Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rm200.c
Go to the documentation of this file.
1 /*
2  * RM200 specific code
3  *
4  * This file is subject to the terms and conditions of the GNU General Public
5  * License. See the file "COPYING" in the main directory of this archive
6  * for more details.
7  *
8  * Copyright (C) 2006,2007 Thomas Bogendoerfer ([email protected])
9  *
10  * i8259 parts ripped out of arch/mips/kernel/i8259.c
11  */
12 
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/platform_device.h>
18 #include <linux/serial_8250.h>
19 #include <linux/io.h>
20 
21 #include <asm/sni.h>
22 #include <asm/time.h>
23 #include <asm/irq_cpu.h>
24 
25 #define RM200_I8259A_IRQ_BASE 32
26 
27 #define MEMPORT(_base,_irq) \
28  { \
29  .mapbase = _base, \
30  .irq = _irq, \
31  .uartclk = 1843200, \
32  .iotype = UPIO_MEM, \
33  .flags = UPF_BOOT_AUTOCONF|UPF_IOREMAP, \
34  }
35 
36 static struct plat_serial8250_port rm200_data[] = {
37  MEMPORT(0x160003f8, RM200_I8259A_IRQ_BASE + 4),
38  MEMPORT(0x160002f8, RM200_I8259A_IRQ_BASE + 3),
39  { },
40 };
41 
42 static struct platform_device rm200_serial8250_device = {
43  .name = "serial8250",
45  .dev = {
46  .platform_data = rm200_data,
47  },
48 };
49 
50 static struct resource rm200_ds1216_rsrc[] = {
51  {
52  .start = 0x1cd41ffc,
53  .end = 0x1cd41fff,
54  .flags = IORESOURCE_MEM
55  }
56 };
57 
58 static struct platform_device rm200_ds1216_device = {
59  .name = "rtc-ds1216",
60  .num_resources = ARRAY_SIZE(rm200_ds1216_rsrc),
61  .resource = rm200_ds1216_rsrc
62 };
63 
64 static struct resource snirm_82596_rm200_rsrc[] = {
65  {
66  .start = 0x18000000,
67  .end = 0x180fffff,
68  .flags = IORESOURCE_MEM
69  },
70  {
71  .start = 0x1b000000,
72  .end = 0x1b000004,
73  .flags = IORESOURCE_MEM
74  },
75  {
76  .start = 0x1ff00000,
77  .end = 0x1ff00020,
78  .flags = IORESOURCE_MEM
79  },
80  {
81  .start = 27,
82  .end = 27,
83  .flags = IORESOURCE_IRQ
84  },
85  {
86  .flags = 0x00
87  }
88 };
89 
90 static struct platform_device snirm_82596_rm200_pdev = {
91  .name = "snirm_82596",
92  .num_resources = ARRAY_SIZE(snirm_82596_rm200_rsrc),
93  .resource = snirm_82596_rm200_rsrc
94 };
95 
96 static struct resource snirm_53c710_rm200_rsrc[] = {
97  {
98  .start = 0x19000000,
99  .end = 0x190fffff,
100  .flags = IORESOURCE_MEM
101  },
102  {
103  .start = 26,
104  .end = 26,
105  .flags = IORESOURCE_IRQ
106  }
107 };
108 
109 static struct platform_device snirm_53c710_rm200_pdev = {
110  .name = "snirm_53c710",
111  .num_resources = ARRAY_SIZE(snirm_53c710_rm200_rsrc),
112  .resource = snirm_53c710_rm200_rsrc
113 };
114 
115 static int __init snirm_setup_devinit(void)
116 {
117  if (sni_brd_type == SNI_BRD_RM200) {
118  platform_device_register(&rm200_serial8250_device);
119  platform_device_register(&rm200_ds1216_device);
120  platform_device_register(&snirm_82596_rm200_pdev);
121  platform_device_register(&snirm_53c710_rm200_pdev);
123  }
124  return 0;
125 }
126 
127 device_initcall(snirm_setup_devinit);
128 
129 /*
130  * RM200 has an ISA and an EISA bus. The iSA bus is only used
131  * for onboard devices and also has twi i8259 PICs. Since these
132  * PICs are no accessible via inb/outb the following code uses
133  * readb/writeb to access them
134  */
135 
136 static DEFINE_RAW_SPINLOCK(sni_rm200_i8259A_lock);
137 #define PIC_CMD 0x00
138 #define PIC_IMR 0x01
139 #define PIC_ISR PIC_CMD
140 #define PIC_POLL PIC_ISR
141 #define PIC_OCW3 PIC_ISR
142 
143 /* i8259A PIC related value */
144 #define PIC_CASCADE_IR 2
145 #define MASTER_ICW4_DEFAULT 0x01
146 #define SLAVE_ICW4_DEFAULT 0x01
147 
148 /*
