Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
phy.c
Go to the documentation of this file.
1 /*
2  * This file is provided under a dual BSD/GPLv2 license. When using or
3  * redistributing this file, you may do so under either license.
4  *
5  * GPL LICENSE SUMMARY
6  *
7  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21  * The full GNU General Public License is included in this distribution
22  * in the file called LICENSE.GPL.
23  *
24  * BSD LICENSE
25  *
26  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27  * All rights reserved.
28  *
29  * Redistribution and use in source and binary forms, with or without
30  * modification, are permitted provided that the following conditions
31  * are met:
32  *
33  * * Redistributions of source code must retain the above copyright
34  * notice, this list of conditions and the following disclaimer.
35  * * Redistributions in binary form must reproduce the above copyright
36  * notice, this list of conditions and the following disclaimer in
37  * the documentation and/or other materials provided with the
38  * distribution.
39  * * Neither the name of Intel Corporation nor the names of its
40  * contributors may be used to endorse or promote products derived
41  * from this software without specific prior written permission.
42  *
43  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54  */
55 
56 #include "isci.h"
57 #include "host.h"
58 #include "phy.h"
59 #include "scu_event_codes.h"
60 #include "probe_roms.h"
61 
62 #undef C
63 #define C(a) (#a)
64 static const char *phy_state_name(enum sci_phy_states state)
65 {
66  static const char * const strings[] = PHY_STATES;
67 
68  return strings[state];
69 }
70 #undef C
71 
72 /* Maximum arbitration wait time in micro-seconds */
73 #define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME (700)
74 
76 {
77  return iphy->max_negotiated_speed;
78 }
79 
80 static struct isci_host *phy_to_host(struct isci_phy *iphy)
81 {
82  struct isci_phy *table = iphy - iphy->phy_index;
83  struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]);
84 
85  return ihost;
86 }
87 
88 static struct device *sciphy_to_dev(struct isci_phy *iphy)
89 {
90  return &phy_to_host(iphy)->pdev->dev;
91 }
92 
93 static enum sci_status
94 sci_phy_transport_layer_initialization(struct isci_phy *iphy,
96 {
97  u32 tl_control;
98 
100 
102  &iphy->transport_layer_registers->stp_rni);
103 
104  /*
105  * Hardware team recommends that we enable the STP prefetch for all
106  * transports
107  */
108  tl_control = readl(&iphy->transport_layer_registers->control);
109  tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
110  writel(tl_control, &iphy->transport_layer_registers->control);
111 
112  return SCI_SUCCESS;
113 }
114 
115 static enum sci_status
116 sci_phy_link_layer_initialization(struct isci_phy *iphy,
117  struct scu_link_layer_registers __iomem *llr)
118 {
119  struct isci_host *ihost = iphy->owning_port->owning_controller;
120  struct sci_phy_user_params *phy_user;
121  struct sci_phy_oem_params *phy_oem;
122  int phy_idx = iphy->phy_index;
123  struct sci_phy_cap phy_cap;
124  u32 phy_configuration;
125  u32 parity_check = 0;
126  u32 parity_count = 0;
127  u32 llctl, link_rate;
128  u32 clksm_value = 0;
129  u32 sp_timeouts = 0;
130 
131  phy_user = &ihost->user_parameters.phys[phy_idx];
132  phy_oem = &ihost->oem_parameters.phys[phy_idx];
133  iphy->link_layer_registers = llr;
134 
135  /* Set our IDENTIFY frame data */
136  #define SCI_END_DEVICE 0x01
137 
138  writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
139  SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
140  SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
141  SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
142  SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
143  &llr->transmit_identification);
144 
145  /* Write the device SAS Address */
146  writel(0xFEDCBA98, &llr->sas_device_name_high);
147  writel(phy_idx, &llr->sas_device_name_low);
148 
149  /* Write the source SAS Address */
150  writel(phy_oem->sas_address.high, &llr->source_sas_address_high);
151  writel(phy_oem->sas_address.low, &llr->source_sas_address_low);
152 
153  /* Clear and Set the PHY Identifier */
154  writel(0, &llr->identify_frame_phy_id);
155  writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id);
156 
157  /* Change the initial state of the phy configuration register */
158  phy_configuration = readl(&llr->phy_configuration);
