Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sa1100_ir.c
Go to the documentation of this file.
1 /*
2  * linux/drivers/net/irda/sa1100_ir.c
3  *
4  * Copyright (C) 2000-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  *
10  * Infra-red driver for the StrongARM SA1100 embedded microprocessor
11  *
12  * Note that we don't have to worry about the SA1111's DMA bugs in here,
13  * so we use the straight forward dma_map_* functions with a null pointer.
14  *
15  * This driver takes one kernel command line parameter, sa1100ir=, with
16  * the following options:
17  * max_rate:baudrate - set the maximum baud rate
18  * power_level:level - set the transmitter power level
19  * tx_lpm:0|1 - set transmit low power mode
20  */
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/types.h>
24 #include <linux/init.h>
25 #include <linux/errno.h>
26 #include <linux/netdevice.h>
27 #include <linux/slab.h>
28 #include <linux/rtnetlink.h>
29 #include <linux/interrupt.h>
30 #include <linux/delay.h>
31 #include <linux/platform_device.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/dmaengine.h>
34 #include <linux/sa11x0-dma.h>
35 
36 #include <net/irda/irda.h>
37 #include <net/irda/wrapper.h>
38 #include <net/irda/irda_device.h>
39 
40 #include <mach/hardware.h>
41 #include <asm/mach/irda.h>
42 
43 static int power_level = 3;
44 static int tx_lpm;
45 static int max_rate = 4000000;
46 
47 struct sa1100_buf {
48  struct device *dev;
49  struct sk_buff *skb;
50  struct scatterlist sg;
51  struct dma_chan *chan;
53 };
54 
55 struct sa1100_irda {
56  unsigned char utcr4;
57  unsigned char power;
58  unsigned char open;
59 
60  int speed;
61  int newspeed;
62 
65 
66  struct device *dev;
68  struct irlap_cb *irlap;
69  struct qos_info qos;
70 
73 
74  int (*tx_start)(struct sk_buff *, struct net_device *, struct sa1100_irda *);
75  irqreturn_t (*irq)(struct net_device *, struct sa1100_irda *);
76 };
77 
78 static int sa1100_irda_set_speed(struct sa1100_irda *, int);
79 
80 #define IS_FIR(si) ((si)->speed >= 4000000)
81 
82 #define HPSIR_MAX_RXLEN 2047
83 
84 static struct dma_slave_config sa1100_irda_sir_tx = {
85  .direction = DMA_TO_DEVICE,
86  .dst_addr = __PREG(Ser2UTDR),
87  .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
88  .dst_maxburst = 4,
89 };
90 
91 static struct dma_slave_config sa1100_irda_fir_rx = {
92  .direction = DMA_FROM_DEVICE,
93  .src_addr = __PREG(Ser2HSDR),
94  .src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
95  .src_maxburst = 8,
96 };
97 
98 static struct dma_slave_config sa1100_irda_fir_tx = {
99  .direction = DMA_TO_DEVICE,
100  .dst_addr = __PREG(Ser2HSDR),
101  .dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
102  .dst_maxburst = 8,
103 };
104 
105 static unsigned sa1100_irda_dma_xferred(struct sa1100_buf *buf)
106 {
107  struct dma_chan *chan = buf->chan;
108  struct dma_tx_state state;
109  enum dma_status status;
110 
111  status = chan->device->device_tx_status(chan, buf->cookie, &state);
112  if (status != DMA_PAUSED)
113  return 0;
114 
115  return sg_dma_len(&buf->sg) - state.residue;
116 }
117 
118 static int sa1100_irda_dma_request(struct device *dev, struct sa1100_buf *buf,
119  const char *name, struct dma_slave_config *cfg)
120 {
122  int ret;
123 
124  dma_cap_zero(m);
126 
127  buf->chan = dma_request_channel(m, sa11x0_dma_filter_fn, (void *)name);
128  if (!buf->chan) {
129  dev_err(dev, "unable to request DMA channel for %s\n",
130  name);
131  return -ENOENT;
132  }
133 
134  ret = dmaengine_slave_config(buf->chan, cfg);
135  if (ret)
136  dev_warn(dev, "DMA slave_config for %s returned %d\n",
137  name, ret);
138 
139  buf->dev = buf->chan->device->dev;
140 
141  return 0;
142 }
143 
144 static void sa1100_irda_dma_start(struct sa1100_buf *buf,
145  enum dma_transfer_direction dir, dma_async_tx_callback cb, void *cb_p)
146 {
148  struct dma_chan *chan = buf->chan;
149 
150  desc = dmaengine_prep_slave_sg(chan, &buf->sg, 1, dir,
152  if (desc) {
153  desc->callback = cb;
154  desc->callback_param = cb_p;
155  buf->cookie = dmaengine_submit(desc);
156  dma_async_issue_pending(chan);
157  }
158 }
159 
160 /*
161  * Allocate and map the receive buffer, unless it is already allocated.
