_MPLS_MC 5 /* MPLS multicast */
68 #define NUM_NP 6 /* Number of NPs. */
69 
70 #define MPHDRLEN 6 /* multilink protocol header length */
71 #define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */
72 
73 /*
74  * An instance of /dev/ppp can be associated with either a ppp
75  * interface unit or a ppp channel. In both cases, file->private_data
76  * points to one of these.
77  */
78 struct ppp_file {
79  enum {
81  } kind;
82  struct sk_buff_head xq; /* pppd transmit queue */
83  struct sk_buff_head rq; /* receive queue for pppd */
84  wait_queue_head_t rwait; /* for poll on reading /dev/ppp */
85  atomic_t refcnt; /* # refs (incl /dev/ppp attached) */
86  int hdrlen; /* space to leave for headers */
87  int index; /* interface unit / channel number */
88  int dead; /* unit/channel has been shut down */
89 };
90 
91 #define PF_TO_X(pf, X) container_of(pf, X, file)
92 
93 #define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel)
95 
96 /*
97  * Data structure to hold primary network stats for which
98  * we want to use 64 bit storage. Other network stats
99  * are stored in dev->stats of the ppp strucute.
100  */
106 };
107 
108 /*
109  * Data structure describing one ppp unit.
110  * A ppp unit corresponds to a ppp network interface device
111  * and represents a multilink bundle.
112  * It can have 0 or more ppp channels connected to it.
113  */
114 struct ppp {
115  struct ppp_file file; /* stuff for read/write/poll 0 */
116  struct file *owner; /* file that owns this unit 48 */
117  struct list_head channels; /* list of attached channels 4c */
118  int n_channels; /* how many channels are attached 54 */
119  spinlock_t rlock; /* lock for receive side 58 */
120  spinlock_t wlock; /* lock for transmit side 5c */
121  int mru; /* max receive unit 60 */
122  unsigned int flags; /* control bits 64 */
123  unsigned int xstate; /* transmit state bits 68 */
124  unsigned int rstate; /* receive state bits 6c */
125  int debug; /* debug flags 70 */
126  struct slcompress *vj; /* state for VJ header compression */
127  enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */
128  struct sk_buff *xmit_pending; /* a packet ready to go out 88 */
129  struct compressor *xcomp; /* transmit packet compressor 8c */
130  void *xc_state; /* its internal state 90 */
131  struct compressor *rcomp; /* receive decompressor 94 */
132  void *rc_state; /* its internal state 98 */
133  unsigned long last_xmit; /* jiffies when last pkt sent 9c */
134  unsigned long last_recv; /* jiffies when last pkt rcvd a0 */
135  struct net_device *dev; /* network interface device a4 */
136  int closing; /* is device closing down? a8 */
137 #ifdef CONFIG_PPP_MULTILINK
138  int nxchan; /* next channel to send something on */
139  u32 nxseq; /* next sequence number to send */
140  int mrru; /* MP: max reconst. receive unit */
141  u32 nextseq; /* MP: seq no of next packet */
142  u32 minseq; /* MP: min of most recent seqnos */
143  struct sk_buff_head mrq; /* MP: receive reconstruction queue */
144 #endif /* CONFIG_PPP_MULTILINK */
145 #ifdef CONFIG_PPP_FILTER
146  struct sock_filter *pass_filter; /* filter for packets to pass */
147  struct sock_filter *active_filter;/* filter for pkts to reset idle */
148  unsigned pass_len, active_len;
149 #endif /* CONFIG_PPP_FILTER */
150  struct net *ppp_net; /* the net we belong to */
151  struct ppp_link_stats stats64; /* 64 bit network stats */
152 };
153 
154 /*
155  * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
156  * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
157  * SC_MUST_COMP
158  * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
159  * Bits in xstate: SC_COMP_RUN
160  */
161 #define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
162  |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
163  |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
164 
165 /*
166  * Private data structure for each channel.
167  * This includes the data structure used for multilink.
168  */
169 struct channel {
170  struct ppp_file file; /* stuff for read/write/poll */
171  struct list_head list; /* link in all/new_channels list */
172  struct ppp_channel *chan; /* public channel data structure */
173  struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */
174  spinlock_t downl; /* protects `chan', file.xq dequeue */
175  struct ppp *ppp; /* ppp unit we're connected to */
176  struct net *chan_net; /* the net channel belongs to */
177  struct list_head clist; /* link in list of channels per unit */
178  rwlock_t upl; /* protects `ppp' */
179 #ifdef CONFIG_PPP_MULTILINK
180  u8 avail; /* flag used in multilink stuff */
181  u8 had_frag; /* >= 1 fragments have been sent */
182  u32 lastseq; /* MP: last sequence # received */
183  int speed; /* speed of the corresponding ppp channel*/
184 #endif /* CONFIG_PPP_MULTILINK */
185 };
186 
187 /*
188  * SMP locking issues:
189  * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
190  * list and the ppp.n_channels field, you need to take both locks
191  * before you modify them.
192  * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
193  * channel.downl.
194  */
195 
196 static DEFINE_MUTEX(ppp_mutex);
197 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
199 
200 /* per-net private data for this module */
201 static int ppp_net_id __read_mostly;
202 struct ppp_net {
203  /* units to ppp mapping */
204  struct idr units_idr;
205 
206  /*
207  * all_ppp_mutex protects the units_idr mapping.
208  * It also ensures that finding a ppp unit in the units_idr
209  * map and updating its file.refcnt field is atomic.
210  */
212 
213  /* channels */
217 
218  /*
219  * all_channels_lock protects all_channels and
220  * last_channel_index, and the atomicity of find
221  * a channel and updating its file.refcnt field.
222  */
224 };
225 
226 /* Get the PPP protocol number from a skb */
227 #define PPP_PROTO(skb) get_unaligned_be16((skb)->data)
228 
229 /* We limit the length of ppp->file.rq to this (arbitrary) value */
230 #define PPP_MAX_RQLEN 32
231 
232 /*
233  * Maximum number of multilink fragments queued up.
234  * This has to be large enough to cope with the maximum latency of
235  * the slowest channel relative to the others. Strictly it should
236  * depend on the number of channels and their characteristics.
237  */
238 #define PPP_MP_MAX_QLEN 128
239 
240 /* Multilink header bits. */
241 #define B 0x80 /* this fragment begins a packet */
242 #define E 0x40 /* this fragment ends a packet */
243 
244 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
245 #define seq_before(a, b) ((s32)((a) - (b)) < 0)
246 #define seq_after(a, b) ((s32)((a) - (b)) > 0)
247 
248 /* Prototypes. */
249 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
250  struct file *file, unsigned int cmd, unsigned long arg);
251 static void ppp_xmit_process(struct ppp *ppp);
252 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
253 static void ppp_push(struct ppp *ppp);
254 static void ppp_channel_push(struct channel *pch);
255 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
256  struct channel *pch);
257 static void ppp_receive_error(struct ppp *ppp);
258 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
259 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
260  struct sk_buff *skb);
261 #ifdef CONFIG_PPP_MULTILINK
262 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
263  struct channel *pch);
264 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
265 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
266 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
267 #endif /* CONFIG_PPP_MULTILINK */
268 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
269 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
270 static void ppp_ccp_closed(struct ppp *ppp);
271 static struct compressor *find_compressor(int type);
272 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
273 static struct ppp *ppp_create_interface(struct net *net, int unit, int *retp);
274 static void init_ppp_file(struct ppp_file *pf, int kind);
275 static void ppp_shutdown_interface(struct ppp *ppp);
276 static void ppp_destroy_interface(struct ppp *ppp);
277 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
278 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
279 static int ppp_connect_channel(struct channel *pch, int unit);
280 static int ppp_disconnect_channel(struct channel *pch);
281 static void ppp_destroy_channel(struct channel *pch);
282 static int unit_get(struct idr *p, void *ptr);
283 static int unit_set(struct idr *p, void *ptr, int n);
284 static void unit_put(struct idr *p, int n);
285 static void *unit_find(struct idr *p, int n);
286 
287 static struct class *ppp_class;
288 
289 /* per net-namespace data */
290 static inline struct ppp_net *ppp_pernet(struct net *net)
291 {
292  BUG_ON(!net);
293 
294  return net_generic(net, ppp_net_id);
295 }
296 
297 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
298 static inline int proto_to_npindex(int proto)
299 {
300  switch (proto) {
301  case PPP_IP:
302  return NP_IP;
303  case PPP_IPV6:
304  return NP_IPV6;
305  case PPP_IPX:
306  return NP_IPX;
307  case PPP_AT:
308  return NP_AT;
309  case PPP_MPLS_UC:
310  return NP_MPLS_UC;
311  case PPP_MPLS_MC:
312  return NP_MPLS_MC;
313  }
314  return -EINVAL;
315 }
316 
317 /* Translates an NP index into a PPP protocol number */
318 static const int npindex_to_proto[NUM_NP] = {
319  PPP_IP,
320  PPP_IPV6,
321  PPP_IPX,
322  PPP_AT,
323  PPP_MPLS_UC,
324  PPP_MPLS_MC,
325 };
326 
327 /* Translates an ethertype into an NP index */
328 static inline int ethertype_to_npindex(int ethertype)
329 {
330  switch (ethertype) {
331  case ETH_P_IP:
332  return NP_IP;
333  case ETH_P_IPV6:
334  return NP_IPV6;
335  case ETH_P_IPX:
336  return NP_IPX;
337  case ETH_P_PPPTALK:
338  case ETH_P_ATALK:
339  return NP_AT;
340  case ETH_P_MPLS_UC:
341  return NP_MPLS_UC;
342  case ETH_P_MPLS_MC:
343  return NP_MPLS_MC;
344  }
345  return -1;
346 }
347 
348 /* Translates an NP index into an ethertype */
349 static const int npindex_to_ethertype[NUM_NP] = {
350  ETH_P_IP,
351  ETH_P_IPV6,
352  ETH_P_IPX,
356 };
357 
358 /*
359  * Locking shorthand.
360  */
361 #define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock)
362 #define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock)
363 #define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock)
364 #define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock)
365 #define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \
366  ppp_recv_lock(ppp); } while (0)
367 #define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \
368  ppp_xmit_unlock(ppp); } while (0)
369 
370 /*
371  * /dev/ppp device routines.
372  * The /dev/ppp device is used by pppd to control the ppp unit.
373  * It supports the read, write, ioctl and poll functions.
374  * Open instances of /dev/ppp can be in one of three states:
375  * unattached, attached to a ppp unit, or attached to a ppp channel.
376  */
377 static int ppp_open(struct inode *inode, struct file *file)
378 {
379  /*
380  * This could (should?) be enforced by the permissions on /dev/ppp.