159 
160  /* Hold OOB state machine in reset */
161  phy_configuration |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
162  writel(phy_configuration, &llr->phy_configuration);
163 
164  /* Configure the SNW capabilities */
165  phy_cap.all = 0;
166  phy_cap.start = 1;
167  phy_cap.gen3_no_ssc = 1;
168  phy_cap.gen2_no_ssc = 1;
169  phy_cap.gen1_no_ssc = 1;
170  if (ihost->oem_parameters.controller.do_enable_ssc) {
171  struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
172  struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx];
173  struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
174  bool en_sas = false;
175  bool en_sata = false;
176  u32 sas_type = 0;
177  u32 sata_spread = 0x2;
178  u32 sas_spread = 0x2;
179 
180  phy_cap.gen3_ssc = 1;
181  phy_cap.gen2_ssc = 1;
182  phy_cap.gen1_ssc = 1;
183 
184  if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1)
185  en_sas = en_sata = true;
186  else {
187  sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level;
188  sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level;
189 
190  if (sata_spread)
191  en_sata = true;
192 
193  if (sas_spread) {
194  en_sas = true;
195  sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type;
196  }
197 
198  }
199 
200  if (en_sas) {
201  u32 reg;
202 
203  reg = readl(&xcvr->afe_xcvr_control0);
204  reg |= (0x00100000 | (sas_type << 19));
205  writel(reg, &xcvr->afe_xcvr_control0);
206 
207  reg = readl(&xcvr->afe_tx_ssc_control);
208  reg |= sas_spread << 8;
209  writel(reg, &xcvr->afe_tx_ssc_control);
210  }
211 
212  if (en_sata) {
213  u32 reg;
214 
215  reg = readl(&xcvr->afe_tx_ssc_control);
216  reg |= sata_spread;
217  writel(reg, &xcvr->afe_tx_ssc_control);
218 
219  reg = readl(&llr->stp_control);
220  reg |= 1 << 12;
221  writel(reg, &llr->stp_control);
222  }
223  }
224 
225  /* The SAS specification indicates that the phy_capabilities that
226  * are transmitted shall have an even parity. Calculate the parity.
227  */
228  parity_check = phy_cap.all;
229  while (parity_check != 0) {
230  if (parity_check & 0x1)
231  parity_count++;
232  parity_check >>= 1;
233  }
234 
235  /* If parity indicates there are an odd number of bits set, then
236  * set the parity bit to 1 in the phy capabilities.
237  */
238  if ((parity_count % 2) != 0)
239  phy_cap.parity = 1;
240 
241  writel(phy_cap.all, &llr->phy_capabilities);
242 
243  /* Set the enable spinup period but disable the ability to send
244  * notify enable spinup
245  */
247  phy_user->notify_enable_spin_up_insertion_frequency),
248  &llr->notify_enable_spinup_control);
249 
250  /* Write the ALIGN Insertion Ferequency for connected phy and
251  * inpendent of connected state
252  */
254  phy_user->in_connection_align_insertion_frequency);
255 
257  phy_user->align_insertion_frequency);
258 
259  writel(clksm_value, &llr->clock_skew_management);
260 
261  if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) {
262  writel(0x04210400, &llr->afe_lookup_table_control);
263  writel(0x020A7C05, &llr->sas_primitive_timeout);
264  } else
265  writel(0x02108421, &llr->afe_lookup_table_control);
266 
267  llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
268  (u8)ihost->user_parameters.no_outbound_task_timeout);
269 
270  switch (phy_user->max_speed_generation) {
271  case SCIC_SDS_PARM_GEN3_SPEED:
273  break;
274  case SCIC_SDS_PARM_GEN2_SPEED:
276  break;
277  default:
279  break;
280  }
281  llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
282  writel(llctl, &llr->link_layer_control);
283 
284  sp_timeouts = readl(&llr->sas_phy_timeouts);
285 
286  /* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
287  sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
288 
289  /* Set RATE_CHANGE timeout value to 0x3B (59us). This ensures SCU can
290  * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
291  */
292  sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
293 
294  writel(sp_timeouts, &llr->sas_phy_timeouts);
295 
296  if (is_a2(ihost->pdev)) {
297  /* Program the max ARB time for the PHY to 700us so we
298  * inter-operate with the PMC expander which shuts down
299  * PHYs if the expander PHY generates too many breaks.
300  * This time value will guarantee that the initiator PHY
301  * will generate the break.
302  */
304  &llr->maximum_arbitration_wait_timer_timeout);
305  }
306 
307  /* Disable link layer hang detection, rely on the OS timeout for
308  * I/O timeouts.