162  */
163 static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
164 {
165  if (si->dma_rx.skb)
166  return 0;
167 
168  si->dma_rx.skb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
169  if (!si->dma_rx.skb) {
170  printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
171  return -ENOMEM;
172  }
173 
174  /*
175  * Align any IP headers that may be contained
176  * within the frame.
177  */
178  skb_reserve(si->dma_rx.skb, 1);
179 
180  sg_set_buf(&si->dma_rx.sg, si->dma_rx.skb->data, HPSIR_MAX_RXLEN);
181  if (dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE) == 0) {
182  dev_kfree_skb_any(si->dma_rx.skb);
183  return -ENOMEM;
184  }
185 
186  return 0;
187 }
188 
189 /*
190  * We want to get here as soon as possible, and get the receiver setup.
191  * We use the existing buffer.
192  */
193 static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
194 {
195  if (!si->dma_rx.skb) {
196  printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
197  return;
198  }
199 
200  /*
201  * First empty receive FIFO
202  */
204 
205  /*
206  * Enable the DMA, receiver and receive interrupt.
207  */
208  dmaengine_terminate_all(si->dma_rx.chan);
209  sa1100_irda_dma_start(&si->dma_rx, DMA_DEV_TO_MEM, NULL, NULL);
210 
212 }
213 
214 static void sa1100_irda_check_speed(struct sa1100_irda *si)
215 {
216  if (si->newspeed) {
217  sa1100_irda_set_speed(si, si->newspeed);
218  si->newspeed = 0;
219  }
220 }
221 
222 /*
223  * HP-SIR format support.
224  */
225 static void sa1100_irda_sirtxdma_irq(void *id)
226 {
227  struct net_device *dev = id;
228  struct sa1100_irda *si = netdev_priv(dev);
229 
230  dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE);
231  dev_kfree_skb(si->dma_tx.skb);
232  si->dma_tx.skb = NULL;
233 
234  dev->stats.tx_packets++;
235  dev->stats.tx_bytes += sg_dma_len(&si->dma_tx.sg);
236 
237  /* We need to ensure that the transmitter has finished. */
238  do
239  rmb();
240  while (Ser2UTSR1 & UTSR1_TBY);
241 
242  /*
243  * Ok, we've finished transmitting. Now enable the receiver.
244  * Sometimes we get a receive IRQ immediately after a transmit...
245  */
248 
249  sa1100_irda_check_speed(si);
250 
251  /* I'm hungry! */
252  netif_wake_queue(dev);
253 }
254 
255 static int sa1100_irda_sir_tx_start(struct sk_buff *skb, struct net_device *dev,
256  struct sa1100_irda *si)
257 {
258  si->tx_buff.data = si->tx_buff.head;
259  si->tx_buff.len = async_wrap_skb(skb, si->tx_buff.data,
260  si->tx_buff.truesize);
261 
262  si->dma_tx.skb = skb;
263  sg_set_buf(&si->dma_tx.sg, si->tx_buff.data, si->tx_buff.len);
264  if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) {
265  si->dma_tx.skb = NULL;
266  netif_wake_queue(dev);
267  dev->stats.tx_dropped++;
268  return NETDEV_TX_OK;
269  }
270 
271  sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_sirtxdma_irq, dev);
272 
273  /*
274  * The mean turn-around time is enforced by XBOF padding,
275  * so we don't have to do anything special here.