381  */
382  if (!capable(CAP_NET_ADMIN))
383  return -EPERM;
384  return 0;
385 }
386 
387 static int ppp_release(struct inode *unused, struct file *file)
388 {
389  struct ppp_file *pf = file->private_data;
390  struct ppp *ppp;
391 
392  if (pf) {
393  file->private_data = NULL;
394  if (pf->kind == INTERFACE) {
395  ppp = PF_TO_PPP(pf);
396  if (file == ppp->owner)
397  ppp_shutdown_interface(ppp);
398  }
399  if (atomic_dec_and_test(&pf->refcnt)) {
400  switch (pf->kind) {
401  case INTERFACE:
402  ppp_destroy_interface(PF_TO_PPP(pf));
403  break;
404  case CHANNEL:
405  ppp_destroy_channel(PF_TO_CHANNEL(pf));
406  break;
407  }
408  }
409  }
410  return 0;
411 }
412 
413 static ssize_t ppp_read(struct file *file, char __user *buf,
414  size_t count, loff_t *ppos)
415 {
416  struct ppp_file *pf = file->private_data;
418  ssize_t ret;
419  struct sk_buff *skb = NULL;
420  struct iovec iov;
421 
422  ret = count;
423 
424  if (!pf)
425  return -ENXIO;
426  add_wait_queue(&pf->rwait, &wait);
427  for (;;) {
429  skb = skb_dequeue(&pf->rq);
430  if (skb)
431  break;
432  ret = 0;
433  if (pf->dead)
434  break;
435  if (pf->kind == INTERFACE) {
436  /*
437  * Return 0 (EOF) on an interface that has no
438  * channels connected, unless it is looping
439  * network traffic (demand mode).
440  */
441  struct ppp *ppp = PF_TO_PPP(pf);
442  if (ppp->n_channels == 0 &&
443  (ppp->flags & SC_LOOP_TRAFFIC) == 0)
444  break;
445  }
446  ret = -EAGAIN;
447  if (file->f_flags & O_NONBLOCK)
448  break;
449  ret = -ERESTARTSYS;
450  if (signal_pending(current))
451  break;
452  schedule();
453  }
455  remove_wait_queue(&pf->rwait, &wait);
456 
457  if (!skb)
458  goto out;
459 
460  ret = -EOVERFLOW;
461  if (skb->len > count)
462  goto outf;
463  ret = -EFAULT;
464  iov.iov_base = buf;
465  iov.iov_len = count;
466  if (skb_copy_datagram_iovec(skb, 0, &iov, skb->len))
467  goto outf;
468  ret = skb->len;
469 
470  outf:
471  kfree_skb(skb);
472  out:
473  return ret;
474 }
475 
476 static ssize_t ppp_write(struct file *file, const char __user *buf,
477  size_t count, loff_t *ppos)
478 {
479  struct ppp_file *pf = file->private_data;
480  struct sk_buff *skb;
481  ssize_t ret;
482 
483  if (!pf)
484  return -ENXIO;
485  ret = -ENOMEM;
486  skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
487  if (!skb)
488  goto out;
489  skb_reserve(skb, pf->hdrlen);
490  ret = -EFAULT;
491  if (copy_from_user(skb_put(skb, count), buf, count)) {
492  kfree_skb(skb);
493  goto out;
494  }
495 
496  skb_queue_tail(&pf->xq, skb);
497 
498  switch (pf->kind) {
499  case INTERFACE:
500  ppp_xmit_process(PF_TO_PPP(pf));
501  break;
502  case CHANNEL:
503  ppp_channel_push(PF_TO_CHANNEL(pf));
504  break;
505  }
506 
507  ret = count;
508 
509  out:
510  return ret;
511 }
512 
513 /* No kernel lock - fine */
514 static unsigned int ppp_poll(struct file *file, poll_table *wait)
515 {
516  struct ppp_file *pf = file->private_data;
517  unsigned int mask;
518 
519  if (!pf)
520  return 0;
521  poll_wait(file, &pf->rwait, wait);
522  mask = POLLOUT | POLLWRNORM;
523  if (skb_peek(&pf->rq))
524  mask |= POLLIN | POLLRDNORM;
525  if (pf->dead)
526  mask |= POLLHUP;
527  else if (pf->kind == INTERFACE) {
528  /* see comment in ppp_read */
529  struct ppp *ppp = PF_TO_PPP(pf);
530  if (ppp->n_channels == 0 &&
531  (ppp->flags & SC_LOOP_TRAFFIC) == 0)
532  mask |= POLLIN | POLLRDNORM;
533  }
534 
535  return mask;
536 }
537 
538 #ifdef CONFIG_PPP_FILTER
539 static int get_filter(void __user *arg, struct sock_filter **p)
540 {
541  struct sock_fprog uprog;
542  struct sock_filter *code = NULL;
543  int len, err;
544 
545  if (copy_from_user(&uprog, arg, sizeof(uprog)))
546  return -EFAULT;
547 
548  if (!uprog.len) {
549  *p = NULL;
550  return 0;
551  }
552 
553  len = uprog.len * sizeof(struct sock_filter);
554  code = memdup_user(uprog.filter, len);
555  if (IS_ERR(code))
556  return PTR_ERR(code);
557 
558  err = sk_chk_filter(code, uprog.len);
559  if (err) {
560  kfree(code);
561  return err;
562  }
563 
564  *p = code;
565  return uprog.len;
566 }
567 #endif /* CONFIG_PPP_FILTER */
568 
569 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
570 {
571  struct ppp_file *pf = file->private_data;
572  struct ppp *ppp;
573  int err = -EFAULT, val, val2, i;
574  struct ppp_idle idle;
575  struct npioctl npi;
576  int unit, cflags;
577  struct slcompress *vj;
578  void __user *argp = (void __user *)arg;
579  int __user *p = argp;
580 
581  if (!pf)
582  return ppp_unattached_ioctl(current->nsproxy->net_ns,
583  pf, file, cmd, arg);
584 
585  if (cmd == PPPIOCDETACH) {
586  /*
587  * We have to be careful here... if the file descriptor
588  * has been dup'd, we could have another process in the
589  * middle of a poll using the same file *, so we had
590  * better not free the interface data structures -
591  * instead we fail the ioctl. Even in this case, we
592  * shut down the interface if we are the owner of it.
593  * Actually, we should get rid of PPPIOCDETACH, userland
594  * (i.e. pppd) could achieve the same effect by closing
595  * this fd and reopening /dev/ppp.
596  */
597  err = -EINVAL;
598  mutex_lock(&ppp_mutex);
599  if (pf->kind == INTERFACE) {
600  ppp = PF_TO_PPP(pf);
601  if (file == ppp->owner)
602  ppp_shutdown_interface(ppp);
603  }
604  if (atomic_long_read(&file->f_count) <= 2) {
605  ppp_release(NULL, file);
606  err = 0;
607  } else
608  pr_warn("PPPIOCDETACH file->f_count=%ld\n",
609  atomic_long_read(&file->f_count));
610  mutex_unlock(&ppp_mutex);
611  return err;
612  }
613 
614  if (pf->kind == CHANNEL) {
615  struct channel *pch;
616  struct ppp_channel *chan;
617 
618  mutex_lock(&ppp_mutex);
619  pch = PF_TO_CHANNEL(pf);
620 
621  switch (cmd) {
622  case PPPIOCCONNECT:
623  if (get_user(unit, p))
624  break;
625  err = ppp_connect_channel(pch, unit);
626  break;
627 
628  case PPPIOCDISCONN:
629  err = ppp_disconnect_channel(pch);
630  break;
631 
632  default:
633  down_read(&pch->chan_sem);
634  chan = pch->chan;
635  err = -ENOTTY;
636  if (chan && chan->ops->ioctl)
637  err = chan->ops->ioctl(chan, cmd, arg);
638  up_read(&pch->chan_sem);
639  }
640  mutex_unlock(&ppp_mutex);
641  return err;
642  }
643 
644  if (pf->kind != INTERFACE) {
645  /* can't happen */
646  pr_err("PPP: not interface or channel??\n");
647  return -EINVAL;
648  }
649 
650  mutex_lock(&ppp_mutex);
651  ppp = PF_TO_PPP(pf);
652  switch (cmd) {
653  case PPPIOCSMRU:
654  if (get_user(val, p))
655  break;
656  ppp->mru = val;
657  err = 0;
658  break;
659 
660  case PPPIOCSFLAGS:
661  if (get_user(val, p))
662  break;
663  ppp_lock(ppp);
664  cflags = ppp->flags & ~val;
665  ppp->flags = val & SC_FLAG_BITS;
666  ppp_unlock(ppp);
667  if (cflags & SC_CCP_OPEN)
668  ppp_ccp_closed(ppp);
669  err = 0;
670  break;
671 
672  case PPPIOCGFLAGS:
673  val = ppp->flags | ppp->xstate | ppp->rstate;
674  if (put_user(val, p))
675  break;
676  err = 0;
677  break;
678 
679  case PPPIOCSCOMPRESS:
680  err = ppp_set_compress(ppp, arg);
681  break;
682 
683  case PPPIOCGUNIT:
684  if (put_user(ppp->file.index, p))
685  break;
686  err = 0;
687  break;
688 
689  case PPPIOCSDEBUG:
690  if (get_user(val, p))
691  break;
692  ppp->debug = val;
693  err = 0;
694  break;
695 
696  case PPPIOCGDEBUG:
697  if (put_user(ppp->debug, p))
698  break;
699  err = 0;
700  break;
701 
702  case PPPIOCGIDLE:
703  idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
704  idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
705  if (copy_to_user(argp, &idle, sizeof(idle)))
706  break;
707  err = 0;
708  break;
709 
710  case PPPIOCSMAXCID:
711  if (get_user(val, p))
712  break;
713  val2 = 15;
714  if ((val >> 16) != 0) {
715  val2 = val >> 16;
716  val &= 0xffff;
717  }
718  vj = slhc_init(val2+1, val+1);
719  if (!vj) {
720  netdev_err(ppp->dev,
721  "PPP: no memory (VJ compressor)\n");
722  err = -ENOMEM;
723  break;
724  }
725  ppp_lock(ppp);
726  if (ppp->vj)
727  slhc_free(ppp->vj);
728  ppp->vj = vj;
729  ppp_unlock(ppp);
730  err = 0;
731  break;
732 
733  case PPPIOCGNPMODE:
734  case PPPIOCSNPMODE:
735  if (copy_from_user(&npi, argp, sizeof(npi)))
736  break;
737  err = proto_to_npindex(npi.protocol);
738  if (err < 0)
739  break;
740  i = err;
741  if (cmd == PPPIOCGNPMODE) {
742  err = -EFAULT;
743  npi.mode = ppp->npmode[i];
744  if (copy_to_user(argp, &npi, sizeof(npi)))
745  break;
746  } else {
747  ppp->npmode[i] = npi.mode;
748  /* we may be able to transmit more packets now (??) */
749  netif_wake_queue(ppp->dev);
750  }
751  err = 0;
752  break;
753 
754 #ifdef CONFIG_PPP_FILTER
755  case PPPIOCSPASS:
756  {
757  struct sock_filter *code;
758  err = get_filter(argp, &code);
759  if (err >= 0) {
760  ppp_lock(ppp);
761  kfree(ppp->pass_filter);
762  ppp->pass_filter = code;
763  ppp->pass_len = err;
764  ppp_unlock(ppp);
765  err = 0;
766  }
767  break;
768  }
769  case PPPIOCSACTIVE:
770  {
771  struct sock_filter *code;
772  err = get_filter(argp, &code);
773  if (err >= 0) {
774  ppp_lock(ppp);
775  kfree(ppp->active_filter);
776  ppp->active_filter = code;
777  ppp->active_len = err;
778  ppp_unlock(ppp);
779  err = 0;
780  }
781  break;
782  }
783 #endif /* CONFIG_PPP_FILTER */
784 
785 #ifdef CONFIG_PPP_MULTILINK
786  case PPPIOCSMRRU:
787  if (get_user(val, p))
788  break;
789  ppp_recv_lock(ppp);
790  ppp->mrru = val;
791  ppp_recv_unlock(ppp);
792  err = 0;
793  break;
794 #endif /* CONFIG_PPP_MULTILINK */
795 
796  default:
797  err = -ENOTTY;
798  }
799  mutex_unlock(&ppp_mutex);
800  return err;
801 }
802 
803 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
804  struct file *file, unsigned int cmd, unsigned long arg)
805 {
806  int unit, err = -EFAULT;
807  struct ppp *ppp;
808  struct channel *chan;
809  struct ppp_net *pn;
810  int __user *p = (int __user *)arg;
811 
812  mutex_lock(&ppp_mutex);
813  switch (cmd) {
814  case PPPIOCNEWUNIT:
815  /* Create a new ppp unit */
816  if (get_user(unit, p))
817  break;
818  ppp = ppp_create_interface(net, unit, &err);
819  if (!ppp)
820  break;
821  file->private_data = &ppp->file;
822  ppp->owner = file;
823  err = -EFAULT;
824  if (put_user(ppp->file.index, p))
825  break;
826  err = 0;
827  break;
828 
829  case PPPIOCATTACH:
830  /* Attach to an existing ppp unit */
831  if (get_user(unit, p))
832  break;
833  err = -ENXIO;
834  pn = ppp_pernet(net);
836  ppp = ppp_find_unit(pn, unit);
837  if (ppp) {
838  atomic_inc(&ppp->file.refcnt);
839  file->private_data = &ppp->file;
840  err = 0;
841  }
843  break;
844 
845  case PPPIOCATTCHAN:
846  if (get_user(unit, p))
847  break;
848  err = -ENXIO;
849  pn = ppp_pernet(net);
850  spin_lock_bh(&pn->all_channels_lock);
851  chan = ppp_find_channel(pn, unit);
852  if (chan) {
853  atomic_inc(&chan->file.refcnt);
854  file->private_data = &chan->file;
855  err = 0;
856  }
857  spin_unlock_bh(&pn->all_channels_lock);
858  break;
859 
860  default:
861  err = -ENOTTY;
862  }
863  mutex_unlock(&ppp_mutex);
864  return err;
865 }
866 
867 static const struct file_operations ppp_device_fops = {
868  .owner = THIS_MODULE,
869  .read = ppp_read,
870  .write = ppp_write,
871  .poll = ppp_poll,
872  .unlocked_ioctl = ppp_ioctl,
873  .open = ppp_open,
874  .release = ppp_release,
875  .llseek = noop_llseek,
876 };
877 
878 static __net_init int ppp_init_net(struct net *net)
879 {
880  struct ppp_net *pn = net_generic(net, ppp_net_id);
881 
882  idr_init(&pn->units_idr);
884 
885  INIT_LIST_HEAD(&pn->all_channels);
886  INIT_LIST_HEAD(&pn->new_channels);
887 
889 
890  return 0;
891 }
892 
893 static __net_exit void ppp_exit_net(struct net *net)
894 {
895  struct ppp_net *pn = net_generic(net, ppp_net_id);
896 
897  idr_destroy(&pn->units_idr);
898 }
899 
900 static struct pernet_operations ppp_net_ops = {
901  .init = ppp_init_net,
902  .exit = ppp_exit_net,
903  .id = &ppp_net_id,
904  .size = sizeof(struct ppp_net),
905 };
906 
907 #define PPP_MAJOR 108
908 
909 /* Called at boot time if ppp is compiled into the kernel,
910  or at module load time (from init_module) if compiled as a module. */
911 static int __init ppp_init(void)
912 {
913  int err;
914 
915  pr_info("PPP generic driver version " PPP_VERSION "\n");
916 
917  err = register_pernet_device(&ppp_net_ops);
918  if (err) {
919  pr_err("failed to register PPP pernet device (%d)\n", err);
920  goto out;
921  }
922 
923  err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
924  if (err) {
925  pr_err("failed to register PPP device (%d)\n", err);
926  goto out_net;
927  }
928 
929  ppp_class = class_create(THIS_MODULE, "ppp");
930  if (IS_ERR(ppp_class)) {
931  err = PTR_ERR(ppp_class);
932  goto out_chrdev;
933  }
934 
935  /* not a big deal if we fail here :-) */
936  device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
937 
938  return 0;
939 
940 out_chrdev:
941  unregister_chrdev(PPP_MAJOR, "ppp");
942 out_net:
943  unregister_pernet_device(&ppp_net_ops);
944 out:
945  return err;
946 }
947 
948 /*
949  * Network interface unit routines.
950  */
951 static netdev_tx_t
952 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
953 {
954  struct ppp *ppp = netdev_priv(dev);
955  int npi, proto;
956  unsigned char *pp;
957 
958  npi = ethertype_to_npindex(ntohs(skb->protocol));
959  if (npi < 0)
960  goto outf;
961 
962  /* Drop, accept or reject the packet */
963  switch (ppp->npmode[npi]) {
964  case NPMODE_PASS:
965  break;
966  case NPMODE_QUEUE:
967  /* it would be nice to have a way to tell the network
968  system to queue this one up for later. */
969  goto outf;
970  case NPMODE_DROP:
971  case NPMODE_ERROR:
972  goto outf;
973  }
974 
975  /* Put the 2-byte PPP protocol number on the front,
976  making sure there is room for the address and control fields. */
977  if (skb_cow_head(skb, PPP_HDRLEN))
978  goto outf;
979 
980  pp = skb_push(skb, 2);
981  proto = npindex_to_proto[npi];
982  put_unaligned_be16(proto, pp);
983 
984  skb_queue_tail(&ppp->file.xq, skb);
985  ppp_xmit_process(ppp);
986  return NETDEV_TX_OK;
987 
988  outf:
989  kfree_skb(skb);
990  ++dev->stats.tx_dropped;
991  return NETDEV_TX_OK;
992 }
993 
994 static int
995 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
996 {
997  struct ppp *ppp = netdev_priv(dev);
998  int err = -EFAULT;
999  void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1000  struct ppp_stats stats;
1001  struct ppp_comp_stats cstats;
1002  char *vers;
1003 
1004  switch (cmd) {
1005  case SIOCGPPPSTATS:
1006  ppp_get_stats(ppp, &stats);
1007  if (copy_to_user(addr, &stats, sizeof(stats)))
1008  break;
1009  err = 0;
1010  break;
1011 
1012  case SIOCGPPPCSTATS:
1013  memset(&cstats, 0, sizeof(cstats));
1014  if (ppp->xc_state)
1015  ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1016  if (ppp->rc_state)
1017  ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1018  if (copy_to_user(addr, &cstats, sizeof(cstats)))
1019  break;
1020  err = 0;
1021  break;
1022 
1023  case SIOCGPPPVER:
1024  vers = PPP_VERSION;
1025  if (copy_to_user(addr, vers, strlen(vers) + 1))
1026  break;
1027  err = 0;
1028  break;
1029 
1030  default:
1031  err = -EINVAL;
1032  }
1033 
1034  return err;
1035 }
1036 
1037 struct rtnl_link_stats64*
1038 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1039 {
1040  struct ppp *ppp = netdev_priv(dev);
1041 
1042  ppp_recv_lock(ppp);
1043  stats64->rx_packets = ppp->stats64.rx_packets;
1044  stats64->rx_bytes = ppp->stats64.rx_bytes;
1045  ppp_recv_unlock(ppp);
1046 
1047  ppp_xmit_lock(ppp);
1048  stats64->tx_packets = ppp->stats64.tx_packets;
1049  stats64->tx_bytes = ppp->stats64.tx_bytes;
1050  ppp_xmit_unlock(ppp);
1051 
1052  stats64->rx_errors = dev->stats.rx_errors;
1053  stats64->tx_errors = dev->stats.tx_errors;
1054  stats64->rx_dropped = dev->stats.rx_dropped;
1055  stats64->tx_dropped = dev->stats.tx_dropped;
1056  stats64->rx_length_errors = dev->stats.rx_length_errors;
1057 
1058  return stats64;
1059 }
1060 
1061 static const struct net_device_ops ppp_netdev_ops = {
1062  .ndo_start_xmit = ppp_start_xmit,
1063  .ndo_do_ioctl = ppp_net_ioctl,
1064  .ndo_get_stats64 = ppp_get_stats64,
1065 };
1066 
1067 static void ppp_setup(struct net_device *dev)
1068 {
1069  dev->netdev_ops = &ppp_netdev_ops;
1070  dev->hard_header_len = PPP_HDRLEN;
1071  dev->mtu = PPP_MRU;
1072  dev->addr_len = 0;
1073  dev->tx_queue_len = 3;
1074  dev->type = ARPHRD_PPP;
1076  dev->features |= NETIF_F_NETNS_LOCAL;
1078 }
1079 
1080 /*
1081  * Transmit-side routines.
1082  */
1083 
1084 /*
1085  * Called to do any work queued up on the transmit side
1086  * that can now be done.
1087  */
1088 static void
1089 ppp_xmit_process(struct ppp *ppp)
1090 {
1091  struct sk_buff *skb;
1092 
1093  ppp_xmit_lock(ppp);
1094  if (!ppp->closing) {
1095  ppp_push(ppp);
1096  while (!ppp->xmit_pending &&
1097  (skb = skb_dequeue(&ppp->file.xq)))
1098  ppp_send_frame(ppp, skb);
1099  /* If there's no work left to do, tell the core net
1100  code that we can accept some more. */
1101  if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1102  netif_wake_queue(ppp->dev);
1103  else
1104  netif_stop_queue(ppp->dev);
1105  }
1106  ppp_xmit_unlock(ppp);
1107 }
1108 
1109 static inline struct sk_buff *
1110 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1111 {
1112  struct sk_buff *new_skb;
1113  int len;
1114  int new_skb_size = ppp->dev->mtu +
1115  ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1116  int compressor_skb_size = ppp->dev->mtu +
1117  ppp->xcomp->comp_extra + PPP_HDRLEN;
1118  new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1119  if (!new_skb) {
1120  if (net_ratelimit())
1121  netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1122  return NULL;
1123  }
1124  if (ppp->dev->hard_header_len > PPP_HDRLEN)
1125  skb_reserve(new_skb,
1126  ppp->dev->hard_header_len - PPP_HDRLEN);
1127 
1128  /* compressor still expects A/C bytes in hdr */
1129  len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1130  new_skb->data, skb->len + 2,
1131  compressor_skb_size);
1132  if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1133  consume_skb(skb);
1134  skb = new_skb;
1135  skb_put(skb, len);
1136  skb_pull(skb, 2); /* pull off A/C bytes */
1137  } else if (len == 0) {
1138  /* didn't compress, or CCP not up yet */
1139  consume_skb(new_skb);
1140  new_skb = skb;
1141  } else {
1142  /*
1143  * (len < 0)
1144  * MPPE requires that we do not send unencrypted
1145  * frames. The compressor will return -1 if we
1146  * should drop the frame. We cannot simply test
1147  * the compress_proto because MPPE and MPPC share
1148  * the same number.
1149  */
1150  if (net_ratelimit())
1151  netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1152  kfree_skb(skb);
1153  consume_skb(new_skb);
1154  new_skb = NULL;
1155  }
1156  return new_skb;
1157 }
1158 
1159 /*
1160  * Compress and send a frame.
1161  * The caller should have locked the xmit path,
1162  * and xmit_pending should be 0.
