Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sata_vsc.c
Go to the documentation of this file.
1 /*
2  * sata_vsc.c - Vitesse VSC7174 4 port DPA SATA
3  *
4  * Maintained by: Jeremy Higdon @ SGI
5  * Please ALWAYS copy [email protected]
6  * on emails.
7  *
8  * Copyright 2004 SGI
9  *
10  * Bits from Jeff Garzik, Copyright RedHat, Inc.
11  *
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License as published by
15  * the Free Software Foundation; either version 2, or (at your option)
16  * any later version.
17  *
18  * This program is distributed in the hope that it will be useful,
19  * but WITHOUT ANY WARRANTY; without even the implied warranty of
20  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21  * GNU General Public License for more details.
22  *
23  * You should have received a copy of the GNU General Public License
24  * along with this program; see the file COPYING. If not, write to
25  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26  *
27  *
28  * libata documentation is available via 'make {ps|pdf}docs',
29  * as Documentation/DocBook/libata.*
30  *
31  * Vitesse hardware documentation presumably available under NDA.
32  * Intel 31244 (same hardware interface) documentation presumably
33  * available from http://developer.intel.com/
34  *
35  */
36 
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/init.h>
41 #include <linux/blkdev.h>
42 #include <linux/delay.h>
43 #include <linux/interrupt.h>
44 #include <linux/dma-mapping.h>
45 #include <linux/device.h>
46 #include <scsi/scsi_host.h>
47 #include <linux/libata.h>
48 
49 #define DRV_NAME "sata_vsc"
50 #define DRV_VERSION "2.3"
51 
52 enum {
54 
55  /* Interrupt register offsets (from chip base address) */
58 
59  /* Taskfile registers offsets */
73 
74  /* DMA base */
78 
79  /* SCRs base */
83 
84  /* Port stride */
86 
87  /* Error interrupt status bit offsets */
96  VSC_SATA_INT_ERROR_P | VSC_SATA_INT_ERROR_R | \
97  VSC_SATA_INT_ERROR_E | VSC_SATA_INT_ERROR_M | \
98  VSC_SATA_INT_PHY_CHANGE),
99 };
100 
101 static int vsc_sata_scr_read(struct ata_link *link,
102  unsigned int sc_reg, u32 *val)
103 {
104  if (sc_reg > SCR_CONTROL)
105  return -EINVAL;
106  *val = readl(link->ap->ioaddr.scr_addr + (sc_reg * 4));
107  return 0;
108 }
109 
110 
111 static int vsc_sata_scr_write(struct ata_link *link,
112  unsigned int sc_reg, u32 val)
113 {
114  if (sc_reg > SCR_CONTROL)
115  return -EINVAL;
116  writel(val, link->ap->ioaddr.scr_addr + (sc_reg * 4));
117  return 0;
118 }
119 
120 
121 static void vsc_freeze(struct ata_port *ap)
122 {
123  void __iomem *mask_addr;
124 
125  mask_addr = ap->host->iomap[VSC_MMIO_BAR] +
127 
128  writeb(0, mask_addr);
129 }
130 
131 
132 static void vsc_thaw(struct ata_port *ap)
133 {
134  void __iomem *mask_addr;
135 
136  mask_addr = ap->host->iomap[VSC_MMIO_BAR] +
138 
139  writeb(0xff, mask_addr);
140 }
141 
142 
143 static void vsc_intr_mask_update(struct ata_port *ap, u8 ctl)
144 {
145  void __iomem *mask_addr;
146  u8 mask;
147 
148  mask_addr = ap->host->iomap[VSC_MMIO_BAR] +
150  mask = readb(mask_addr);
151  if (ctl & ATA_NIEN)
152  mask |= 0x80;
153  else
154  mask &= 0x7F;
155  writeb(mask, mask_addr);
156 }
157 
158 
159 static void vsc_sata_tf_load(struct ata_port *ap, const struct ata_taskfile *tf)
160 {
161  struct ata_ioports *ioaddr = &ap->ioaddr;
162  unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR;
163 
164  /*
165  * The only thing the ctl register is used for is SRST.