276  */
278 
279  return NETDEV_TX_OK;
280 }
281 
282 static irqreturn_t sa1100_irda_sir_irq(struct net_device *dev, struct sa1100_irda *si)
283 {
284  int status;
285 
286  status = Ser2UTSR0;
287 
288  /*
289  * Deal with any receive errors first. The bytes in error may be
290  * the only bytes in the receive FIFO, so we do this first.
291  */
292  while (status & UTSR0_EIF) {
293  int stat, data;
294 
295  stat = Ser2UTSR1;
296  data = Ser2UTDR;
297 
298  if (stat & (UTSR1_FRE | UTSR1_ROR)) {
299  dev->stats.rx_errors++;
300  if (stat & UTSR1_FRE)
301  dev->stats.rx_frame_errors++;
302  if (stat & UTSR1_ROR)
303  dev->stats.rx_fifo_errors++;
304  } else
305  async_unwrap_char(dev, &dev->stats, &si->rx_buff, data);
306 
307  status = Ser2UTSR0;
308  }
309 
310  /*
311  * We must clear certain bits.
312  */
313  Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
314 
315  if (status & UTSR0_RFS) {
316  /*
317  * There are at least 4 bytes in the FIFO. Read 3 bytes
318  * and leave the rest to the block below.
319  */
320  async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
321  async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
322  async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
323  }
324 
325  if (status & (UTSR0_RFS | UTSR0_RID)) {
326  /*
327  * Fifo contains more than 1 character.
328  */
329  do {
330  async_unwrap_char(dev, &dev->stats, &si->rx_buff,
331  Ser2UTDR);
332  } while (Ser2UTSR1 & UTSR1_RNE);
333 
334  }
335 
336  return IRQ_HANDLED;
337 }
338 
339 /*
340  * FIR format support.
341  */
342 static void sa1100_irda_firtxdma_irq(void *id)
343 {
344  struct net_device *dev = id;
345  struct sa1100_irda *si = netdev_priv(dev);
346  struct sk_buff *skb;
347 
348  /*
349  * Wait for the transmission to complete. Unfortunately,
350  * the hardware doesn't give us an interrupt to indicate
351  * "end of frame".
352  */
353  do
354  rmb();
355  while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
356 
357  /*
358  * Clear the transmit underrun bit.
359  */
361 
362  /*
363  * Do we need to change speed? Note that we're lazy
364  * here - we don't free the old dma_rx.skb. We don't need
365  * to allocate a buffer either.
366  */
367  sa1100_irda_check_speed(si);
368 
369  /*
370  * Start reception. This disables the transmitter for
371  * us. This will be using the existing RX buffer.
372  */
373  sa1100_irda_rx_dma_start(si);
374 
375  /* Account and free the packet. */
376  skb = si->dma_tx.skb;
377  if (skb) {
378  dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1,
379  DMA_TO_DEVICE);
380  dev->stats.tx_packets ++;
381  dev->stats.tx_bytes += skb->len;
382  dev_kfree_skb_irq(skb);
383  si->dma_tx.skb = NULL;
384  }
385 
386  /*
387  * Make sure that the TX queue is available for sending
388  * (for retries). TX has priority over RX at all times.
389  */
390  netif_wake_queue(dev);
391 }
392 
393 static int sa1100_irda_fir_tx_start(struct sk_buff *skb, struct net_device *dev,
394  struct sa1100_irda *si)
395 {
396  int mtt = irda_get_mtt(skb);
397 
398  si->dma_tx.skb = skb;
399  sg_set_buf(&si->dma_tx.sg, skb->data, skb->len);
400  if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) {
401  si->dma_tx.skb = NULL;
402  netif_wake_queue(dev);
403  dev->stats.tx_dropped++;
404  dev_kfree_skb(skb);
405  return NETDEV_TX_OK;
406  }
407 
408  sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_firtxdma_irq, dev);
409 
410  /*
411  * If we have a mean turn-around time, impose the specified
412  * specified delay. We could shorten this by timing from
413  * the point we received the packet.