309  */
310  writel(0, &llr->link_layer_hang_detection_timeout);
311 
312  /* We can exit the initial state to the stopped state */
313  sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
314 
315  return SCI_SUCCESS;
316 }
317 
318 static void phy_sata_timeout(unsigned long data)
319 {
320  struct sci_timer *tmr = (struct sci_timer *)data;
321  struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
322  struct isci_host *ihost = iphy->owning_port->owning_controller;
323  unsigned long flags;
324 
325  spin_lock_irqsave(&ihost->scic_lock, flags);
326 
327  if (tmr->cancel)
328  goto done;
329 
330  dev_dbg(sciphy_to_dev(iphy),
331  "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
332  "timeout.\n",
333  __func__,
334  iphy);
335 
336  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
337 done:
338  spin_unlock_irqrestore(&ihost->scic_lock, flags);
339 }
340 
354 {
355  struct isci_port *iport = iphy->owning_port;
356 
358  return NULL;
359 
360  return iphy->owning_port;
361 }
362 
371  struct isci_phy *iphy,
372  struct isci_port *iport)
373 {
374  iphy->owning_port = iport;
375 
379  }
380 }
381 
385 {
386  /* Perfrom the initialization of the TL hardware */
387  sci_phy_transport_layer_initialization(iphy, tl);
388 
389  /* Perofrm the initialization of the PE hardware */
390  sci_phy_link_layer_initialization(iphy, ll);
391 
392  /* There is nothing that needs to be done in this state just
393  * transition to the stopped state
394  */
395  sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
396 
397  return SCI_SUCCESS;
398 }
399 
410 {
411  u32 tl_control;
412 
413  writel(device_id, &iphy->transport_layer_registers->stp_rni);
414 
415  /*
416  * The read should guarantee that the first write gets posted
417  * before the next write
418  */
419  tl_control = readl(&iphy->transport_layer_registers->control);
420  tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
421  writel(tl_control, &iphy->transport_layer_registers->control);
422 }
423 
424 static void sci_phy_suspend(struct isci_phy *iphy)
425 {
426  u32 scu_sas_pcfg_value;
427 
428  scu_sas_pcfg_value =
429  readl(&iphy->link_layer_registers->phy_configuration);
430  scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
431  writel(scu_sas_pcfg_value,
432  &iphy->link_layer_registers->phy_configuration);
433 
435 }
436 
437 void sci_phy_resume(struct isci_phy *iphy)
438 {
439  u32 scu_sas_pcfg_value;
440 
441  scu_sas_pcfg_value =
442  readl(&iphy->link_layer_registers->phy_configuration);
443  scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
444  writel(scu_sas_pcfg_value,
445  &iphy->link_layer_registers->phy_configuration);
446 }
447 
448 void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
449 {
450  sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
451  sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
452 }
453 
455 {
456  struct sas_identify_frame *iaf;
457 
458  iaf = &iphy->frame_rcvd.iaf;
459  memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
460 }
461 
463 {
464  proto->all = readl(&iphy->link_layer_registers->transmit_identification);
465 }
466 
468 {
469  enum sci_phy_states state = iphy->sm.current_state_id;
470 
471  if (state != SCI_PHY_STOPPED) {
472  dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
473  __func__, phy_state_name(state));
475  }
476 
477  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
478  return SCI_SUCCESS;
479 }
480 
481 enum sci_status sci_phy_stop(struct isci_phy *iphy)
482 {
483  enum sci_phy_states state = iphy->sm.current_state_id;
484 
485  switch (state) {
486  case SCI_PHY_SUB_INITIAL:
487  case SCI_PHY_SUB_AWAIT_OSSP_EN:
488  case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
489  case SCI_PHY_SUB_AWAIT_SAS_POWER:
490  case SCI_PHY_SUB_AWAIT_SATA_POWER:
491  case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
492  case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
493  case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
494  case SCI_PHY_SUB_FINAL:
495  case SCI_PHY_READY:
496  break;
497  default:
498  dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
499  __func__, phy_state_name(state));
501  }
502 
503  sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
504  return SCI_SUCCESS;
505 }
506 
508 {
509  enum sci_phy_states state = iphy->sm.current_state_id;
510 
511  if (state != SCI_PHY_READY) {
512  dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
513  __func__, phy_state_name(state));
515  }
516 
517  sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
518  return SCI_SUCCESS;
519 }
520 
522 {
523  enum sci_phy_states state = iphy->sm.current_state_id;
524 
525  switch (state) {
526  case SCI_PHY_SUB_AWAIT_SAS_POWER: {
527  u32 enable_spinup;
528 
529  enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
530  enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
531  writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
532 
533  /* Change state to the final state this substate machine has run to completion */
534  sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
535 
536  return SCI_SUCCESS;
537  }
538  case SCI_PHY_SUB_AWAIT_SATA_POWER: {
539  u32 scu_sas_pcfg_value;
540 
541  /* Release the spinup hold state and reset the OOB state machine */
542  scu_sas_pcfg_value =
543  readl(&iphy->link_layer_registers->phy_configuration);
544  scu_sas_pcfg_value &=
545  ~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
546  scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
547  writel(scu_sas_pcfg_value,
548  &iphy->link_layer_registers->phy_configuration);
549 
550  /* Now restart the OOB operation */
551  scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
552  scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
553  writel(scu_sas_pcfg_value,
554  &iphy->link_layer_registers->phy_configuration);
555 
556  /* Change state to the final state this substate machine has run to completion */
557  sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
558 
559  return SCI_SUCCESS;
560  }
561  default:
562  dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
563  __func__, phy_state_name(state));
565  }
566 }
567 
568 static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
569 {
570  /* continue the link training for the phy as if it were a SAS PHY
571  * instead of a SATA PHY. This is done because the completion queue had a SAS
572  * PHY DETECTED event when the state machine was expecting a SATA PHY event.