166  * That is not enabled or disabled via tf_load.
167  * However, if ATA_NIEN is changed, then we need to change
168  * the interrupt register.
169  */
170  if ((tf->ctl & ATA_NIEN) != (ap->last_ctl & ATA_NIEN)) {
171  ap->last_ctl = tf->ctl;
172  vsc_intr_mask_update(ap, tf->ctl & ATA_NIEN);
173  }
174  if (is_addr && (tf->flags & ATA_TFLAG_LBA48)) {
175  writew(tf->feature | (((u16)tf->hob_feature) << 8),
176  ioaddr->feature_addr);
177  writew(tf->nsect | (((u16)tf->hob_nsect) << 8),
178  ioaddr->nsect_addr);
179  writew(tf->lbal | (((u16)tf->hob_lbal) << 8),
180  ioaddr->lbal_addr);
181  writew(tf->lbam | (((u16)tf->hob_lbam) << 8),
182  ioaddr->lbam_addr);
183  writew(tf->lbah | (((u16)tf->hob_lbah) << 8),
184  ioaddr->lbah_addr);
185  } else if (is_addr) {
186  writew(tf->feature, ioaddr->feature_addr);
187  writew(tf->nsect, ioaddr->nsect_addr);
188  writew(tf->lbal, ioaddr->lbal_addr);
189  writew(tf->lbam, ioaddr->lbam_addr);
190  writew(tf->lbah, ioaddr->lbah_addr);
191  }
192 
193  if (tf->flags & ATA_TFLAG_DEVICE)
194  writeb(tf->device, ioaddr->device_addr);
195 
196  ata_wait_idle(ap);
197 }
198 
199 
200 static void vsc_sata_tf_read(struct ata_port *ap, struct ata_taskfile *tf)
201 {
202  struct ata_ioports *ioaddr = &ap->ioaddr;
204 
205  tf->command = ata_sff_check_status(ap);
206  tf->device = readw(ioaddr->device_addr);
207  feature = readw(ioaddr->error_addr);
208  nsect = readw(ioaddr->nsect_addr);
209  lbal = readw(ioaddr->lbal_addr);
210  lbam = readw(ioaddr->lbam_addr);
211  lbah = readw(ioaddr->lbah_addr);
212 
213  tf->feature = feature;
214  tf->nsect = nsect;
215  tf->lbal = lbal;
216  tf->lbam = lbam;
217  tf->lbah = lbah;
218 
219  if (tf->flags & ATA_TFLAG_LBA48) {
220  tf->hob_feature = feature >> 8;
221  tf->hob_nsect = nsect >> 8;
222  tf->hob_lbal = lbal >> 8;
223  tf->hob_lbam = lbam >> 8;
224  tf->hob_lbah = lbah >> 8;
225  }
226 }
227 
228 static inline void vsc_error_intr(u8 port_status, struct ata_port *ap)
229 {
230  if (port_status & (VSC_SATA_INT_PHY_CHANGE | VSC_SATA_INT_ERROR_M))
231  ata_port_freeze(ap);
232  else
233  ata_port_abort(ap);
234 }
235 
236 static void vsc_port_intr(u8 port_status, struct ata_port *ap)
237 {
238  struct ata_queued_cmd *qc;
239  int handled = 0;
240 
241  if (unlikely(port_status & VSC_SATA_INT_ERROR)) {
242  vsc_error_intr(port_status, ap);
243  return;
244  }
245 
246  qc = ata_qc_from_tag(ap, ap->link.active_tag);
247  if (qc && likely(!(qc->tf.flags & ATA_TFLAG_POLLING)))
248  handled = ata_bmdma_port_intr(ap, qc);
249 
250  /* We received an interrupt during a polled command,
251  * or some other spurious condition. Interrupt reporting
252  * with this hardware is fairly reliable so it is safe to
253  * simply clear the interrupt
254  */
255  if (unlikely(!handled))
256  ap->ops->sff_check_status(ap);
257 }
258 
259 /*
260  * vsc_sata_interrupt
261  *
262  * Read the interrupt register and process for the devices that have
263  * them pending.