414  */
415  if (mtt)
416  udelay(mtt);
417 
419 
420  return NETDEV_TX_OK;
421 }
422 
423 static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
424 {
425  struct sk_buff *skb = si->dma_rx.skb;
426  unsigned int len, stat, data;
427 
428  if (!skb) {
429  printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
430  return;
431  }
432 
433  /*
434  * Get the current data position.
435  */
436  len = sa1100_irda_dma_xferred(&si->dma_rx);
437  if (len > HPSIR_MAX_RXLEN)
438  len = HPSIR_MAX_RXLEN;
439  dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE);
440 
441  do {
442  /*
443  * Read Status, and then Data.
444  */
445  stat = Ser2HSSR1;
446  rmb();
447  data = Ser2HSDR;
448 
449  if (stat & (HSSR1_CRE | HSSR1_ROR)) {
450  dev->stats.rx_errors++;
451  if (stat & HSSR1_CRE)
452  dev->stats.rx_crc_errors++;
453  if (stat & HSSR1_ROR)
454  dev->stats.rx_frame_errors++;
455  } else
456  skb->data[len++] = data;
457 
458  /*
459  * If we hit the end of frame, there's
460  * no point in continuing.
461  */
462  if (stat & HSSR1_EOF)
463  break;
464  } while (Ser2HSSR0 & HSSR0_EIF);
465 
466  if (stat & HSSR1_EOF) {
467  si->dma_rx.skb = NULL;
468 
469  skb_put(skb, len);
470  skb->dev = dev;
471  skb_reset_mac_header(skb);
472  skb->protocol = htons(ETH_P_IRDA);
473  dev->stats.rx_packets++;
474  dev->stats.rx_bytes += len;
475 
476  /*
477  * Before we pass the buffer up, allocate a new one.
478  */
479  sa1100_irda_rx_alloc(si);
480 
481  netif_rx(skb);
482  } else {
483  /*
484  * Remap the buffer - it was previously mapped, and we
485  * hope that this succeeds.
486  */
487  dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE);
488  }
489 }
490 
491 /*
492  * We only have to handle RX events here; transmit events go via the TX
493  * DMA handler. We disable RX, process, and the restart RX.
494  */
495 static irqreturn_t sa1100_irda_fir_irq(struct net_device *dev, struct sa1100_irda *si)
496 {
497  /*
498  * Stop RX DMA
499  */
500  dmaengine_pause(si->dma_rx.chan);
501 
502  /*
503  * Framing error - we throw away the packet completely.
504  * Clearing RXE flushes the error conditions and data
505  * from the fifo.
506  */
507  if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
508  dev->stats.rx_errors++;
509 
510  if (Ser2HSSR0 & HSSR0_FRE)
511  dev->stats.rx_frame_errors++;
512 
513  /*
514  * Clear out the DMA...
515  */
517 
518  /*
519  * Clear selected status bits now, so we
520  * don't miss them next time around.
521  */
522  Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
523  }
524 
525  /*
526  * Deal with any receive errors. The any of the lowest
527  * 8 bytes in the FIFO may contain an error. We must read
528  * them one by one. The "error" could even be the end of
529  * packet!
530  */
531  if (Ser2HSSR0 & HSSR0_EIF)
532  sa1100_irda_fir_error(si, dev);
533 
534  /*
535  * No matter what happens, we must restart reception.
536  */
537  sa1100_irda_rx_dma_start(si);
538 
539  return IRQ_HANDLED;
540 }
541 
542 /*
543  * Set the IrDA communications speed.