149  * This contains the irq mask for both 8259A irq controllers,
150  */
151 static unsigned int rm200_cached_irq_mask = 0xffff;
152 static __iomem u8 *rm200_pic_master;
153 static __iomem u8 *rm200_pic_slave;
154 
155 #define cached_master_mask (rm200_cached_irq_mask)
156 #define cached_slave_mask (rm200_cached_irq_mask >> 8)
157 
158 static void sni_rm200_disable_8259A_irq(struct irq_data *d)
159 {
160  unsigned int mask, irq = d->irq - RM200_I8259A_IRQ_BASE;
161  unsigned long flags;
162 
163  mask = 1 << irq;
164  raw_spin_lock_irqsave(&sni_rm200_i8259A_lock, flags);
165  rm200_cached_irq_mask |= mask;
166  if (irq & 8)
167  writeb(cached_slave_mask, rm200_pic_slave + PIC_IMR);
168  else
169  writeb(cached_master_mask, rm200_pic_master + PIC_IMR);
170  raw_spin_unlock_irqrestore(&sni_rm200_i8259A_lock, flags);
171 }
172 
173 static void sni_rm200_enable_8259A_irq(struct irq_data *d)
174 {
175  unsigned int mask, irq = d->irq - RM200_I8259A_IRQ_BASE;
176  unsigned long flags;
177 
178  mask = ~(1 << irq);
179  raw_spin_lock_irqsave(&sni_rm200_i8259A_lock, flags);
180  rm200_cached_irq_mask &= mask;
181  if (irq & 8)
182  writeb(cached_slave_mask, rm200_pic_slave + PIC_IMR);
183  else
184  writeb(cached_master_mask, rm200_pic_master + PIC_IMR);
185  raw_spin_unlock_irqrestore(&sni_rm200_i8259A_lock, flags);
186 }
187 
188 static inline int sni_rm200_i8259A_irq_real(unsigned int irq)
189 {
190  int value;
191  int irqmask = 1 << irq;
192 
193  if (irq < 8) {
194  writeb(0x0B, rm200_pic_master + PIC_CMD);
195  value = readb(rm200_pic_master + PIC_CMD) & irqmask;
196  writeb(0x0A, rm200_pic_master + PIC_CMD);
197  return value;
198  }
199  writeb(0x0B, rm200_pic_slave + PIC_CMD); /* ISR register */
200  value = readb(rm200_pic_slave + PIC_CMD) & (irqmask >> 8);
201  writeb(0x0A, rm200_pic_slave + PIC_CMD);
202  return value;
203 }
204 
205 /*
206  * Careful! The 8259A is a fragile beast, it pretty
207  * much _has_ to be done exactly like this (mask it
208  * first, _then_ send the EOI, and the order of EOI
209  * to the two 8259s is important!
210  */
212 {
213  unsigned int irqmask, irq = d->irq - RM200_I8259A_IRQ_BASE;
214  unsigned long flags;
215 
216  irqmask = 1 << irq;
217  raw_spin_lock_irqsave(&sni_rm200_i8259A_lock, flags);
218  /*
219  * Lightweight spurious IRQ detection. We do not want
220  * to overdo spurious IRQ handling - it's usually a sign
221  * of hardware problems, so we only do the checks we can
222  * do without slowing down good hardware unnecessarily.
223  *
224  * Note that IRQ7 and IRQ15 (the two spurious IRQs
225  * usually resulting from the 8259A-1|2 PICs) occur
226  * even if the IRQ is masked in the 8259A. Thus we
227  * can check spurious 8259A IRQs without doing the
228  * quite slow i8259A_irq_real() call for every IRQ.
229  * This does not cover 100% of spurious interrupts,
230  * but should be enough to warn the user that there
231  * is something bad going on ...
232  */
233  if (rm200_cached_irq_mask & irqmask)
234  goto spurious_8259A_irq;
235  rm200_cached_irq_mask |= irqmask;
236 
237 handle_real_irq:
238  if (irq & 8) {
239  readb(rm200_pic_slave + PIC_IMR);
240  writeb(cached_slave_mask, rm200_pic_slave + PIC_IMR);
241  writeb(0x60+(irq & 7), rm200_pic_slave + PIC_CMD);
242  writeb(0x60+PIC_CASCADE_IR, rm200_pic_master + PIC_CMD);
243  } else {
244  readb(rm200_pic_master + PIC_IMR);
245  writeb(cached_master_mask, rm200_pic_master + PIC_IMR);
246  writeb(0x60+irq, rm200_pic_master + PIC_CMD);
247  }
248  raw_spin_unlock_irqrestore(&sni_rm200_i8259A_lock, flags);
249  return;
250 
251 spurious_8259A_irq:
252  /*
253  * this is the slow path - should happen rarely.