573  */
574  u32 phy_control;
575 
576  phy_control = readl(&iphy->link_layer_registers->phy_configuration);
577  phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
578  writel(phy_control,
579  &iphy->link_layer_registers->phy_configuration);
580 
581  sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
582 
583  iphy->protocol = SAS_PROTOCOL_SSP;
584 }
585 
586 static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
587 {
588  /* This method continues the link training for the phy as if it were a SATA PHY
589  * instead of a SAS PHY. This is done because the completion queue had a SATA
590  * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
591  */
592  sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
593 
594  iphy->protocol = SAS_PROTOCOL_SATA;
595 }
596 
608 static void sci_phy_complete_link_training(struct isci_phy *iphy,
609  enum sas_linkrate max_link_rate,
610  u32 next_state)
611 {
612  iphy->max_negotiated_speed = max_link_rate;
613 
614  sci_change_state(&iphy->sm, next_state);
615 }
616 
617 static const char *phy_event_name(u32 event_code)
618 {
619  switch (scu_get_event_code(event_code)) {
621  return "port selector";
623  return "port selection";
625  return "tx hard reset";
627  return "rx hard reset";
629  return "identify timeout";
631  return "link fail";
633  return "sata spinup hold";
635  case SCU_EVENT_SAS_15:
636  return "sas 1.5";
638  case SCU_EVENT_SAS_30:
639  return "sas 3.0";
641  case SCU_EVENT_SAS_60:
642  return "sas 6.0";
644  case SCU_EVENT_SATA_15:
645  return "sata 1.5";
647  case SCU_EVENT_SATA_30:
648  return "sata 3.0";
650  case SCU_EVENT_SATA_60:
651  return "sata 6.0";
653  return "sas detect";
655  return "sata detect";
656  default:
657  return "unknown";
658  }
659 }
660 
661 #define phy_event_dbg(iphy, state, code) \
662  dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
663  phy_to_host(iphy)->id, iphy->phy_index, \
664  phy_state_name(state), phy_event_name(code), code)
665 
666 #define phy_event_warn(iphy, state, code) \
667  dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
668  phy_to_host(iphy)->id, iphy->phy_index, \
669  phy_state_name(state), phy_event_name(code), code)
670 
671 
673 {
674  u32 val;
675 
676  /* Extend timeout */
677  val = readl(&iphy->link_layer_registers->transmit_comsas_signal);
679  val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout);
680 
681  writel(val, &iphy->link_layer_registers->transmit_comsas_signal);
682 }
683 
684 enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
685 {
686  enum sci_phy_states state = iphy->sm.current_state_id;
687 
688  switch (state) {
689  case SCI_PHY_SUB_AWAIT_OSSP_EN:
690  switch (scu_get_event_code(event_code)) {
692  sci_phy_start_sas_link_training(iphy);
693  iphy->is_in_link_training = true;
694  break;
696  sci_phy_start_sata_link_training(iphy);
697  iphy->is_in_link_training = true;
698  break;
700  /* Extend timeout value */
702 
703  /* Start the oob/sn state machine over again */
704  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
705  break;
706  default:
707  phy_event_dbg(iphy, state, event_code);
708  return SCI_FAILURE;
709  }
710  return SCI_SUCCESS;
711  case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
712  switch (scu_get_event_code(event_code)) {
714  /*
715  * Why is this being reported again by the controller?