544  */
545 static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
546 {
547  unsigned long flags;
548  int brd, ret = -EINVAL;
549 
550  switch (speed) {
551  case 9600: case 19200: case 38400:
552  case 57600: case 115200:
553  brd = 3686400 / (16 * speed) - 1;
554 
555  /* Stop the receive DMA, and configure transmit. */
556  if (IS_FIR(si)) {
557  dmaengine_terminate_all(si->dma_rx.chan);
558  dmaengine_slave_config(si->dma_tx.chan,
559  &sa1100_irda_sir_tx);
560  }
561 
562  local_irq_save(flags);
563 
564  Ser2UTCR3 = 0;
566 
567  Ser2UTCR1 = brd >> 8;
568  Ser2UTCR2 = brd;
569 
570  /*
571  * Clear status register
572  */
575 
576  if (si->pdata->set_speed)
577  si->pdata->set_speed(si->dev, speed);
578 
579  si->speed = speed;
580  si->tx_start = sa1100_irda_sir_tx_start;
581  si->irq = sa1100_irda_sir_irq;
582 
583  local_irq_restore(flags);
584  ret = 0;
585  break;
586 
587  case 4000000:
588  if (!IS_FIR(si))
589  dmaengine_slave_config(si->dma_tx.chan,
590  &sa1100_irda_fir_tx);
591 
592  local_irq_save(flags);
593 
594  Ser2HSSR0 = 0xff;
596  Ser2UTCR3 = 0;
597 
598  si->speed = speed;
599  si->tx_start = sa1100_irda_fir_tx_start;
600  si->irq = sa1100_irda_fir_irq;
601 
602  if (si->pdata->set_speed)
603  si->pdata->set_speed(si->dev, speed);
604 
605  sa1100_irda_rx_alloc(si);
606  sa1100_irda_rx_dma_start(si);
607 
608  local_irq_restore(flags);
609 
610  break;
611 
612  default:
613  break;
614  }
615 
616  return ret;
617 }
618 
619 /*
620  * Control the power state of the IrDA transmitter.
621  * State:
622  * 0 - off
623  * 1 - short range, lowest power
624  * 2 - medium range, medium power
625  * 3 - maximum range, high power
626  *
627  * Currently, only assabet is known to support this.
628  */
629 static int
630 __sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
631 {
632  int ret = 0;
633  if (si->pdata->set_power)
634  ret = si->pdata->set_power(si->dev, state);
635  return ret;
636 }
637 
638 static inline int
639 sa1100_set_power(struct sa1100_irda *si, unsigned int state)
640 {
641  int ret;
642 
643  ret = __sa1100_irda_set_power(si, state);
644  if (ret == 0)
645  si->power = state;
646 
647  return ret;
648 }
649 
650 static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
651 {
652  struct net_device *dev = dev_id;
653  struct sa1100_irda *si = netdev_priv(dev);
654 
655  return si->irq(dev, si);
656 }
657 
658 static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
659 {
660  struct sa1100_irda *si = netdev_priv(dev);
661  int speed = irda_get_next_speed(skb);
662 
663  /*
664  * Does this packet contain a request to change the interface
665  * speed? If so, remember it until we complete the transmission
666  * of this frame.
667  */
668  if (speed != si->speed && speed != -1)
669  si->newspeed = speed;
670 
671  /* If this is an empty frame, we can bypass a lot. */
672  if (skb->len == 0) {
673  sa1100_irda_check_speed(si);
674  dev_kfree_skb(skb);
675  return NETDEV_TX_OK;
676  }
677 
678  netif_stop_queue(dev);
679 
680  /* We must not already have a skb to transmit... */
681  BUG_ON(si->dma_tx.skb);
682 
683  return si->tx_start(skb, dev, si);
684 }
685 
686 static int
687 sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
688 {
689  struct if_irda_req *rq = (struct if_irda_req *)ifreq;
690  struct sa1100_irda *si = netdev_priv(dev);
691  int ret = -EOPNOTSUPP;
692 
693  switch (cmd) {
694  case SIOCSBANDWIDTH:
695  if (capable(CAP_NET_ADMIN)) {
696  /*
697  * We are unable to set the speed if the
698  * device is not running.
699  */
700  if (si->open) {
701  ret = sa1100_irda_set_speed(si,
702  rq->ifr_baudrate);
703  } else {
704  printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
705  ret = 0;
706  }
707  }
708  break;
709 
710  case SIOCSMEDIABUSY:
711  ret = -EPERM;
712  if (capable(CAP_NET_ADMIN)) {
714  ret = 0;
715  }
716  break;
717 
718  case SIOCGRECEIVING:
719  rq->ifr_receiving = IS_FIR(si) ? 0
720  : si->rx_buff.state != OUTSIDE_FRAME;
721  break;
722 
723  default:
724  break;
725  }
726 
727  return ret;
728 }
729 
730 static int sa1100_irda_startup(struct sa1100_irda *si)
731 {
732  int ret;
733 
734  /*
735  * Ensure that the ports for this device are setup correctly.