1163  */
1164 static void
1165 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1166 {
1167  int proto = PPP_PROTO(skb);
1168  struct sk_buff *new_skb;
1169  int len;
1170  unsigned char *cp;
1171 
1172  if (proto < 0x8000) {
1173 #ifdef CONFIG_PPP_FILTER
1174  /* check if we should pass this packet */
1175  /* the filter instructions are constructed assuming
1176  a four-byte PPP header on each packet */
1177  *skb_push(skb, 2) = 1;
1178  if (ppp->pass_filter &&
1179  sk_run_filter(skb, ppp->pass_filter) == 0) {
1180  if (ppp->debug & 1)
1182  "PPP: outbound frame "
1183  "not passed\n");
1184  kfree_skb(skb);
1185  return;
1186  }
1187  /* if this packet passes the active filter, record the time */
1188  if (!(ppp->active_filter &&
1189  sk_run_filter(skb, ppp->active_filter) == 0))
1190  ppp->last_xmit = jiffies;
1191  skb_pull(skb, 2);
1192 #else
1193  /* for data packets, record the time */
1194  ppp->last_xmit = jiffies;
1195 #endif /* CONFIG_PPP_FILTER */
1196  }
1197 
1198  ++ppp->stats64.tx_packets;
1199  ppp->stats64.tx_bytes += skb->len - 2;
1200 
1201  switch (proto) {
1202  case PPP_IP:
1203  if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1204  break;
1205  /* try to do VJ TCP header compression */
1206  new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1207  GFP_ATOMIC);
1208  if (!new_skb) {
1209  netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1210  goto drop;
1211  }
1212  skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1213  cp = skb->data + 2;
1214  len = slhc_compress(ppp->vj, cp, skb->len - 2,
1215  new_skb->data + 2, &cp,
1216  !(ppp->flags & SC_NO_TCP_CCID));
1217  if (cp == skb->data + 2) {
1218  /* didn't compress */
1219  consume_skb(new_skb);
1220  } else {
1221  if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1222  proto = PPP_VJC_COMP;
1223  cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1224  } else {
1225  proto = PPP_VJC_UNCOMP;
1226  cp[0] = skb->data[2];
1227  }
1228  consume_skb(skb);
1229  skb = new_skb;
1230  cp = skb_put(skb, len + 2);
1231  cp[0] = 0;
1232  cp[1] = proto;
1233  }
1234  break;
1235 
1236  case PPP_CCP:
1237  /* peek at outbound CCP frames */
1238  ppp_ccp_peek(ppp, skb, 0);
1239  break;
1240  }
1241 
1242  /* try to do packet compression */
1243  if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1244  proto != PPP_LCP && proto != PPP_CCP) {
1245  if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1246  if (net_ratelimit())
1247  netdev_err(ppp->dev,
1248  "ppp: compression required but "
1249  "down - pkt dropped.\n");
1250  goto drop;
1251  }
1252  skb = pad_compress_skb(ppp, skb);
1253  if (!skb)
1254  goto drop;
1255  }
1256 
1257  /*
1258  * If we are waiting for traffic (demand dialling),
1259  * queue it up for pppd to receive.
1260  */
1261  if (ppp->flags & SC_LOOP_TRAFFIC) {
1262  if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1263  goto drop;
1264  skb_queue_tail(&ppp->file.rq, skb);
1265  wake_up_interruptible(&ppp->file.rwait);
1266  return;
1267  }
1268 
1269  ppp->xmit_pending = skb;
1270  ppp_push(ppp);
1271  return;
1272 
1273  drop:
1274  kfree_skb(skb);
1275  ++ppp->dev->stats.tx_errors;
1276 }
1277 
1278 /*
1279  * Try to send the frame in xmit_pending.
1280  * The caller should have the xmit path locked.
1281  */
1282 static void
1283 ppp_push(struct ppp *ppp)
1284 {
1285  struct list_head *list;
1286  struct channel *pch;
1287  struct sk_buff *skb = ppp->xmit_pending;
1288 
1289  if (!skb)
1290  return;
1291 
1292  list = &ppp->channels;
1293  if (list_empty(list)) {
1294  /* nowhere to send the packet, just drop it */
1295  ppp->xmit_pending = NULL;
1296  kfree_skb(skb);
1297  return;
1298  }
1299 
1300  if ((ppp->flags & SC_MULTILINK) == 0) {
1301  /* not doing multilink: send it down the first channel */
1302  list = list->next;
1303  pch = list_entry(list, struct channel, clist);
1304 
1305  spin_lock_bh(&pch->downl);
1306  if (pch->chan) {
1307  if (pch->chan->ops->start_xmit(pch->chan, skb))
1308  ppp->xmit_pending = NULL;
1309  } else {
1310  /* channel got unregistered */
1311  kfree_skb(skb);
1312  ppp->xmit_pending = NULL;
1313  }
1314  spin_unlock_bh(&pch->downl);
1315  return;
1316  }
1317 
1318 #ifdef CONFIG_PPP_MULTILINK
1319  /* Multilink: fragment the packet over as many links
1320  as can take the packet at the moment. */
1321  if (!ppp_mp_explode(ppp, skb))
1322  return;
1323 #endif /* CONFIG_PPP_MULTILINK */
1324 
1325  ppp->xmit_pending = NULL;
1326  kfree_skb(skb);
1327 }
1328 
1329 #ifdef CONFIG_PPP_MULTILINK
1330 static bool mp_protocol_compress __read_mostly = true;
1331 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1332 MODULE_PARM_DESC(mp_protocol_compress,
1333  "compress protocol id in multilink fragments");
1334 
1335 /*
1336  * Divide a packet to be transmitted into fragments and
1337  * send them out the individual links.
1338  */
1339 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1340 {
1341  int len, totlen;
1342  int i, bits, hdrlen, mtu;
1343  int flen;
1344  int navail, nfree, nzero;
1345  int nbigger;
1346  int totspeed;
1347  int totfree;
1348  unsigned char *p, *q;
1349  struct list_head *list;
1350  struct channel *pch;
1351  struct sk_buff *frag;
1352  struct ppp_channel *chan;
1353 
1354  totspeed = 0; /*total bitrate of the bundle*/
1355  nfree = 0; /* # channels which have no packet already queued */
1356  navail = 0; /* total # of usable channels (not deregistered) */
1357  nzero = 0; /* number of channels with zero speed associated*/
1358  totfree = 0; /*total # of channels available and
1359  *having no queued packets before
1360  *starting the fragmentation*/
1361 
1362  hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1363  i = 0;
1364  list_for_each_entry(pch, &ppp->channels, clist) {
1365  if (pch->chan) {
1366  pch->avail = 1;
1367  navail++;
1368  pch->speed = pch->chan->speed;
1369  } else {
1370  pch->avail = 0;
1371  }
1372  if (pch->avail) {
1373  if (skb_queue_empty(&pch->file.xq) ||
1374  !pch->had_frag) {
1375  if (pch->speed == 0)
1376  nzero++;
1377  else
1378  totspeed += pch->speed;
1379 
1380  pch->avail = 2;
1381  ++nfree;
1382  ++totfree;
1383  }
1384  if (!pch->had_frag && i < ppp->nxchan)
1385  ppp->nxchan = i;
1386  }
1387  ++i;
1388  }
1389  /*
1390  * Don't start sending this packet unless at least half of
1391  * the channels are free. This gives much better TCP
1392  * performance if we have a lot of channels.
1393  */
1394  if (nfree == 0 || nfree < navail / 2)
1395  return 0; /* can't take now, leave it in xmit_pending */
1396 
1397  /* Do protocol field compression */
1398  p = skb->data;
1399  len = skb->len;
1400  if (*p == 0 && mp_protocol_compress) {
1401  ++p;
1402  --len;
1403  }
1404 
1405  totlen = len;
1406  nbigger = len % nfree;
1407 
1408  /* skip to the channel after the one we last used
1409  and start at that one */
1410  list = &ppp->channels;
1411  for (i = 0; i < ppp->nxchan; ++i) {
1412  list = list->next;
1413  if (list == &ppp->channels) {
1414  i = 0;
1415  break;
1416  }
1417  }
1418 
1419  /* create a fragment for each channel */
1420  bits = B;
1421  while (len > 0) {
1422  list = list->next;
1423  if (list == &ppp->channels) {
1424  i = 0;
1425  continue;
1426  }
1427  pch = list_entry(list, struct channel, clist);
1428  ++i;
1429  if (!pch->avail)
1430  continue;
1431 
1432  /*
1433  * Skip this channel if it has a fragment pending already and
1434  * we haven't given a fragment to all of the free channels.
1435  */
1436  if (pch->avail == 1) {
1437  if (nfree > 0)
1438  continue;
1439  } else {
1440  pch->avail = 1;
1441  }
1442 
1443  /* check the channel's mtu and whether it is still attached. */
1444  spin_lock_bh(&pch->downl);
1445  if (pch->chan == NULL) {
1446  /* can't use this channel, it's being deregistered */
1447  if (pch->speed == 0)
1448  nzero--;
1449  else
1450  totspeed -= pch->speed;
1451 
1452  spin_unlock_bh(&pch->downl);
1453  pch->avail = 0;
1454  totlen = len;
1455  totfree--;
1456  nfree--;
1457  if (--navail == 0)
1458  break;
1459  continue;
1460  }
1461 
1462  /*
1463  *if the channel speed is not set divide
1464  *the packet evenly among the free channels;
1465  *otherwise divide it according to the speed
1466  *of the channel we are going to transmit on
1467  */
1468  flen = len;
1469  if (nfree > 0) {
1470  if (pch->speed == 0) {
1471  flen = len/nfree;
1472  if (nbigger > 0) {
1473  flen++;
1474  nbigger--;
1475  }
1476  } else {
1477  flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1478  ((totspeed*totfree)/pch->speed)) - hdrlen;
1479  if (nbigger > 0) {
1480  flen += ((totfree - nzero)*pch->speed)/totspeed;
1481  nbigger -= ((totfree - nzero)*pch->speed)/
1482  totspeed;
1483  }
1484  }
1485  nfree--;
1486  }
1487 
1488  /*
1489  *check if we are on the last channel or
1490  *we exceded the length of the data to
1491  *fragment
1492  */
1493  if ((nfree <= 0) || (flen > len))
1494  flen = len;
1495  /*
1496  *it is not worth to tx on slow channels:
1497  *in that case from the resulting flen according to the
1498  *above formula will be equal or less than zero.
1499  *Skip the channel in this case
1500  */
1501  if (flen <= 0) {
1502  pch->avail = 2;
1503  spin_unlock_bh(&pch->downl);
1504  continue;
1505  }
1506 
1507  /*
1508  * hdrlen includes the 2-byte PPP protocol field, but the
1509  * MTU counts only the payload excluding the protocol field.
1510  * (RFC1661 Section 2)
1511  */
1512  mtu = pch->chan->mtu - (hdrlen - 2);
1513  if (mtu < 4)
1514  mtu = 4;
1515  if (flen > mtu)
1516  flen = mtu;
1517  if (flen == len)
1518  bits |= E;
1519  frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1520  if (!frag)
1521  goto noskb;
1522  q = skb_put(frag, flen + hdrlen);
1523 
1524  /* make the MP header */
1525  put_unaligned_be16(PPP_MP, q);
1526  if (ppp->flags & SC_MP_XSHORTSEQ) {
1527  q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1528  q[3] = ppp->nxseq;
1529  } else {
1530  q[2] = bits;
1531  q[3] = ppp->nxseq >> 16;
1532  q[4] = ppp->nxseq >> 8;
1533  q[5] = ppp->nxseq;
1534  }
1535 
1536  memcpy(q + hdrlen, p, flen);
1537 
1538  /* try to send it down the channel */
1539  chan = pch->chan;
1540  if (!skb_queue_empty(&pch->file.xq) ||
1541  !chan->ops->start_xmit(chan, frag))
1542  skb_queue_tail(&pch->file.xq, frag);
1543  pch->had_frag = 1;
1544  p += flen;
1545  len -= flen;
1546  ++ppp->nxseq;
1547  bits = 0;
1548  spin_unlock_bh(&pch->downl);
1549  }
1550  ppp->nxchan = i;
1551 
1552  return 1;
1553 
1554  noskb:
1555  spin_unlock_bh(&pch->downl);
1556  if (ppp->debug & 1)
1557  netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1558  ++ppp->dev->stats.tx_errors;
1559  ++ppp->nxseq;
1560  return 1; /* abandon the frame */
1561 }
1562 #endif /* CONFIG_PPP_MULTILINK */
1563 
1564 /*
1565  * Try to send data out on a channel.