716  * We would re-enter this state so just stay here */
717  break;
718  case SCU_EVENT_SAS_15:
720  sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
721  SCI_PHY_SUB_AWAIT_IAF_UF);
722  break;
723  case SCU_EVENT_SAS_30:
725  sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
726  SCI_PHY_SUB_AWAIT_IAF_UF);
727  break;
728  case SCU_EVENT_SAS_60:
730  sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
731  SCI_PHY_SUB_AWAIT_IAF_UF);
732  break;
734  /*
735  * We were doing SAS PHY link training and received a SATA PHY event
736  * continue OOB/SN as if this were a SATA PHY */
737  sci_phy_start_sata_link_training(iphy);
738  break;
740  /* Change the timeout value to default */
742 
743  /* Link failure change state back to the starting state */
744  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
745  break;
747  /* Extend the timeout value */
749 
750  /* Start the oob/sn state machine over again */
751  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
752  break;
753  default:
754  phy_event_warn(iphy, state, event_code);
755  return SCI_FAILURE;
756  break;
757  }
758  return SCI_SUCCESS;
759  case SCI_PHY_SUB_AWAIT_IAF_UF:
760  switch (scu_get_event_code(event_code)) {
762  /* Backup the state machine */
763  sci_phy_start_sas_link_training(iphy);
764  break;
766  /* We were doing SAS PHY link training and received a
767  * SATA PHY event continue OOB/SN as if this were a
768  * SATA PHY
769  */
770  sci_phy_start_sata_link_training(iphy);
771  break;
773  /* Extend the timeout value */
775 
776  /* Start the oob/sn state machine over again */
777  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
778  break;
782  /* Start the oob/sn state machine over again */
783  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
784  break;
785  default:
786  phy_event_warn(iphy, state, event_code);
787  return SCI_FAILURE;
788  }
789  return SCI_SUCCESS;
790  case SCI_PHY_SUB_AWAIT_SAS_POWER:
791  switch (scu_get_event_code(event_code)) {
793  /* Change the timeout value to default */
795 
796  /* Link failure change state back to the starting state */
797  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
798  break;
799  default:
800  phy_event_warn(iphy, state, event_code);
801  return SCI_FAILURE;
802  }
803  return SCI_SUCCESS;
804  case SCI_PHY_SUB_AWAIT_SATA_POWER:
805  switch (scu_get_event_code(event_code)) {
807  /* Change the timeout value to default */
809 
810  /* Link failure change state back to the starting state */
811  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
812  break;
814  /* These events are received every 10ms and are
815  * expected while in this state
816  */
817  break;
818 
820  /* There has been a change in the phy type before OOB/SN for the
821  * SATA finished start down the SAS link traning path.
822  */
823  sci_phy_start_sas_link_training(iphy);
824  break;
825 
826  default:
827  phy_event_warn(iphy, state, event_code);
828  return SCI_FAILURE;
829  }
830  return SCI_SUCCESS;
831  case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
832  switch (scu_get_event_code(event_code)) {
834  /* Change the timeout value to default */
836 
837  /* Link failure change state back to the starting state */
838  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
839  break;
841  /* These events might be received since we dont know how many may be in
842  * the completion queue while waiting for power
843  */
844  break;
846  iphy->protocol = SAS_PROTOCOL_SATA;
847 
848  /* We have received the SATA PHY notification change state */
849  sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
850  break;
852  /* There has been a change in the phy type before OOB/SN for the
853  * SATA finished start down the SAS link traning path.
854  */
855  sci_phy_start_sas_link_training(iphy);
856  break;
857  default:
858  phy_event_warn(iphy, state, event_code);
859  return SCI_FAILURE;
860  }
861  return SCI_SUCCESS;
862  case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
863  switch (scu_get_event_code(event_code)) {
865  /*
866  * The hardware reports multiple SATA PHY detected events
867  * ignore the extras */
868  break;
869  case SCU_EVENT_SATA_15:
871  sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
872  SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
873  break;
874  case SCU_EVENT_SATA_30:
876  sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
877  SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
878  break;
879  case SCU_EVENT_SATA_60:
881  sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
882  SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
883  break;
885  /* Change the timeout value to default */
887 
888  /* Link failure change state back to the starting state */
889  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
890  break;
892  /*
893  * There has been a change in the phy type before OOB/SN for the
894  * SATA finished start down the SAS link traning path. */
895  sci_phy_start_sas_link_training(iphy);
896  break;
897  default:
898  phy_event_warn(iphy, state, event_code);
899  return SCI_FAILURE;
900  }
901 
902  return SCI_SUCCESS;
903  case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
904  switch (scu_get_event_code(event_code)) {
906  /* Backup the state machine */
907  sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
908  break;
909 
911  /* Change the timeout value to default */
913 
914  /* Link failure change state back to the starting state */
915  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
916  break;
917 
918  default:
919  phy_event_warn(iphy, state, event_code);
920  return SCI_FAILURE;
921  }
922  return SCI_SUCCESS;
923  case SCI_PHY_READY:
924  switch (scu_get_event_code(event_code)) {
926  /* Set default timeout */
928 
929  /* Link failure change state back to the starting state */
930  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
931  break;
938  /* Broadcast change received. Notify the port. */
939  if (phy_get_non_dummy_port(iphy) != NULL)
941  else
943  break;
946  default:
947  phy_event_warn(iphy, state, event_code);
949  }
950  return SCI_SUCCESS;
951  case SCI_PHY_RESETTING:
952  switch (scu_get_event_code(event_code)) {
954  /* Link failure change state back to the starting state */
955  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
956  break;
957  default:
958  phy_event_warn(iphy, state, event_code);
960  break;
961  }
962  return SCI_SUCCESS;
963  default:
964  dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
965  __func__, phy_state_name(state));
967  }
968 }
969 
971 {
972  enum sci_phy_states state = iphy->sm.current_state_id;
973  struct isci_host *ihost = iphy->owning_port->owning_controller;
974  enum sci_status result;
975  unsigned long flags;
976 
977  switch (state) {
978  case SCI_PHY_SUB_AWAIT_IAF_UF: {
979  u32 *frame_words;
980  struct sas_identify_frame iaf;
981 
983  frame_index,
984  (void **)&frame_words);
985 
986  if (result != SCI_SUCCESS)
987  return result;
988 
989  sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
990  if (iaf.frame_type == 0) {
991  u32 state;
992 
993  spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
994  memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
995  spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
996  if (iaf.smp_tport) {
997  /* We got the IAF for an expander PHY go to the final
998  * state since there are no power requirements for
999  * expander phys.