736  */
737  if (si->pdata->startup) {
738  ret = si->pdata->startup(si->dev);
739  if (ret)
740  return ret;
741  }
742 
743  /*
744  * Configure PPC for IRDA - we want to drive TXD2 low.
745  * We also want to drive this pin low during sleep.
746  */
747  PPSR &= ~PPC_TXD2;
748  PSDR &= ~PPC_TXD2;
749  PPDR |= PPC_TXD2;
750 
751  /*
752  * Enable HP-SIR modulation, and ensure that the port is disabled.
753  */
754  Ser2UTCR3 = 0;
756  Ser2UTCR4 = si->utcr4;
759 
760  /*
761  * Clear status register
762  */
764 
765  ret = sa1100_irda_set_speed(si, si->speed = 9600);
766  if (ret) {
767  Ser2UTCR3 = 0;
768  Ser2HSCR0 = 0;
769 
770  if (si->pdata->shutdown)
771  si->pdata->shutdown(si->dev);
772  }
773 
774  return ret;
775 }
776 
777 static void sa1100_irda_shutdown(struct sa1100_irda *si)
778 {
779  /*
780  * Stop all DMA activity.
781  */
782  dmaengine_terminate_all(si->dma_rx.chan);
783  dmaengine_terminate_all(si->dma_tx.chan);
784 
785  /* Disable the port. */
786  Ser2UTCR3 = 0;
787  Ser2HSCR0 = 0;
788 
789  if (si->pdata->shutdown)
790  si->pdata->shutdown(si->dev);
791 }
792 
793 static int sa1100_irda_start(struct net_device *dev)
794 {
795  struct sa1100_irda *si = netdev_priv(dev);
796  int err;
797 
798  si->speed = 9600;
799 
800  err = sa1100_irda_dma_request(si->dev, &si->dma_rx, "Ser2ICPRc",
801  &sa1100_irda_fir_rx);
802  if (err)
803  goto err_rx_dma;
804 
805  err = sa1100_irda_dma_request(si->dev, &si->dma_tx, "Ser2ICPTr",
806  &sa1100_irda_sir_tx);
807  if (err)
808  goto err_tx_dma;
809 
810  /*
811  * Setup the serial port for the specified speed.
812  */
813  err = sa1100_irda_startup(si);
814  if (err)
815  goto err_startup;
816 
817  /*
818  * Open a new IrLAP layer instance.
819  */
820  si->irlap = irlap_open(dev, &si->qos, "sa1100");
821  err = -ENOMEM;
822  if (!si->irlap)
823  goto err_irlap;
824 
825  err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
826  if (err)
827  goto err_irq;
828 
829  /*
830  * Now enable the interrupt and start the queue
831  */
832  si->open = 1;
833  sa1100_set_power(si, power_level); /* low power mode */
834 
835  netif_start_queue(dev);
836  return 0;
837 
838 err_irq:
839  irlap_close(si->irlap);
840 err_irlap:
841  si->open = 0;
842  sa1100_irda_shutdown(si);
843 err_startup:
844  dma_release_channel(si->dma_tx.chan);
845 err_tx_dma:
846  dma_release_channel(si->dma_rx.chan);
847 err_rx_dma:
848  return err;
849 }
850 
851 static int sa1100_irda_stop(struct net_device *dev)
852 {
853  struct sa1100_irda *si = netdev_priv(dev);
854  struct sk_buff *skb;
855 
856  netif_stop_queue(dev);
857 
858  si->open = 0;
859  sa1100_irda_shutdown(si);
860 
861  /*
862  * If we have been doing any DMA activity, make sure we
863  * tidy that up cleanly.