254  */
255  if (sni_rm200_i8259A_irq_real(irq))
256  /*
257  * oops, the IRQ _is_ in service according to the
258  * 8259A - not spurious, go handle it.
259  */
260  goto handle_real_irq;
261 
262  {
263  static int spurious_irq_mask;
264  /*
265  * At this point we can be sure the IRQ is spurious,
266  * lets ACK and report it. [once per IRQ]
267  */
268  if (!(spurious_irq_mask & irqmask)) {
270  "spurious RM200 8259A interrupt: IRQ%d.\n", irq);
271  spurious_irq_mask |= irqmask;
272  }
274  /*
275  * Theoretically we do not have to handle this IRQ,
276  * but in Linux this does not cause problems and is
277  * simpler for us.
278  */
279  goto handle_real_irq;
280  }
281 }
282 
283 static struct irq_chip sni_rm200_i8259A_chip = {
284  .name = "RM200-XT-PIC",
285  .irq_mask = sni_rm200_disable_8259A_irq,
286  .irq_unmask = sni_rm200_enable_8259A_irq,
287  .irq_mask_ack = sni_rm200_mask_and_ack_8259A,
288 };
289 
290 /*
291  * Do the traditional i8259 interrupt polling thing. This is for the few
292  * cases where no better interrupt acknowledge method is available and we
293  * absolutely must touch the i8259.
294  */
295 static inline int sni_rm200_i8259_irq(void)
296 {
297  int irq;
298 
299  raw_spin_lock(&sni_rm200_i8259A_lock);
300 
301  /* Perform an interrupt acknowledge cycle on controller 1. */
302  writeb(0x0C, rm200_pic_master + PIC_CMD); /* prepare for poll */
303  irq = readb(rm200_pic_master + PIC_CMD) & 7;
304  if (irq == PIC_CASCADE_IR) {
305  /*
306  * Interrupt is cascaded so perform interrupt
307  * acknowledge on controller 2.
308  */
309  writeb(0x0C, rm200_pic_slave + PIC_CMD); /* prepare for poll */
310  irq = (readb(rm200_pic_slave + PIC_CMD) & 7) + 8;
311  }
312 
313  if (unlikely(irq == 7)) {
314  /*
315  * This may be a spurious interrupt.
316  *
317  * Read the interrupt status register (ISR). If the most
318  * significant bit is not set then there is no valid
319  * interrupt.
320  */
321  writeb(0x0B, rm200_pic_master + PIC_ISR); /* ISR register */
322  if (~readb(rm200_pic_master + PIC_ISR) & 0x80)
323  irq = -1;
324  }
325 
326  raw_spin_unlock(&sni_rm200_i8259A_lock);
327 
328  return likely(irq >= 0) ? irq + RM200_I8259A_IRQ_BASE : irq;
329 }
330 
332 {
333  unsigned long flags;
334 
335  raw_spin_lock_irqsave(&sni_rm200_i8259A_lock, flags);
336 
337  writeb(0xff, rm200_pic_master + PIC_IMR);
338  writeb(0xff, rm200_pic_slave + PIC_IMR);
339 
340  writeb(0x11, rm200_pic_master + PIC_CMD);
341  writeb(0, rm200_pic_master + PIC_IMR);
342  writeb(1U << PIC_CASCADE_IR, rm200_pic_master + PIC_IMR);
343  writeb(MASTER_ICW4_DEFAULT, rm200_pic_master + PIC_IMR);
344  writeb(0x11, rm200_pic_slave + PIC_CMD);
345  writeb(8, rm200_pic_slave + PIC_IMR);
346  writeb(PIC_CASCADE_IR, rm200_pic_slave + PIC_IMR);
347  writeb(SLAVE_ICW4_DEFAULT, rm200_pic_slave + PIC_IMR);
348  udelay(100); /* wait for 8259A to initialize */
349 
350  writeb(cached_master_mask, rm200_pic_master + PIC_IMR);
351  writeb(cached_slave_mask, rm200_pic_slave + PIC_IMR);
352 
353  raw_spin_unlock_irqrestore(&sni_rm200_i8259A_lock, flags);
354 }
355 
356 /*
357  * IRQ2 is cascade interrupt to second interrupt controller