1000  */
1001  state = SCI_PHY_SUB_FINAL;
1002  } else {
1003  /* We got the IAF we can now go to the await spinup
1004  * semaphore state
1005  */
1006  state = SCI_PHY_SUB_AWAIT_SAS_POWER;
1007  }
1008  sci_change_state(&iphy->sm, state);
1009  result = SCI_SUCCESS;
1010  } else
1011  dev_warn(sciphy_to_dev(iphy),
1012  "%s: PHY starting substate machine received "
1013  "unexpected frame id %x\n",
1014  __func__, frame_index);
1015 
1016  sci_controller_release_frame(ihost, frame_index);
1017  return result;
1018  }
1019  case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
1020  struct dev_to_host_fis *frame_header;
1021  u32 *fis_frame_data;
1022 
1024  frame_index,
1025  (void **)&frame_header);
1026 
1027  if (result != SCI_SUCCESS)
1028  return result;
1029 
1030  if ((frame_header->fis_type == FIS_REGD2H) &&
1031  !(frame_header->status & ATA_BUSY)) {
1033  frame_index,
1034  (void **)&fis_frame_data);
1035 
1036  spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
1038  frame_header,
1039  fis_frame_data);
1040  spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
1041 
1042  /* got IAF we can now go to the await spinup semaphore state */
1043  sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
1044 
1045  result = SCI_SUCCESS;
1046  } else
1047  dev_warn(sciphy_to_dev(iphy),
1048  "%s: PHY starting substate machine received "
1049  "unexpected frame id %x\n",
1050  __func__, frame_index);
1051 
1052  /* Regardless of the result we are done with this frame with it */
1053  sci_controller_release_frame(ihost, frame_index);
1054 
1055  return result;
1056  }
1057  default:
1058  dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
1059  __func__, phy_state_name(state));
1061  }
1062 
1063 }
1064 
1065 static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
1066 {
1067  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1068 
1069  /* This is just an temporary state go off to the starting state */
1070  sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
1071 }
1072 
1073 static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
1074 {
1075  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1076  struct isci_host *ihost = iphy->owning_port->owning_controller;
1077 
1079 }
1080 
1081 static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
1082 {
1083  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1084  struct isci_host *ihost = iphy->owning_port->owning_controller;
1085 
1087 }
1088 
1089 static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
1090 {
1091  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1092  struct isci_host *ihost = iphy->owning_port->owning_controller;
1093 
1095 }
1096 
1097 static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
1098 {
1099  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1100  struct isci_host *ihost = iphy->owning_port->owning_controller;
1101 
1103 }
1104 
1105 static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
1106 {
1107  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1108 
1109  sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1110 }
1111 
1112 static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
1113 {
1114  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1115 
1116  sci_del_timer(&iphy->sata_timer);
1117 }
1118 
1119 static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
1120 {
1121  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1122 
1123  sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1124 }
1125 
1126 static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
1127 {
1128  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1129 
1130  sci_del_timer(&iphy->sata_timer);
1131 }
1132 
1133 static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
1134 {
1135  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1136 
1137  if (sci_port_link_detected(iphy->owning_port, iphy)) {
1138 
1139  /*
1140  * Clear the PE suspend condition so we can actually
1141  * receive SIG FIS
1142  * The hardware will not respond to the XRDY until the PE
1143  * suspend condition is cleared.