864  */
865  skb = si->dma_rx.skb;
866  if (skb) {
867  dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1,
869  dev_kfree_skb(skb);
870  si->dma_rx.skb = NULL;
871  }
872 
873  skb = si->dma_tx.skb;
874  if (skb) {
875  dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1,
876  DMA_TO_DEVICE);
877  dev_kfree_skb(skb);
878  si->dma_tx.skb = NULL;
879  }
880 
881  /* Stop IrLAP */
882  if (si->irlap) {
883  irlap_close(si->irlap);
884  si->irlap = NULL;
885  }
886 
887  /*
888  * Free resources
889  */
890  dma_release_channel(si->dma_tx.chan);
891  dma_release_channel(si->dma_rx.chan);
892  free_irq(dev->irq, dev);
893 
894  sa1100_set_power(si, 0);
895 
896  return 0;
897 }
898 
899 static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
900 {
901  io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
902  if (io->head != NULL) {
903  io->truesize = size;
904  io->in_frame = FALSE;
905  io->state = OUTSIDE_FRAME;
906  io->data = io->head;
907  }
908  return io->head ? 0 : -ENOMEM;
909 }
910 
911 static const struct net_device_ops sa1100_irda_netdev_ops = {
912  .ndo_open = sa1100_irda_start,
913  .ndo_stop = sa1100_irda_stop,
914  .ndo_start_xmit = sa1100_irda_hard_xmit,
915  .ndo_do_ioctl = sa1100_irda_ioctl,
916 };
917 
918 static int sa1100_irda_probe(struct platform_device *pdev)
919 {
920  struct net_device *dev;
921  struct sa1100_irda *si;
922  unsigned int baudrate_mask;
923  int err, irq;
924 
925  if (!pdev->dev.platform_data)
926  return -EINVAL;
927 
928  irq = platform_get_irq(pdev, 0);
929  if (irq <= 0)
930  return irq < 0 ? irq : -ENXIO;
931 
932  err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
933  if (err)
934  goto err_mem_1;
935  err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
936  if (err)
937  goto err_mem_2;
938  err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
939  if (err)
940  goto err_mem_3;
941 
942  dev = alloc_irdadev(sizeof(struct sa1100_irda));
943  if (!dev) {
944  err = -ENOMEM;
945  goto err_mem_4;
946  }
947 
948  SET_NETDEV_DEV(dev, &pdev->dev);
949 
950  si = netdev_priv(dev);
951  si->dev = &pdev->dev;
952  si->pdata = pdev->dev.platform_data;
953 
954  sg_init_table(&si->dma_rx.sg, 1);
955  sg_init_table(&si->dma_tx.sg, 1);
956 
957  /*
958  * Initialise the HP-SIR buffers
959  */
960  err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
961  if (err)
962  goto err_mem_5;
963  err = sa1100_irda_init_iobuf(&si->tx_buff, IRDA_SIR_MAX_FRAME);
964  if (err)
965  goto err_mem_5;
966 
967  dev->netdev_ops = &sa1100_irda_netdev_ops;
968  dev->irq = irq;
969 
971 
972  /*
973  * We support original IRDA up to 115k2. (we don't currently
974  * support 4Mbps). Min Turn Time set to 1ms or greater.
975  */
976  baudrate_mask = IR_9600;
977 
978  switch (max_rate) {
979  case 4000000: baudrate_mask |= IR_4000000 << 8;
980  case 115200: baudrate_mask |= IR_115200;
981  case 57600: baudrate_mask |= IR_57600;
982  case 38400: baudrate_mask |= IR_38400;
983  case 19200: baudrate_mask |= IR_19200;
984  }
985 
986  si->qos.baud_rate.bits &= baudrate_mask;
987  si->qos.min_turn_time.bits = 7;
988 
990 
991  si->utcr4 = UTCR4_HPSIR;
992  if (tx_lpm)
993  si->utcr4 |= UTCR4_Z1_6us;
994 
995  /*
996  * Initially enable HP-SIR modulation, and ensure that the port
997  * is disabled.