1566  */
1567 static void
1568 ppp_channel_push(struct channel *pch)
1569 {
1570  struct sk_buff *skb;
1571  struct ppp *ppp;
1572 
1573  spin_lock_bh(&pch->downl);
1574  if (pch->chan) {
1575  while (!skb_queue_empty(&pch->file.xq)) {
1576  skb = skb_dequeue(&pch->file.xq);
1577  if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1578  /* put the packet back and try again later */
1579  skb_queue_head(&pch->file.xq, skb);
1580  break;
1581  }
1582  }
1583  } else {
1584  /* channel got deregistered */
1585  skb_queue_purge(&pch->file.xq);
1586  }
1587  spin_unlock_bh(&pch->downl);
1588  /* see if there is anything from the attached unit to be sent */
1589  if (skb_queue_empty(&pch->file.xq)) {
1590  read_lock_bh(&pch->upl);
1591  ppp = pch->ppp;
1592  if (ppp)
1593  ppp_xmit_process(ppp);
1594  read_unlock_bh(&pch->upl);
1595  }
1596 }
1597 
1598 /*
1599  * Receive-side routines.
1600  */
1601 
1605 };
1606 #define PPP_MP_CB(skb) ((struct ppp_mp_skb_parm *)((skb)->cb))
1607 
1608 static inline void
1609 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1610 {
1611  ppp_recv_lock(ppp);
1612  if (!ppp->closing)
1613  ppp_receive_frame(ppp, skb, pch);
1614  else
1615  kfree_skb(skb);
1616  ppp_recv_unlock(ppp);
1617 }
1618 
1619 void
1620 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1621 {
1622  struct channel *pch = chan->ppp;
1623  int proto;
1624 
1625  if (!pch) {
1626  kfree_skb(skb);
1627  return;
1628  }
1629 
1630  read_lock_bh(&pch->upl);
1631  if (!pskb_may_pull(skb, 2)) {
1632  kfree_skb(skb);
1633  if (pch->ppp) {
1634  ++pch->ppp->dev->stats.rx_length_errors;
1635  ppp_receive_error(pch->ppp);
1636  }
1637  goto done;
1638  }
1639 
1640  proto = PPP_PROTO(skb);
1641  if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1642  /* put it on the channel queue */
1643  skb_queue_tail(&pch->file.rq, skb);
1644  /* drop old frames if queue too long */
1645  while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1646  (skb = skb_dequeue(&pch->file.rq)))
1647  kfree_skb(skb);
1648  wake_up_interruptible(&pch->file.rwait);
1649  } else {
1650  ppp_do_recv(pch->ppp, skb, pch);
1651  }
1652 
1653 done:
1654  read_unlock_bh(&pch->upl);
1655 }
1656 
1657 /* Put a 0-length skb in the receive queue as an error indication */
1658 void
1659 ppp_input_error(struct ppp_channel *chan, int code)
1660 {
1661  struct channel *pch = chan->ppp;
1662  struct sk_buff *skb;
1663 
1664  if (!pch)
1665  return;
1666 
1667  read_lock_bh(&pch->upl);
1668  if (pch->ppp) {
1669  skb = alloc_skb(0, GFP_ATOMIC);
1670  if (skb) {
1671  skb->len = 0; /* probably unnecessary */
1672  skb->cb[0] = code;
1673  ppp_do_recv(pch->ppp, skb, pch);
1674  }
1675  }
1676  read_unlock_bh(&pch->upl);
1677 }
1678 
1679 /*
1680  * We come in here to process a received frame.
1681  * The receive side of the ppp unit is locked.
1682  */
1683 static void
1684 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1685 {
1686  /* note: a 0-length skb is used as an error indication */
1687  if (skb->len > 0) {
1688 #ifdef CONFIG_PPP_MULTILINK
1689  /* XXX do channel-level decompression here */
1690  if (PPP_PROTO(skb) == PPP_MP)
1691  ppp_receive_mp_frame(ppp, skb, pch);
1692  else
1693 #endif /* CONFIG_PPP_MULTILINK */
1694  ppp_receive_nonmp_frame(ppp, skb);
1695  } else {
1696  kfree_skb(skb);
1697  ppp_receive_error(ppp);
1698  }
1699 }
1700 
1701 static void
1702 ppp_receive_error(struct ppp *ppp)
1703 {
1704  ++ppp->dev->stats.rx_errors;
1705  if (ppp->vj)
1706  slhc_toss(ppp->vj);
1707 }
1708 
1709 static void
1710 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1711 {
1712  struct sk_buff *ns;
1713  int proto, len, npi;
1714 
1715  /*
1716  * Decompress the frame, if compressed.
1717  * Note that some decompressors need to see uncompressed frames
1718  * that come in as well as compressed frames.
1719  */
1720  if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1721  (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1722  skb = ppp_decompress_frame(ppp, skb);
1723 
1724  if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1725  goto err;
1726 
1727  proto = PPP_PROTO(skb);
1728  switch (proto) {
1729  case PPP_VJC_COMP:
1730  /* decompress VJ compressed packets */
1731  if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1732  goto err;
1733 
1734  if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1735  /* copy to a new sk_buff with more tailroom */
1736  ns = dev_alloc_skb(skb->len + 128);
1737  if (!ns) {
1738  netdev_err(ppp->dev, "PPP: no memory "
1739  "(VJ decomp)\n");
1740  goto err;
1741  }
1742  skb_reserve(ns, 2);
1743  skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1744  consume_skb(skb);
1745  skb = ns;
1746  }
1747  else
1748  skb->ip_summed = CHECKSUM_NONE;
1749 
1750  len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1751  if (len <= 0) {
1753  "PPP: VJ decompression error\n");
1754  goto err;
1755  }
1756  len += 2;
1757  if (len > skb->len)
1758  skb_put(skb, len - skb->len);
1759  else if (len < skb->len)
1760  skb_trim(skb, len);
1761  proto = PPP_IP;
1762  break;
1763 
1764  case PPP_VJC_UNCOMP:
1765  if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1766  goto err;
1767 
1768  /* Until we fix the decompressor need to make sure
1769  * data portion is linear.
1770  */
1771  if (!pskb_may_pull(skb, skb->len))
1772  goto err;
1773 
1774  if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1775  netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1776  goto err;
1777  }
1778  proto = PPP_IP;
1779  break;
1780 
1781  case PPP_CCP:
1782  ppp_ccp_peek(ppp, skb, 1);
1783  break;
1784  }
1785 
1786  ++ppp->stats64.rx_packets;
1787  ppp->stats64.rx_bytes += skb->len - 2;
1788 
1789  npi = proto_to_npindex(proto);
1790  if (npi < 0) {
1791  /* control or unknown frame - pass it to pppd */
1792  skb_queue_tail(&ppp->file.rq, skb);
1793  /* limit queue length by dropping old frames */
1794  while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1795  (skb = skb_dequeue(&ppp->file.rq)))
1796  kfree_skb(skb);
1797  /* wake up any process polling or blocking on read */
1798  wake_up_interruptible(&ppp->file.rwait);
1799 
1800  } else {
1801  /* network protocol frame - give it to the kernel */
1802 
1803 #ifdef CONFIG_PPP_FILTER
1804  /* check if the packet passes the pass and active filters */
1805  /* the filter instructions are constructed assuming
1806  a four-byte PPP header on each packet */
1807  if (ppp->pass_filter || ppp->active_filter) {
1808  if (skb_cloned(skb) &&
1809  pskb_expand_head(skb, 0, 0, GFP_ATOMIC))
1810  goto err;
1811 
1812  *skb_push(skb, 2) = 0;
1813  if (ppp->pass_filter &&
1814  sk_run_filter(skb, ppp->pass_filter) == 0) {
1815  if (ppp->debug & 1)
1817  "PPP: inbound frame "
1818  "not passed\n");
1819  kfree_skb(skb);
1820  return;
1821  }
1822  if (!(ppp->active_filter &&
1823  sk_run_filter(skb, ppp->active_filter) == 0))
1824  ppp->last_recv = jiffies;
1825  __skb_pull(skb, 2);
1826  } else
1827 #endif /* CONFIG_PPP_FILTER */
1828  ppp->last_recv = jiffies;
1829 
1830  if ((ppp->dev->flags & IFF_UP) == 0 ||
1831  ppp->npmode[npi] != NPMODE_PASS) {
1832  kfree_skb(skb);
1833  } else {
1834  /* chop off protocol */
1835  skb_pull_rcsum(skb, 2);
1836  skb->dev = ppp->dev;
1837  skb->protocol = htons(npindex_to_ethertype[npi]);
1838  skb_reset_mac_header(skb);
1839  netif_rx(skb);
1840  }
1841  }
1842  return;
1843 
1844  err:
1845  kfree_skb(skb);
1846  ppp_receive_error(ppp);
1847 }
1848 
1849 static struct sk_buff *
1850 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1851 {
1852  int proto = PPP_PROTO(skb);
1853  struct sk_buff *ns;
1854  int len;
1855 
1856  /* Until we fix all the decompressor's need to make sure
1857  * data portion is linear.
1858  */
1859  if (!pskb_may_pull(skb, skb->len))
1860  goto err;
1861 
1862  if (proto == PPP_COMP) {
1863  int obuff_size;
1864 
1865  switch(ppp->rcomp->compress_proto) {
1866  case CI_MPPE:
1867  obuff_size = ppp->mru + PPP_HDRLEN + 1;
1868  break;
1869  default:
1870  obuff_size = ppp->mru + PPP_HDRLEN;
1871  break;
1872  }
1873 
1874  ns = dev_alloc_skb(obuff_size);
1875  if (!ns) {
1876  netdev_err(ppp->dev, "ppp_decompress_frame: "
1877  "no memory\n");
1878  goto err;
1879  }
1880  /* the decompressor still expects the A/C bytes in the hdr */
1881  len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1882  skb->len + 2, ns->data, obuff_size);
1883  if (len < 0) {
1884  /* Pass the compressed frame to pppd as an
1885  error indication. */
1886  if (len == DECOMP_FATALERROR)
1887  ppp->rstate |= SC_DC_FERROR;
1888  kfree_skb(ns);
1889  goto err;
1890  }
1891 
1892  consume_skb(skb);
1893  skb = ns;
1894  skb_put(skb, len);
1895  skb_pull(skb, 2); /* pull off the A/C bytes */
1896 
1897  } else {
1898  /* Uncompressed frame - pass to decompressor so it
1899  can update its dictionary if necessary. */
1900  if (ppp->rcomp->incomp)
1901  ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1902  skb->len + 2);
1903  }
1904 
1905  return skb;
1906 
1907  err:
1908  ppp->rstate |= SC_DC_ERROR;
1909  ppp_receive_error(ppp);
1910  return skb;
1911 }
1912 
1913 #ifdef CONFIG_PPP_MULTILINK
1914 /*
1915  * Receive a multilink frame.