1144  */
1145  sci_phy_resume(iphy);
1146 
1147  sci_mod_timer(&iphy->sata_timer,
1149  } else
1150  iphy->is_in_link_training = false;
1151 }
1152 
1153 static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1154 {
1155  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1156 
1157  sci_del_timer(&iphy->sata_timer);
1158 }
1159 
1160 static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1161 {
1162  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1163 
1164  /* State machine has run to completion so exit out and change
1165  * the base state machine to the ready state
1166  */
1167  sci_change_state(&iphy->sm, SCI_PHY_READY);
1168 }
1169 
1178 static void scu_link_layer_stop_protocol_engine(
1179  struct isci_phy *iphy)
1180 {
1181  u32 scu_sas_pcfg_value;
1182  u32 enable_spinup_value;
1183 
1184  /* Suspend the protocol engine and place it in a sata spinup hold state */
1185  scu_sas_pcfg_value =
1186  readl(&iphy->link_layer_registers->phy_configuration);
1187  scu_sas_pcfg_value |=
1188  (SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1189  SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1190  SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1191  writel(scu_sas_pcfg_value,
1192  &iphy->link_layer_registers->phy_configuration);
1193 
1194  /* Disable the notify enable spinup primitives */
1195  enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1196  enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1197  writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1198 }
1199 
1200 static void scu_link_layer_start_oob(struct isci_phy *iphy)
1201 {
1203  u32 val;
1204 
1206  val = readl(&ll->phy_configuration);
1207  val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1208  SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) |
1210  writel(val, &ll->phy_configuration);
1211  readl(&ll->phy_configuration); /* flush */
1215  val = readl(&ll->phy_configuration);
1216  val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1217  writel(val, &ll->phy_configuration);
1218  readl(&ll->phy_configuration); /* flush */
1220 }
1221 
1230 static void scu_link_layer_tx_hard_reset(
1231  struct isci_phy *iphy)
1232 {
1233  u32 phy_configuration_value;
1234 
1235  /*
1236  * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1237  * to the starting state. */
1238  phy_configuration_value =
1239  readl(&iphy->link_layer_registers->phy_configuration);
1240  phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
1241  phy_configuration_value |=
1243  SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1244  writel(phy_configuration_value,
1245  &iphy->link_layer_registers->phy_configuration);
1246 
1247  /* Now take the OOB state machine out of reset */
1248  phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1249  phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1250  writel(phy_configuration_value,
1251  &iphy->link_layer_registers->phy_configuration);
1252 }
1253 
1254 static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1255 {
1256  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1257  struct isci_port *iport = iphy->owning_port;
1258  struct isci_host *ihost = iport->owning_controller;
1259 
1260  /*
1261  * @todo We need to get to the controller to place this PE in a
1262  * reset state
1263  */
1264  sci_del_timer(&iphy->sata_timer);
1265 
1266  scu_link_layer_stop_protocol_engine(iphy);
1267 
1268  if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1270 }
1271 
1272 static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1273 {
1274  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1275  struct isci_port *iport = iphy->owning_port;
1276  struct isci_host *ihost = iport->owning_controller;
1277 
1278  scu_link_layer_stop_protocol_engine(iphy);
1279  scu_link_layer_start_oob(iphy);
1280 
1281  /* We don't know what kind of phy we are going to be just yet */
1282  iphy->protocol = SAS_PROTOCOL_NONE;
1283  iphy->bcn_received_while_port_unassigned = false;
1284 
1285  if (iphy->sm.previous_state_id == SCI_PHY_READY)
1287 
1288  sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1289 }
1290 
1291 static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1292 {
1293  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1294  struct isci_port *iport = iphy->owning_port;
1295  struct isci_host *ihost = iport->owning_controller;
1296 
1297  sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1298 }
1299 
1300 static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1301 {
1302  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1303 
1304  sci_phy_suspend(iphy);
1305 }
1306 
1307 static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1308 {
1309  struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1310 
1311  /* The phy is being reset, therefore deactivate it from the port. In
1312  * the resetting state we don't notify the user regarding link up and
1313  * link down notifications
1314  */
1315  sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1316 
1317  if (iphy->protocol == SAS_PROTOCOL_SSP) {
1318  scu_link_layer_tx_hard_reset(iphy);
1319  } else {
1320  /* The SCU does not need to have a discrete reset state so
1321  * just go back to the starting state.