998  */
999  Ser2UTCR3 = 0;
1000  Ser2UTCR4 = si->utcr4;
1002 
1003  err = register_netdev(dev);
1004  if (err == 0)
1005  platform_set_drvdata(pdev, dev);
1006 
1007  if (err) {
1008  err_mem_5:
1009  kfree(si->tx_buff.head);
1010  kfree(si->rx_buff.head);
1011  free_netdev(dev);
1012  err_mem_4:
1014  err_mem_3:
1016  err_mem_2:
1018  }
1019  err_mem_1:
1020  return err;
1021 }
1022 
1023 static int sa1100_irda_remove(struct platform_device *pdev)
1024 {
1025  struct net_device *dev = platform_get_drvdata(pdev);
1026 
1027  if (dev) {
1028  struct sa1100_irda *si = netdev_priv(dev);
1029  unregister_netdev(dev);
1030  kfree(si->tx_buff.head);
1031  kfree(si->rx_buff.head);
1032  free_netdev(dev);
1033  }
1034 
1038 
1039  return 0;
1040 }
1041 
1042 #ifdef CONFIG_PM
1043 /*
1044  * Suspend the IrDA interface.
1045  */
1046 static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
1047 {
1048  struct net_device *dev = platform_get_drvdata(pdev);
1049  struct sa1100_irda *si;
1050 
1051  if (!dev)
1052  return 0;
1053 
1054  si = netdev_priv(dev);
1055  if (si->open) {
1056  /*
1057  * Stop the transmit queue
1058  */
1059  netif_device_detach(dev);
1060  disable_irq(dev->irq);
1061  sa1100_irda_shutdown(si);
1062  __sa1100_irda_set_power(si, 0);
1063  }
1064 
1065  return 0;
1066 }
1067 
1068 /*
1069  * Resume the IrDA interface.
1070  */
1071 static int sa1100_irda_resume(struct platform_device *pdev)
1072 {
1073  struct net_device *dev = platform_get_drvdata(pdev);
1074  struct sa1100_irda *si;
1075 
1076  if (!dev)
1077  return 0;
1078 
1079  si = netdev_priv(dev);
1080  if (si->open) {
1081  /*
1082  * If we missed a speed change, initialise at the new speed
1083  * directly. It is debatable whether this is actually
1084  * required, but in the interests of continuing from where
1085  * we left off it is desirable. The converse argument is
1086  * that we should re-negotiate at 9600 baud again.
1087  */
1088  if (si->newspeed) {
1089  si->speed = si->newspeed;
1090  si->newspeed = 0;
1091  }
1092 
1093  sa1100_irda_startup(si);
1094  __sa1100_irda_set_power(si, si->power);
1095  enable_irq(dev->irq);
1096 
1097  /*
1098  * This automatically wakes up the queue
1099  */
1100  netif_device_attach(dev);
1101  }
1102 
1103  return 0;
1104 }
1105 #else
1106 #define sa1100_irda_suspend NULL
1107 #define sa1100_irda_resume NULL
1108 #endif
1109 
1110 static struct platform_driver sa1100ir_driver = {
1111  .probe = sa1100_irda_probe,
1112  .remove = sa1100_irda_remove,
1113  .suspend = sa1100_irda_suspend,
1114  .resume = sa1100_irda_resume,
1115  .driver = {
1116  .name = "sa11x0-ir",
1117  .owner = THIS_MODULE,
1118  },
1119 };
1120 
1121 static int __init sa1100_irda_init(void)
1122 {
1123  /*
1124  * Limit power level a sensible range.
1125  */
1126  if (power_level < 1)
1127  power_level = 1;
1128  if (power_level > 3)
1129  power_level = 3;
1130 
1131  return platform_driver_register(&sa1100ir_driver);
1132 }
1133 
1134 static void __exit sa1100_irda_exit(void)
1135 {
1136  platform_driver_unregister(&sa1100ir_driver);
1137 }
1138 
1139 module_init(sa1100_irda_init);
1140 module_exit(sa1100_irda_exit);
1141 module_param(power_level, int, 0);
1142 module_param(tx_lpm, int, 0);
1143 module_param(max_rate, int, 0);
1144 
1145 MODULE_AUTHOR("Russell King <[email protected]>");
1146 MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
1147 MODULE_LICENSE("GPL");
1148 MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
1149 MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
1150 MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");
1151 MODULE_ALIAS("platform:sa11x0-ir");