1916  * We put it on the reconstruction queue and then pull off
1917  * as many completed frames as we can.
1918  */
1919 static void
1920 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1921 {
1922  u32 mask, seq;
1923  struct channel *ch;
1924  int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1925 
1926  if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1927  goto err; /* no good, throw it away */
1928 
1929  /* Decode sequence number and begin/end bits */
1930  if (ppp->flags & SC_MP_SHORTSEQ) {
1931  seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1932  mask = 0xfff;
1933  } else {
1934  seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1935  mask = 0xffffff;
1936  }
1937  PPP_MP_CB(skb)->BEbits = skb->data[2];
1938  skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */
1939 
1940  /*
1941  * Do protocol ID decompression on the first fragment of each packet.
1942  */
1943  if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
1944  *skb_push(skb, 1) = 0;
1945 
1946  /*
1947  * Expand sequence number to 32 bits, making it as close
1948  * as possible to ppp->minseq.
1949  */
1950  seq |= ppp->minseq & ~mask;
1951  if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1952  seq += mask + 1;
1953  else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1954  seq -= mask + 1; /* should never happen */
1955  PPP_MP_CB(skb)->sequence = seq;
1956  pch->lastseq = seq;
1957 
1958  /*
1959  * If this packet comes before the next one we were expecting,
1960  * drop it.
1961  */
1962  if (seq_before(seq, ppp->nextseq)) {
1963  kfree_skb(skb);
1964  ++ppp->dev->stats.rx_dropped;
1965  ppp_receive_error(ppp);
1966  return;
1967  }
1968 
1969  /*
1970  * Reevaluate minseq, the minimum over all channels of the
1971  * last sequence number received on each channel. Because of
1972  * the increasing sequence number rule, we know that any fragment
1973  * before `minseq' which hasn't arrived is never going to arrive.
1974  * The list of channels can't change because we have the receive
1975  * side of the ppp unit locked.
1976  */
1977  list_for_each_entry(ch, &ppp->channels, clist) {
1978  if (seq_before(ch->lastseq, seq))
1979  seq = ch->lastseq;
1980  }
1981  if (seq_before(ppp->minseq, seq))
1982  ppp->minseq = seq;
1983 
1984  /* Put the fragment on the reconstruction queue */
1985  ppp_mp_insert(ppp, skb);
1986 
1987  /* If the queue is getting long, don't wait any longer for packets
1988  before the start of the queue. */
1989  if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
1990  struct sk_buff *mskb = skb_peek(&ppp->mrq);
1991  if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
1992  ppp->minseq = PPP_MP_CB(mskb)->sequence;
1993  }
1994 
1995  /* Pull completed packets off the queue and receive them. */
1996  while ((skb = ppp_mp_reconstruct(ppp))) {
1997  if (pskb_may_pull(skb, 2))
1998  ppp_receive_nonmp_frame(ppp, skb);
1999  else {
2000  ++ppp->dev->stats.rx_length_errors;
2001  kfree_skb(skb);
2002  ppp_receive_error(ppp);
2003  }
2004  }
2005 
2006  return;
2007 
2008  err:
2009  kfree_skb(skb);
2010  ppp_receive_error(ppp);
2011 }
2012 
2013 /*
2014  * Insert a fragment on the MP reconstruction queue.
2015  * The queue is ordered by increasing sequence number.
2016  */
2017 static void
2018 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2019 {
2020  struct sk_buff *p;
2021  struct sk_buff_head *list = &ppp->mrq;
2022  u32 seq = PPP_MP_CB(skb)->sequence;
2023 
2024  /* N.B. we don't need to lock the list lock because we have the
2025  ppp unit receive-side lock. */
2026  skb_queue_walk(list, p) {
2027  if (seq_before(seq, PPP_MP_CB(p)->sequence))
2028  break;
2029  }
2030  __skb_queue_before(list, p, skb);
2031 }
2032 
2033 /*
2034  * Reconstruct a packet from the MP fragment queue.
2035  * We go through increasing sequence numbers until we find a
2036  * complete packet, or we get to the sequence number for a fragment
2037  * which hasn't arrived but might still do so.
2038  */
2039 static struct sk_buff *
2040 ppp_mp_reconstruct(struct ppp *ppp)
2041 {
2042  u32 seq = ppp->nextseq;
2043  u32 minseq = ppp->minseq;
2044  struct sk_buff_head *list = &ppp->mrq;
2045  struct sk_buff *p, *tmp;
2046  struct sk_buff *head, *tail;
2047  struct sk_buff *skb = NULL;
2048  int lost = 0, len = 0;
2049 
2050  if (ppp->mrru == 0) /* do nothing until mrru is set */
2051  return NULL;
2052  head = list->next;
2053  tail = NULL;
2054  skb_queue_walk_safe(list, p, tmp) {
2055  again:
2056  if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2057  /* this can't happen, anyway ignore the skb */
2058  netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2059  "seq %u < %u\n",
2060  PPP_MP_CB(p)->sequence, seq);
2061  __skb_unlink(p, list);
2062  kfree_skb(p);
2063  continue;
2064  }
2065  if (PPP_MP_CB(p)->sequence != seq) {
2066  u32 oldseq;
2067  /* Fragment `seq' is missing. If it is after
2068  minseq, it might arrive later, so stop here. */
2069  if (seq_after(seq, minseq))
2070  break;
2071  /* Fragment `seq' is lost, keep going. */
2072  lost = 1;
2073  oldseq = seq;
2074  seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2075  minseq + 1: PPP_MP_CB(p)->sequence;
2076 
2077  if (ppp->debug & 1)
2079  "lost frag %u..%u\n",
2080  oldseq, seq-1);
2081 
2082  goto again;
2083  }
2084 
2085  /*
2086  * At this point we know that all the fragments from
2087  * ppp->nextseq to seq are either present or lost.
2088  * Also, there are no complete packets in the queue
2089  * that have no missing fragments and end before this
2090  * fragment.
2091  */
2092 
2093  /* B bit set indicates this fragment starts a packet */
2094  if (PPP_MP_CB(p)->BEbits & B) {
2095  head = p;
2096  lost = 0;
2097  len = 0;
2098  }
2099 
2100  len += p->len;
2101 
2102  /* Got a complete packet yet? */
2103  if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2104  (PPP_MP_CB(head)->BEbits & B)) {
2105  if (len > ppp->mrru + 2) {
2106  ++ppp->dev->stats.rx_length_errors;
2108  "PPP: reconstructed packet"
2109  " is too long (%d)\n", len);
2110  } else {
2111  tail = p;
2112  break;
2113  }
2114  ppp->nextseq = seq + 1;
2115  }
2116 
2117  /*
2118  * If this is the ending fragment of a packet,
2119  * and we haven't found a complete valid packet yet,
2120  * we can discard up to and including this fragment.
2121  */
2122  if (PPP_MP_CB(p)->BEbits & E) {
2123  struct sk_buff *tmp2;
2124 
2125  skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2126  if (ppp->debug & 1)
2128  "discarding frag %u\n",
2129  PPP_MP_CB(p)->sequence);
2130  __skb_unlink(p, list);
2131  kfree_skb(p);
2132  }
2133  head = skb_peek(list);
2134  if (!head)
2135  break;
2136  }
2137  ++seq;
2138  }
2139 
2140  /* If we have a complete packet, copy it all into one skb. */
2141  if (tail != NULL) {
2142  /* If we have discarded any fragments,
2143  signal a receive error. */
2144  if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2145  skb_queue_walk_safe(list, p, tmp) {
2146  if (p == head)
2147  break;
2148  if (ppp->debug & 1)
2150  "discarding frag %u\n",
2151  PPP_MP_CB(p)->sequence);
2152  __skb_unlink(p, list);
2153  kfree_skb(p);
2154  }
2155 
2156  if (ppp->debug & 1)
2158  " missed pkts %u..%u\n",
2159  ppp->nextseq,
2160  PPP_MP_CB(head)->sequence-1);
2161  ++ppp->dev->stats.rx_dropped;
2162  ppp_receive_error(ppp);
2163  }
2164 
2165  skb = head;
2166  if (head != tail) {
2167  struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2168  p = skb_queue_next(list, head);
2169  __skb_unlink(skb, list);
2170  skb_queue_walk_from_safe(list, p, tmp) {
2171  __skb_unlink(p, list);
2172  *fragpp = p;
2173  p->next = NULL;
2174  fragpp = &p->next;
2175 
2176  skb->len += p->len;
2177  skb->data_len += p->len;
2178  skb->truesize += p->truesize;
2179 
2180  if (p == tail)
2181  break;
2182  }
2183  } else {
2184  __skb_unlink(skb, list);
2185  }
2186 
2187  ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2188  }
2189 
2190  return skb;
2191 }
2192 #endif /* CONFIG_PPP_MULTILINK */
2193 
2194 /*
2195  * Channel interface.
2196  */
2197 
2198 /* Create a new, unattached ppp channel. */
2200 {
2201  return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2202 }
2203 
2204 /* Create a new, unattached ppp channel for specified net. */
2205 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2206 {
2207  struct channel *pch;
2208  struct ppp_net *pn;
2209 
2210  pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2211  if (!pch)
2212  return -ENOMEM;
2213 
2214  pn = ppp_pernet(net);
2215 
2216  pch->ppp = NULL;
2217  pch->chan = chan;
2218  pch->chan_net = net;
2219  chan->ppp = pch;
2220  init_ppp_file(&pch->file, CHANNEL);
2221  pch->file.hdrlen = chan->hdrlen;
2222 #ifdef CONFIG_PPP_MULTILINK
2223  pch->lastseq = -1;
2224 #endif /* CONFIG_PPP_MULTILINK */
2225  init_rwsem(&pch->chan_sem);
2226  spin_lock_init(&pch->downl);
2227  rwlock_init(&pch->upl);
2228 
2229  spin_lock_bh(&pn->all_channels_lock);
2230  pch->file.index = ++pn->last_channel_index;
2231  list_add(&pch->list, &pn->new_channels);
2232  atomic_inc(&channel_count);
2233  spin_unlock_bh(&pn->all_channels_lock);
2234 
2235  return 0;
2236 }
2237 
2238 /*
2239  * Return the index of a channel.
2240  */
2242 {
2243  struct channel *pch = chan->ppp;
2244 
2245  if (pch)
2246  return pch->file.index;
2247  return -1;
2248 }
2249 
2250 /*
2251  * Return the PPP unit number to which a channel is connected.
2252  */
2253 int ppp_unit_number(struct ppp_channel *chan)
2254 {
2255  struct channel *pch = chan->ppp;
2256  int unit = -1;
2257 
2258  if (pch) {
2259  read_lock_bh(&pch->upl);
2260  if (pch->ppp)
2261  unit = pch->ppp->file.index;
2262  read_unlock_bh(&pch->upl);
2263  }
2264  return unit;
2265 }
2266 
2267 /*
2268  * Return the PPP device interface name of a channel.