358  */
359 static struct irqaction sni_rm200_irq2 = {
360  .handler = no_action,
361  .name = "cascade",
362  .flags = IRQF_NO_THREAD,
363 };
364 
365 static struct resource sni_rm200_pic1_resource = {
366  .name = "onboard ISA pic1",
367  .start = 0x16000020,
368  .end = 0x16000023,
369  .flags = IORESOURCE_BUSY
370 };
371 
372 static struct resource sni_rm200_pic2_resource = {
373  .name = "onboard ISA pic2",
374  .start = 0x160000a0,
375  .end = 0x160000a3,
376  .flags = IORESOURCE_BUSY
377 };
378 
379 /* ISA irq handler */
380 static irqreturn_t sni_rm200_i8259A_irq_handler(int dummy, void *p)
381 {
382  int irq;
383 
384  irq = sni_rm200_i8259_irq();
385  if (unlikely(irq < 0))
386  return IRQ_NONE;
387 
388  do_IRQ(irq);
389  return IRQ_HANDLED;
390 }
391 
393  .handler = sni_rm200_i8259A_irq_handler,
394  .name = "onboard ISA",
395  .flags = IRQF_SHARED
396 };
397 
399 {
400  int i;
401 
402  rm200_pic_master = ioremap_nocache(0x16000020, 4);
403  if (!rm200_pic_master)
404  return;
405  rm200_pic_slave = ioremap_nocache(0x160000a0, 4);
406  if (!rm200_pic_slave) {
407  iounmap(rm200_pic_master);
408  return;
409  }
410 
411  insert_resource(&iomem_resource, &sni_rm200_pic1_resource);
412  insert_resource(&iomem_resource, &sni_rm200_pic2_resource);
413 
415 
416  for (i = RM200_I8259A_IRQ_BASE; i < RM200_I8259A_IRQ_BASE + 16; i++)
417  irq_set_chip_and_handler(i, &sni_rm200_i8259A_chip,
419 
420  setup_irq(RM200_I8259A_IRQ_BASE + PIC_CASCADE_IR, &sni_rm200_irq2);
421 }
422 
423 
424 #define SNI_RM200_INT_STAT_REG CKSEG1ADDR(0xbc000000)
425 #define SNI_RM200_INT_ENA_REG CKSEG1ADDR(0xbc080000)
426 
427 #define SNI_RM200_INT_START 24
428 #define SNI_RM200_INT_END 28
429 
430 static void enable_rm200_irq(struct irq_data *d)
431 {
432  unsigned int mask = 1 << (d->irq - SNI_RM200_INT_START);
433 
434  *(volatile u8 *)SNI_RM200_INT_ENA_REG &= ~mask;
435 }
436 
438 {
439  unsigned int mask = 1 << (d->irq - SNI_RM200_INT_START);
440 
441  *(volatile u8 *)SNI_RM200_INT_ENA_REG |= mask;
442 }
443 
444 static struct irq_chip rm200_irq_type = {
445  .name = "RM200",
446  .irq_mask = disable_rm200_irq,
447  .irq_unmask = enable_rm200_irq,
448 };
449 
450 static void sni_rm200_hwint(void)
451 {
452  u32 pending = read_c0_cause() & read_c0_status();
453  u8 mask;
454  u8 stat;
455  int irq;
456 
457  if (pending & C_IRQ5)
459  else if (pending & C_IRQ0) {
460  clear_c0_status(IE_IRQ0);
461  mask = *(volatile u8 *)SNI_RM200_INT_ENA_REG ^ 0x1f;
462  stat = *(volatile u8 *)SNI_RM200_INT_STAT_REG ^ 0x14;
463  irq = ffs(stat & mask & 0x1f);
464 
465  if (likely(irq > 0))
466  do_IRQ(irq + SNI_RM200_INT_START - 1);
467  set_c0_status(IE_IRQ0);
468  }
469 }
470 
472 {
473  int i;
474 
475  * (volatile u8 *)SNI_RM200_INT_ENA_REG = 0x1f;
476 
479  /* Actually we've got more interrupts to handle ... */
480  for (i = SNI_RM200_INT_START; i <= SNI_RM200_INT_END; i++)
481  irq_set_chip_and_handler(i, &rm200_irq_type, handle_level_irq);
482  sni_hwint = sni_rm200_hwint;
483  change_c0_status(ST0_IM, IE_IRQ0);
484  setup_irq(SNI_RM200_INT_START + 0, &sni_rm200_i8259A_irq);
486 }
487 
489 {
490 }