1322  */
1323  sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1324  }
1325 }
1326 
1327 static const struct sci_base_state sci_phy_state_table[] = {
1328  [SCI_PHY_INITIAL] = { },
1329  [SCI_PHY_STOPPED] = {
1330  .enter_state = sci_phy_stopped_state_enter,
1331  },
1332  [SCI_PHY_STARTING] = {
1333  .enter_state = sci_phy_starting_state_enter,
1334  },
1335  [SCI_PHY_SUB_INITIAL] = {
1336  .enter_state = sci_phy_starting_initial_substate_enter,
1337  },
1338  [SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1339  [SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1340  [SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1341  [SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1342  .enter_state = sci_phy_starting_await_sas_power_substate_enter,
1343  .exit_state = sci_phy_starting_await_sas_power_substate_exit,
1344  },
1345  [SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1346  .enter_state = sci_phy_starting_await_sata_power_substate_enter,
1347  .exit_state = sci_phy_starting_await_sata_power_substate_exit
1348  },
1349  [SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1350  .enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1351  .exit_state = sci_phy_starting_await_sata_phy_substate_exit
1352  },
1353  [SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1354  .enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1355  .exit_state = sci_phy_starting_await_sata_speed_substate_exit
1356  },
1357  [SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1358  .enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1359  .exit_state = sci_phy_starting_await_sig_fis_uf_substate_exit
1360  },
1361  [SCI_PHY_SUB_FINAL] = {
1362  .enter_state = sci_phy_starting_final_substate_enter,
1363  },
1364  [SCI_PHY_READY] = {
1365  .enter_state = sci_phy_ready_state_enter,
1366  .exit_state = sci_phy_ready_state_exit,
1367  },
1368  [SCI_PHY_RESETTING] = {
1369  .enter_state = sci_phy_resetting_state_enter,
1370  },
1371  [SCI_PHY_FINAL] = { },
1372 };
1373 
1374 void sci_phy_construct(struct isci_phy *iphy,
1375  struct isci_port *iport, u8 phy_index)
1376 {
1377  sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1378 
1379  /* Copy the rest of the input data to our locals */
1380  iphy->owning_port = iport;
1381  iphy->phy_index = phy_index;
1382  iphy->bcn_received_while_port_unassigned = false;
1383  iphy->protocol = SAS_PROTOCOL_NONE;
1384  iphy->link_layer_registers = NULL;
1386 
1387  /* Create the SIGNATURE FIS Timeout timer for this phy */
1388  sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1389 }
1390 
1391 void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1392 {
1393  struct sci_oem_params *oem = &ihost->oem_parameters;
1394  u64 sci_sas_addr;
1395  __be64 sas_addr;
1396 
1397  sci_sas_addr = oem->phys[index].sas_address.high;
1398  sci_sas_addr <<= 32;
1399  sci_sas_addr |= oem->phys[index].sas_address.low;
1400  sas_addr = cpu_to_be64(sci_sas_addr);
1401  memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1402 
1403  iphy->sas_phy.enabled = 0;
1404  iphy->sas_phy.id = index;
1405  iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1406  iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1407  iphy->sas_phy.ha = &ihost->sas_ha;
1408  iphy->sas_phy.lldd_phy = iphy;
1409  iphy->sas_phy.enabled = 1;
1410  iphy->sas_phy.class = SAS;
1411  iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1412  iphy->sas_phy.tproto = 0;
1413  iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1414  iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1415  iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1416  iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1417  memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1418 }
1419 
1420 
1431  enum phy_func func,
1432  void *buf)
1433 {
1434  int ret = 0;
1435  struct isci_phy *iphy = sas_phy->lldd_phy;
1436  struct asd_sas_port *port = sas_phy->port;
1437  struct isci_host *ihost = sas_phy->ha->lldd_ha;
1438  unsigned long flags;
1439 
1440  dev_dbg(&ihost->pdev->dev,
1441  "%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1442  __func__, sas_phy, func, buf, iphy, port);
1443 
1444  switch (func) {
1445  case PHY_FUNC_DISABLE:
1446  spin_lock_irqsave(&ihost->scic_lock, flags);
1447  scu_link_layer_start_oob(iphy);
1448  sci_phy_stop(iphy);
1449  spin_unlock_irqrestore(&ihost->scic_lock, flags);
1450  break;
1451 
1452  case PHY_FUNC_LINK_RESET:
1453  spin_lock_irqsave(&ihost->scic_lock, flags);
1454  scu_link_layer_start_oob(iphy);
1455  sci_phy_stop(iphy);
1456  sci_phy_start(iphy);
1457  spin_unlock_irqrestore(&ihost->scic_lock, flags);
1458  break;
1459 
1460  case PHY_FUNC_HARD_RESET:
1461  if (!port)
1462  return -ENODEV;
1463 
1464  ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy);
1465 
1466  break;
1467  case PHY_FUNC_GET_EVENTS: {
1468  struct scu_link_layer_registers __iomem *r;
1469  struct sas_phy *phy = sas_phy->phy;
1470 
1471  r = iphy->link_layer_registers;
1476  break;
1477  }
1478 
1479  default:
1480  dev_dbg(&ihost->pdev->dev,
1481  "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1482  __func__, sas_phy, func);
1483  ret = -ENOSYS;
1484  break;
1485  }
1486  return ret;
1487 }