2269  */
2270 char *ppp_dev_name(struct ppp_channel *chan)
2271 {
2272  struct channel *pch = chan->ppp;
2273  char *name = NULL;
2274 
2275  if (pch) {
2276  read_lock_bh(&pch->upl);
2277  if (pch->ppp && pch->ppp->dev)
2278  name = pch->ppp->dev->name;
2279  read_unlock_bh(&pch->upl);
2280  }
2281  return name;
2282 }
2283 
2284 
2285 /*
2286  * Disconnect a channel from the generic layer.
2287  * This must be called in process context.
2288  */
2289 void
2291 {
2292  struct channel *pch = chan->ppp;
2293  struct ppp_net *pn;
2294 
2295  if (!pch)
2296  return; /* should never happen */
2297 
2298  chan->ppp = NULL;
2299 
2300  /*
2301  * This ensures that we have returned from any calls into the
2302  * the channel's start_xmit or ioctl routine before we proceed.
2303  */
2304  down_write(&pch->chan_sem);
2305  spin_lock_bh(&pch->downl);
2306  pch->chan = NULL;
2307  spin_unlock_bh(&pch->downl);
2308  up_write(&pch->chan_sem);
2309  ppp_disconnect_channel(pch);
2310 
2311  pn = ppp_pernet(pch->chan_net);
2312  spin_lock_bh(&pn->all_channels_lock);
2313  list_del(&pch->list);
2314  spin_unlock_bh(&pn->all_channels_lock);
2315 
2316  pch->file.dead = 1;
2317  wake_up_interruptible(&pch->file.rwait);
2318  if (atomic_dec_and_test(&pch->file.refcnt))
2319  ppp_destroy_channel(pch);
2320 }
2321 
2322 /*
2323  * Callback from a channel when it can accept more to transmit.
2324  * This should be called at BH/softirq level, not interrupt level.
2325  */
2326 void
2328 {
2329  struct channel *pch = chan->ppp;
2330 
2331  if (!pch)
2332  return;
2333  ppp_channel_push(pch);
2334 }
2335 
2336 /*
2337  * Compression control.
2338  */
2339 
2340 /* Process the PPPIOCSCOMPRESS ioctl. */
2341 static int
2342 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2343 {
2344  int err;
2345  struct compressor *cp, *ocomp;
2346  struct ppp_option_data data;
2347  void *state, *ostate;
2348  unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2349 
2350  err = -EFAULT;
2351  if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2352  (data.length <= CCP_MAX_OPTION_LENGTH &&
2353  copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2354  goto out;
2355  err = -EINVAL;
2356  if (data.length > CCP_MAX_OPTION_LENGTH ||
2357  ccp_option[1] < 2 || ccp_option[1] > data.length)
2358  goto out;
2359 
2361  find_compressor(ccp_option[0]),
2362  "ppp-compress-%d", ccp_option[0]);
2363  if (!cp)
2364  goto out;
2365 
2366  err = -ENOBUFS;
2367  if (data.transmit) {
2368  state = cp->comp_alloc(ccp_option, data.length);
2369  if (state) {
2370  ppp_xmit_lock(ppp);
2371  ppp->xstate &= ~SC_COMP_RUN;
2372  ocomp = ppp->xcomp;
2373  ostate = ppp->xc_state;
2374  ppp->xcomp = cp;
2375  ppp->xc_state = state;
2376  ppp_xmit_unlock(ppp);
2377  if (ostate) {
2378  ocomp->comp_free(ostate);
2379  module_put(ocomp->owner);
2380  }
2381  err = 0;
2382  } else
2383  module_put(cp->owner);
2384 
2385  } else {
2386  state = cp->decomp_alloc(ccp_option, data.length);
2387  if (state) {
2388  ppp_recv_lock(ppp);
2389  ppp->rstate &= ~SC_DECOMP_RUN;
2390  ocomp = ppp->rcomp;
2391  ostate = ppp->rc_state;
2392  ppp->rcomp = cp;
2393  ppp->rc_state = state;
2394  ppp_recv_unlock(ppp);
2395  if (ostate) {
2396  ocomp->decomp_free(ostate);
2397  module_put(ocomp->owner);
2398  }
2399  err = 0;
2400  } else
2401  module_put(cp->owner);
2402  }
2403 
2404  out:
2405  return err;
2406 }
2407 
2408 /*
2409  * Look at a CCP packet and update our state accordingly.
2410  * We assume the caller has the xmit or recv path locked.
2411  */
2412 static void
2413 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2414 {
2415  unsigned char *dp;
2416  int len;
2417 
2418  if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2419  return; /* no header */
2420  dp = skb->data + 2;
2421 
2422  switch (CCP_CODE(dp)) {
2423  case CCP_CONFREQ:
2424 
2425  /* A ConfReq starts negotiation of compression
2426  * in one direction of transmission,
2427  * and hence brings it down...but which way?
2428  *
2429  * Remember:
2430  * A ConfReq indicates what the sender would like to receive
2431  */
2432  if(inbound)
2433  /* He is proposing what I should send */
2434  ppp->xstate &= ~SC_COMP_RUN;
2435  else
2436  /* I am proposing to what he should send */
2437  ppp->rstate &= ~SC_DECOMP_RUN;
2438 
2439  break;
2440 
2441  case CCP_TERMREQ:
2442  case CCP_TERMACK:
2443  /*
2444  * CCP is going down, both directions of transmission
2445  */
2446  ppp->rstate &= ~SC_DECOMP_RUN;
2447  ppp->xstate &= ~SC_COMP_RUN;
2448  break;
2449 
2450  case CCP_CONFACK:
2451  if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2452  break;
2453  len = CCP_LENGTH(dp);
2454  if (!pskb_may_pull(skb, len + 2))
2455  return; /* too short */
2456  dp += CCP_HDRLEN;
2457  len -= CCP_HDRLEN;
2458  if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2459  break;
2460  if (inbound) {
2461  /* we will start receiving compressed packets */
2462  if (!ppp->rc_state)
2463  break;
2464  if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2465  ppp->file.index, 0, ppp->mru, ppp->debug)) {
2466  ppp->rstate |= SC_DECOMP_RUN;
2467  ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2468  }
2469  } else {
2470  /* we will soon start sending compressed packets */
2471  if (!ppp->xc_state)
2472  break;
2473  if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2474  ppp->file.index, 0, ppp->debug))
2475  ppp->xstate |= SC_COMP_RUN;
2476  }
2477  break;
2478 
2479  case CCP_RESETACK:
2480  /* reset the [de]compressor */
2481  if ((ppp->flags & SC_CCP_UP) == 0)
2482  break;
2483  if (inbound) {
2484  if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2485  ppp->rcomp->decomp_reset(ppp->rc_state);
2486  ppp->rstate &= ~SC_DC_ERROR;
2487  }
2488  } else {
2489  if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2490  ppp->xcomp->comp_reset(ppp->xc_state);
2491  }
2492  break;
2493  }
2494 }
2495 
2496 /* Free up compression resources. */
2497 static void
2498 ppp_ccp_closed(struct ppp *ppp)
2499 {
2500  void *xstate, *rstate;
2501  struct compressor *xcomp, *rcomp;
2502 
2503  ppp_lock(ppp);
2504  ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2505  ppp->xstate = 0;
2506  xcomp = ppp->xcomp;
2507  xstate = ppp->xc_state;
2508  ppp->xc_state = NULL;
2509  ppp->rstate = 0;
2510  rcomp = ppp->rcomp;
2511  rstate = ppp->rc_state;
2512  ppp->rc_state = NULL;
2513  ppp_unlock(ppp);
2514 
2515  if (xstate) {
2516  xcomp->comp_free(xstate);
2517  module_put(xcomp->owner);
2518  }
2519  if (rstate) {
2520  rcomp->decomp_free(rstate);
2521  module_put(rcomp->owner);
2522  }
2523 }
2524 
2525 /* List of compressors. */
2526 static LIST_HEAD(compressor_list);
2527 static DEFINE_SPINLOCK(compressor_list_lock);
2528 
2530  struct list_head list;
2531  struct compressor *comp;
2532 };
2533 
2534 static struct compressor_entry *
2535 find_comp_entry(int proto)
2536 {
2537  struct compressor_entry *ce;
2538 
2539  list_for_each_entry(ce, &compressor_list, list) {
2540  if (ce->comp->compress_proto == proto)
2541  return ce;
2542  }
2543  return NULL;
2544 }
2545 
2546 /* Register a compressor */
2547 int
2549 {
2550  struct compressor_entry *ce;
2551  int ret;
2552  spin_lock(&compressor_list_lock);
2553  ret = -EEXIST;
2554  if (find_comp_entry(cp->compress_proto))
2555  goto out;
2556  ret = -ENOMEM;
2557  ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2558  if (!ce)
2559  goto out;
2560  ret = 0;
2561  ce->comp = cp;
2562  list_add(&ce->list, &compressor_list);
2563  out:
2564  spin_unlock(&compressor_list_lock);
2565  return ret;
2566 }
2567 
2568 /* Unregister a compressor */
2569 void
2571 {
2572  struct compressor_entry *ce;
2573 
2574  spin_lock(&compressor_list_lock);
2575  ce = find_comp_entry(cp->compress_proto);
2576  if (ce && ce->comp == cp) {
2577  list_del(&ce->list);
2578  kfree(ce);
2579  }
2580  spin_unlock(&compressor_list_lock);
2581 }
2582 
2583 /* Find a compressor. */
2584 static struct compressor *
2585 find_compressor(int type)
2586 {
2587  struct compressor_entry *ce;
2588  struct compressor *cp = NULL;
2589 
2590  spin_lock(&compressor_list_lock);
2591  ce = find_comp_entry(type);
2592  if (ce) {
2593  cp = ce->comp;
2594  if (!try_module_get(cp->owner))
2595  cp = NULL;
2596  }
2597  spin_unlock(&compressor_list_lock);
2598  return cp;
2599 }
2600 
2601 /*
2602  * Miscelleneous stuff.
2603  */
2604 
2605 static void
2606 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2607 {
2608  struct slcompress *vj = ppp->vj;
2609 
2610  memset(st, 0, sizeof(*st));
2611  st->p.ppp_ipackets = ppp->stats64.rx_packets;
2612  st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2613  st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2614  st->p.ppp_opackets = ppp->stats64.tx_packets;
2615  st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2616  st->p.ppp_obytes = ppp->stats64.tx_bytes;
2617  if (!vj)
2618  return;
2619  st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2620  st->vj.vjs_compressed = vj->sls_o_compressed;
2621  st->vj.vjs_searches = vj->sls_o_searches;
2622  st->vj.vjs_misses = vj->sls_o_misses;
2623  st->vj.vjs_errorin = vj->sls_i_error;
2624  st->vj.vjs_tossed = vj->sls_i_tossed;
2625  st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2626  st->vj.vjs_compressedin = vj->sls_i_compressed;
2627 }
2628 
2629 /*
2630  * Stuff for handling the lists of ppp units and channels
2631  * and for initialization.
2632  */
2633 
2634 /*
2635  * Create a new ppp interface unit. Fails if it can't allocate memory
2636  * or if there is already a unit with the requested number.
2637  * unit == -1 means allocate a new number.