264  */
265 static irqreturn_t vsc_sata_interrupt(int irq, void *dev_instance)
266 {
267  struct ata_host *host = dev_instance;
268  unsigned int i;
269  unsigned int handled = 0;
270  u32 status;
271 
273 
274  if (unlikely(status == 0xffffffff || status == 0)) {
275  if (status)
276  dev_err(host->dev,
277  ": IRQ status == 0xffffffff, PCI fault or device removal?\n");
278  goto out;
279  }
280 
281  spin_lock(&host->lock);
282 
283  for (i = 0; i < host->n_ports; i++) {
284  u8 port_status = (status >> (8 * i)) & 0xff;
285  if (port_status) {
286  vsc_port_intr(port_status, host->ports[i]);
287  handled++;
288  }
289  }
290 
291  spin_unlock(&host->lock);
292 out:
293  return IRQ_RETVAL(handled);
294 }
295 
296 
297 static struct scsi_host_template vsc_sata_sht = {
298  ATA_BMDMA_SHT(DRV_NAME),
299 };
300 
301 
302 static struct ata_port_operations vsc_sata_ops = {
303  .inherits = &ata_bmdma_port_ops,
304  /* The IRQ handling is not quite standard SFF behaviour so we
305  cannot use the default lost interrupt handler */
306  .lost_interrupt = ATA_OP_NULL,
307  .sff_tf_load = vsc_sata_tf_load,
308  .sff_tf_read = vsc_sata_tf_read,
309  .freeze = vsc_freeze,
310  .thaw = vsc_thaw,
311  .scr_read = vsc_sata_scr_read,
312  .scr_write = vsc_sata_scr_write,
313 };
314 
315 static void __devinit vsc_sata_setup_port(struct ata_ioports *port,
316  void __iomem *base)
317 {
318  port->cmd_addr = base + VSC_SATA_TF_CMD_OFFSET;
319  port->data_addr = base + VSC_SATA_TF_DATA_OFFSET;
320  port->error_addr = base + VSC_SATA_TF_ERROR_OFFSET;
321  port->feature_addr = base + VSC_SATA_TF_FEATURE_OFFSET;
322  port->nsect_addr = base + VSC_SATA_TF_NSECT_OFFSET;
323  port->lbal_addr = base + VSC_SATA_TF_LBAL_OFFSET;
324  port->lbam_addr = base + VSC_SATA_TF_LBAM_OFFSET;
325  port->lbah_addr = base + VSC_SATA_TF_LBAH_OFFSET;
326  port->device_addr = base + VSC_SATA_TF_DEVICE_OFFSET;
327  port->status_addr = base + VSC_SATA_TF_STATUS_OFFSET;
328  port->command_addr = base + VSC_SATA_TF_COMMAND_OFFSET;
329  port->altstatus_addr = base + VSC_SATA_TF_ALTSTATUS_OFFSET;
330  port->ctl_addr = base + VSC_SATA_TF_CTL_OFFSET;
331  port->bmdma_addr = base + VSC_SATA_DMA_CMD_OFFSET;
332  port->scr_addr = base + VSC_SATA_SCR_STATUS_OFFSET;
335 }
336 
337 
338 static int __devinit vsc_sata_init_one(struct pci_dev *pdev,
339  const struct pci_device_id *ent)
340 {
341  static const struct ata_port_info pi = {
342  .flags = ATA_FLAG_SATA,
343  .pio_mask = ATA_PIO4,
344  .mwdma_mask = ATA_MWDMA2,
345  .udma_mask = ATA_UDMA6,
346  .port_ops = &vsc_sata_ops,
347  };
348  const struct ata_port_info *ppi[] = { &pi, NULL };
349  struct ata_host *host;
350  void __iomem *mmio_base;
351  int i, rc;
352  u8 cls;
353 
355 
356  /* allocate host */
357  host = ata_host_alloc_pinfo(&pdev->dev, ppi, 4);
358  if (!host)
359  return -ENOMEM;
360 
361  rc = pcim_enable_device(pdev);
362  if (rc)
363  return rc;
364 
365  /* check if we have needed resource mapped */
366  if (pci_resource_len(pdev, 0) == 0)
367  return -ENODEV;
368 
369  /* map IO regions and initialize host accordingly */
370  rc = pcim_iomap_regions(pdev, 1 << VSC_MMIO_BAR, DRV_NAME);
371  if (rc == -EBUSY)
372  pcim_pin_device(pdev);
373  if (rc)
374  return rc;
375  host->iomap = pcim_iomap_table(pdev);
376 
377  mmio_base = host->iomap[VSC_MMIO_BAR];
378 
379  for (i = 0; i < host->n_ports; i++) {
380  struct ata_port *ap = host->ports[i];
381  unsigned int offset = (i + 1) * VSC_SATA_PORT_OFFSET;
382 
383  vsc_sata_setup_port(&ap->ioaddr, mmio_base + offset);
384 
385  ata_port_pbar_desc(ap, VSC_MMIO_BAR, -1, "mmio");
386  ata_port_pbar_desc(ap, VSC_MMIO_BAR, offset, "port");
387  }
388 
389  /*
390  * Use 32 bit DMA mask, because 64 bit address support is poor.
391  */
392  rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
393  if (rc)
394  return rc;
395  rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
396  if (rc)
397  return rc;
398 
399  /*
400  * Due to a bug in the chip, the default cache line size can't be
401  * used (unless the default is non-zero).
402  */
403  pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cls);
404  if (cls == 0x00)
405  pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x80);
406 
407  if (pci_enable_msi(pdev) == 0)
408  pci_intx(pdev, 0);
409 
410  /*
411  * Config offset 0x98 is "Extended Control and Status Register 0"
412  * Default value is (1 << 28). All bits except bit 28 are reserved in
413  * DPA mode. If bit 28 is set, LED 0 reflects all ports' activity.
414  * If bit 28 is clear, each port has its own LED.
415  */
416  pci_write_config_dword(pdev, 0x98, 0);
417 
418  pci_set_master(pdev);
419  return ata_host_activate(host, pdev->irq, vsc_sata_interrupt,
420  IRQF_SHARED, &vsc_sata_sht);
421 }
422 
423 static const struct pci_device_id vsc_sata_pci_tbl[] = {
424  { PCI_VENDOR_ID_VITESSE, 0x7174,
425  PCI_ANY_ID, PCI_ANY_ID, 0x10600, 0xFFFFFF, 0 },
426  { PCI_VENDOR_ID_INTEL, 0x3200,
427  PCI_ANY_ID, PCI_ANY_ID, 0x10600, 0xFFFFFF, 0 },
428 
429  { } /* terminate list */
430 };
431 
432 static struct pci_driver vsc_sata_pci_driver = {
433  .name = DRV_NAME,
434  .id_table = vsc_sata_pci_tbl,
435  .probe = vsc_sata_init_one,
436  .remove = ata_pci_remove_one,
437 };
438 
439 module_pci_driver(vsc_sata_pci_driver);
440 
441 MODULE_AUTHOR("Jeremy Higdon");
442 MODULE_DESCRIPTION("low-level driver for Vitesse VSC7174 SATA controller");
443 MODULE_LICENSE("GPL");
444 MODULE_DEVICE_TABLE(pci, vsc_sata_pci_tbl);