2638  */
2639 static struct ppp *
2640 ppp_create_interface(struct net *net, int unit, int *retp)
2641 {
2642  struct ppp *ppp;
2643  struct ppp_net *pn;
2644  struct net_device *dev = NULL;
2645  int ret = -ENOMEM;
2646  int i;
2647 
2648  dev = alloc_netdev(sizeof(struct ppp), "", ppp_setup);
2649  if (!dev)
2650  goto out1;
2651 
2652  pn = ppp_pernet(net);
2653 
2654  ppp = netdev_priv(dev);
2655  ppp->dev = dev;
2656  ppp->mru = PPP_MRU;
2657  init_ppp_file(&ppp->file, INTERFACE);
2658  ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */
2659  for (i = 0; i < NUM_NP; ++i)
2660  ppp->npmode[i] = NPMODE_PASS;
2661  INIT_LIST_HEAD(&ppp->channels);
2662  spin_lock_init(&ppp->rlock);
2663  spin_lock_init(&ppp->wlock);
2664 #ifdef CONFIG_PPP_MULTILINK
2665  ppp->minseq = -1;
2666  skb_queue_head_init(&ppp->mrq);
2667 #endif /* CONFIG_PPP_MULTILINK */
2668 
2669  /*
2670  * drum roll: don't forget to set
2671  * the net device is belong to
2672  */
2673  dev_net_set(dev, net);
2674 
2675  mutex_lock(&pn->all_ppp_mutex);
2676 
2677  if (unit < 0) {
2678  unit = unit_get(&pn->units_idr, ppp);
2679  if (unit < 0) {
2680  ret = unit;
2681  goto out2;
2682  }
2683  } else {
2684  ret = -EEXIST;
2685  if (unit_find(&pn->units_idr, unit))
2686  goto out2; /* unit already exists */
2687  /*
2688  * if caller need a specified unit number
2689  * lets try to satisfy him, otherwise --
2690  * he should better ask us for new unit number
2691  *
2692  * NOTE: yes I know that returning EEXIST it's not
2693  * fair but at least pppd will ask us to allocate
2694  * new unit in this case so user is happy :)
2695  */
2696  unit = unit_set(&pn->units_idr, ppp, unit);
2697  if (unit < 0)
2698  goto out2;
2699  }
2700 
2701  /* Initialize the new ppp unit */
2702  ppp->file.index = unit;
2703  sprintf(dev->name, "ppp%d", unit);
2704 
2705  ret = register_netdev(dev);
2706  if (ret != 0) {
2707  unit_put(&pn->units_idr, unit);
2708  netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2709  dev->name, ret);
2710  goto out2;
2711  }
2712 
2713  ppp->ppp_net = net;
2714 
2715  atomic_inc(&ppp_unit_count);
2717 
2718  *retp = 0;
2719  return ppp;
2720 
2721 out2:
2723  free_netdev(dev);
2724 out1:
2725  *retp = ret;
2726  return NULL;
2727 }
2728 
2729 /*
2730  * Initialize a ppp_file structure.
2731  */
2732 static void
2733 init_ppp_file(struct ppp_file *pf, int kind)
2734 {
2735  pf->kind = kind;
2736  skb_queue_head_init(&pf->xq);
2737  skb_queue_head_init(&pf->rq);
2738  atomic_set(&pf->refcnt, 1);
2739  init_waitqueue_head(&pf->rwait);
2740 }
2741 
2742 /*
2743  * Take down a ppp interface unit - called when the owning file
2744  * (the one that created the unit) is closed or detached.
2745  */
2746 static void ppp_shutdown_interface(struct ppp *ppp)
2747 {
2748  struct ppp_net *pn;
2749 
2750  pn = ppp_pernet(ppp->ppp_net);
2751  mutex_lock(&pn->all_ppp_mutex);
2752 
2753  /* This will call dev_close() for us. */
2754  ppp_lock(ppp);
2755  if (!ppp->closing) {
2756  ppp->closing = 1;
2757  ppp_unlock(ppp);
2758  unregister_netdev(ppp->dev);
2759  unit_put(&pn->units_idr, ppp->file.index);
2760  } else
2761  ppp_unlock(ppp);
2762 
2763  ppp->file.dead = 1;
2764  ppp->owner = NULL;
2765  wake_up_interruptible(&ppp->file.rwait);
2766 
2768 }
2769 
2770 /*
2771  * Free the memory used by a ppp unit. This is only called once
2772  * there are no channels connected to the unit and no file structs
2773  * that reference the unit.
2774  */
2775 static void ppp_destroy_interface(struct ppp *ppp)
2776 {
2777  atomic_dec(&ppp_unit_count);
2778 
2779  if (!ppp->file.dead || ppp->n_channels) {
2780  /* "can't happen" */
2781  netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2782  "but dead=%d n_channels=%d !\n",
2783  ppp, ppp->file.dead, ppp->n_channels);
2784  return;
2785  }
2786 
2787  ppp_ccp_closed(ppp);
2788  if (ppp->vj) {
2789  slhc_free(ppp->vj);
2790  ppp->vj = NULL;
2791  }
2792  skb_queue_purge(&ppp->file.xq);
2793  skb_queue_purge(&ppp->file.rq);
2794 #ifdef CONFIG_PPP_MULTILINK
2795  skb_queue_purge(&ppp->mrq);
2796 #endif /* CONFIG_PPP_MULTILINK */
2797 #ifdef CONFIG_PPP_FILTER
2798  kfree(ppp->pass_filter);
2799  ppp->pass_filter = NULL;
2800  kfree(ppp->active_filter);
2801  ppp->active_filter = NULL;
2802 #endif /* CONFIG_PPP_FILTER */
2803 
2804  kfree_skb(ppp->xmit_pending);
2805 
2806  free_netdev(ppp->dev);
2807 }
2808 
2809 /*
2810  * Locate an existing ppp unit.
2811  * The caller should have locked the all_ppp_mutex.
2812  */
2813 static struct ppp *
2814 ppp_find_unit(struct ppp_net *pn, int unit)
2815 {
2816  return unit_find(&pn->units_idr, unit);
2817 }
2818 
2819 /*
2820  * Locate an existing ppp channel.
2821  * The caller should have locked the all_channels_lock.
2822  * First we look in the new_channels list, then in the
2823  * all_channels list. If found in the new_channels list,
2824  * we move it to the all_channels list. This is for speed
2825  * when we have a lot of channels in use.
2826  */
2827 static struct channel *
2828 ppp_find_channel(struct ppp_net *pn, int unit)
2829 {
2830  struct channel *pch;
2831 
2832  list_for_each_entry(pch, &pn->new_channels, list) {
2833  if (pch->file.index == unit) {
2834  list_move(&pch->list, &pn->all_channels);
2835  return pch;
2836  }
2837  }
2838 
2839  list_for_each_entry(pch, &pn->all_channels, list) {
2840  if (pch->file.index == unit)
2841  return pch;
2842  }
2843 
2844  return NULL;
2845 }
2846 
2847 /*
2848  * Connect a PPP channel to a PPP interface unit.
2849  */
2850 static int
2851 ppp_connect_channel(struct channel *pch, int unit)
2852 {
2853  struct ppp *ppp;
2854  struct ppp_net *pn;
2855  int ret = -ENXIO;
2856  int hdrlen;
2857 
2858  pn = ppp_pernet(pch->chan_net);
2859 
2860  mutex_lock(&pn->all_ppp_mutex);
2861  ppp = ppp_find_unit(pn, unit);
2862  if (!ppp)
2863  goto out;
2864  write_lock_bh(&pch->upl);
2865  ret = -EINVAL;
2866  if (pch->ppp)
2867  goto outl;
2868 
2869  ppp_lock(ppp);
2870  if (pch->file.hdrlen > ppp->file.hdrlen)
2871  ppp->file.hdrlen = pch->file.hdrlen;
2872  hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */
2873  if (hdrlen > ppp->dev->hard_header_len)
2874  ppp->dev->hard_header_len = hdrlen;
2875  list_add_tail(&pch->clist, &ppp->channels);
2876  ++ppp->n_channels;
2877  pch->ppp = ppp;
2878  atomic_inc(&ppp->file.refcnt);
2879  ppp_unlock(ppp);
2880  ret = 0;
2881 
2882  outl:
2883  write_unlock_bh(&pch->upl);
2884  out:
2886  return ret;
2887 }
2888 
2889 /*
2890  * Disconnect a channel from its ppp unit.
2891  */
2892 static int
2893 ppp_disconnect_channel(struct channel *pch)
2894 {
2895  struct ppp *ppp;
2896  int err = -EINVAL;
2897 
2898  write_lock_bh(&pch->upl);
2899  ppp = pch->ppp;
2900  pch->ppp = NULL;
2901  write_unlock_bh(&pch->upl);
2902  if (ppp) {
2903  /* remove it from the ppp unit's list */
2904  ppp_lock(ppp);
2905  list_del(&pch->clist);
2906  if (--ppp->n_channels == 0)
2907  wake_up_interruptible(&ppp->file.rwait);
2908  ppp_unlock(ppp);
2909  if (atomic_dec_and_test(&ppp->file.refcnt))
2910  ppp_destroy_interface(ppp);
2911  err = 0;
2912  }
2913  return err;
2914 }
2915 
2916 /*
2917  * Free up the resources used by a ppp channel.
2918  */
2919 static void ppp_destroy_channel(struct channel *pch)
2920 {
2921  atomic_dec(&channel_count);
2922 
2923  if (!pch->file.dead) {
2924  /* "can't happen" */
2925  pr_err("ppp: destroying undead channel %p !\n", pch);
2926  return;
2927  }
2928  skb_queue_purge(&pch->file.xq);
2929  skb_queue_purge(&pch->file.rq);
2930  kfree(pch);
2931 }
2932 
2933 static void __exit ppp_cleanup(void)
2934 {
2935  /* should never happen */
2936  if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2937  pr_err("PPP: removing module but units remain!\n");
2938  unregister_chrdev(PPP_MAJOR, "ppp");
2939  device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2940  class_destroy(ppp_class);
2941  unregister_pernet_device(&ppp_net_ops);
2942 }
2943 
2944 /*
2945  * Units handling. Caller must protect concurrent access
2946  * by holding all_ppp_mutex
2947  */
2948 
2949 static int __unit_alloc(struct idr *p, void *ptr, int n)
2950 {
2951  int unit, err;
2952 
2953 again:
2954  if (!idr_pre_get(p, GFP_KERNEL)) {
2955  pr_err("PPP: No free memory for idr\n");
2956  return -ENOMEM;
2957  }
2958 
2959  err = idr_get_new_above(p, ptr, n, &unit);
2960  if (err < 0) {
2961  if (err == -EAGAIN)
2962  goto again;
2963  return err;
2964  }
2965 
2966  return unit;
2967 }
2968 
2969 /* associate pointer with specified number */
2970 static int unit_set(struct idr *p, void *ptr, int n)
2971 {
2972  int unit;
2973 
2974  unit = __unit_alloc(p, ptr, n);
2975  if (unit < 0)
2976  return unit;
2977  else if (unit != n) {
2978  idr_remove(p, unit);
2979  return -EINVAL;
2980  }
2981 
2982  return unit;
2983 }
2984 
2985 /* get new free unit number and associate pointer with it */
2986 static int unit_get(struct idr *p, void *ptr)
2987 {
2988  return __unit_alloc(p, ptr, 0);
2989 }
2990 
2991 /* put unit number back to a pool */
2992 static void unit_put(struct idr *p, int n)
2993 {
2994  idr_remove(p, n);
2995 }
2996 
2997 /* get pointer associated with the number */
2998 static void *unit_find(struct idr *p, int n)
2999 {
3000  return idr_find(p, n);
3001 }
3002 
3003 /* Module/initialization stuff */
3004 
3005 module_init(ppp_init);
3006 module_exit(ppp_cleanup);
3007 
3019 MODULE_LICENSE("GPL");
3021 MODULE_ALIAS("devname:ppp");