Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
security.c
Go to the documentation of this file.
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <[email protected]>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <[email protected]>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <[email protected]>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/integrity.h>
20 #include <linux/ima.h>
21 #include <linux/evm.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <net/flow.h>
28 
29 #define MAX_LSM_EVM_XATTR 2
30 
31 /* Boot-time LSM user choice */
32 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
33  CONFIG_DEFAULT_SECURITY;
34 
35 static struct security_operations *security_ops;
36 static struct security_operations default_security_ops = {
37  .name = "default",
38 };
39 
40 static inline int __init verify(struct security_operations *ops)
41 {
42  /* verify the security_operations structure exists */
43  if (!ops)
44  return -EINVAL;
45  security_fixup_ops(ops);
46  return 0;
47 }
48 
49 static void __init do_security_initcalls(void)
50 {
51  initcall_t *call;
53  while (call < __security_initcall_end) {
54  (*call) ();
55  call++;
56  }
57 }
58 
65 {
66  printk(KERN_INFO "Security Framework initialized\n");
67 
68  security_fixup_ops(&default_security_ops);
69  security_ops = &default_security_ops;
70  do_security_initcalls();
71 
72  return 0;
73 }
74 
76 {
77  security_ops = &default_security_ops;
78 }
79 
80 /* Save user chosen LSM */
81 static int __init choose_lsm(char *str)
82 {
83  strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
84  return 1;
85 }
86 __setup("security=", choose_lsm);
87 
102 int __init security_module_enable(struct security_operations *ops)
103 {
104  return !strcmp(ops->name, chosen_lsm);
105 }
106 
119 int __init register_security(struct security_operations *ops)
120 {
121  if (verify(ops)) {
122  printk(KERN_DEBUG "%s could not verify "
123  "security_operations structure.\n", __func__);
124  return -EINVAL;
125  }
126 
127  if (security_ops != &default_security_ops)
128  return -EAGAIN;
129 
130  security_ops = ops;
131 
132  return 0;
133 }
134 
135 /* Security operations */
136 
138 {
139 #ifdef CONFIG_SECURITY_YAMA_STACKED
140  int rc;
141  rc = yama_ptrace_access_check(child, mode);
142  if (rc)
143  return rc;
144 #endif
145  return security_ops->ptrace_access_check(child, mode);
146 }
147 
149 {
150 #ifdef CONFIG_SECURITY_YAMA_STACKED
151  int rc;
152  rc = yama_ptrace_traceme(parent);
153  if (rc)
154  return rc;
155 #endif
156  return security_ops->ptrace_traceme(parent);
157 }
158 
160  kernel_cap_t *effective,
161  kernel_cap_t *inheritable,
162  kernel_cap_t *permitted)
163 {
164  return security_ops->capget(target, effective, inheritable, permitted);
165 }
166 
167 int security_capset(struct cred *new, const struct cred *old,
168  const kernel_cap_t *effective,
169  const kernel_cap_t *inheritable,
170  const kernel_cap_t *permitted)
171 {
172  return security_ops->capset(new, old,
173  effective, inheritable, permitted);
174 }
175 
176 int security_capable(const struct cred *cred, struct user_namespace *ns,
177  int cap)
178 {
179  return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
180 }
181 
183  int cap)
184 {
185  return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
186 }
187 
188 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
189 {
190  return security_ops->quotactl(cmds, type, id, sb);
191 }
192 
194 {
195  return security_ops->quota_on(dentry);
196 }
197 
199 {
200  return security_ops->syslog(type);
201 }
202 
203 int security_settime(const struct timespec *ts, const struct timezone *tz)
204 {
205  return security_ops->settime(ts, tz);
206 }
207 
209 {
210  return security_ops->vm_enough_memory(mm, pages);
211 }
212 
214 {
215  return security_ops->bprm_set_creds(bprm);
216 }
217 
219 {
220  int ret;
221 
222  ret = security_ops->bprm_check_security(bprm);
223  if (ret)
224  return ret;
225  return ima_bprm_check(bprm);
226 }
227 
229 {
230  security_ops->bprm_committing_creds(bprm);
231 }
232 
234 {
235  security_ops->bprm_committed_creds(bprm);
236 }
237 
239 {
240  return security_ops->bprm_secureexec(bprm);
241 }
242 
244 {
245  return security_ops->sb_alloc_security(sb);
246 }
247 
249 {
250  security_ops->sb_free_security(sb);
251 }
252 
253 int security_sb_copy_data(char *orig, char *copy)
254 {
255  return security_ops->sb_copy_data(orig, copy);
256 }
258 
260 {
261  return security_ops->sb_remount(sb, data);
262 }
263 
265 {
266  return security_ops->sb_kern_mount(sb, flags, data);
267 }
268 
270 {
271  return security_ops->sb_show_options(m, sb);
272 }
273 
275 {
276  return security_ops->sb_statfs(dentry);
277 }
278 
279 int security_sb_mount(const char *dev_name, struct path *path,
280  const char *type, unsigned long flags, void *data)
281 {
282  return security_ops->sb_mount(dev_name, path, type, flags, data);
283 }
284 
285 int security_sb_umount(struct vfsmount *mnt, int flags)
286 {
287  return security_ops->sb_umount(mnt, flags);
288 }
289 
290 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
291 {
292  return security_ops->sb_pivotroot(old_path, new_path);
293 }
294 
296  struct security_mnt_opts *opts)
297 {
298  return security_ops->sb_set_mnt_opts(sb, opts);
299 }
301 
302 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
303  struct super_block *newsb)
304 {
305  security_ops->sb_clone_mnt_opts(oldsb, newsb);
306 }
308 
310 {
311  return security_ops->sb_parse_opts_str(options, opts);
312 }
314 
316 {
317  inode->i_security = NULL;
318  return security_ops->inode_alloc_security(inode);
319 }
320 
322 {
323  integrity_inode_free(inode);
324  security_ops->inode_free_security(inode);
325 }
326 
327 int security_inode_init_security(struct inode *inode, struct inode *dir,
328  const struct qstr *qstr,
329  const initxattrs initxattrs, void *fs_data)
330 {
331  struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
332  struct xattr *lsm_xattr, *evm_xattr, *xattr;
333  int ret;
334 
335  if (unlikely(IS_PRIVATE(inode)))
336  return 0;
337 
338  memset(new_xattrs, 0, sizeof new_xattrs);
339  if (!initxattrs)
340  return security_ops->inode_init_security(inode, dir, qstr,
341  NULL, NULL, NULL);
342  lsm_xattr = new_xattrs;
343  ret = security_ops->inode_init_security(inode, dir, qstr,
344  &lsm_xattr->name,
345  &lsm_xattr->value,
346  &lsm_xattr->value_len);
347  if (ret)
348  goto out;
349 
350  evm_xattr = lsm_xattr + 1;
351  ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
352  if (ret)
353  goto out;
354  ret = initxattrs(inode, new_xattrs, fs_data);
355 out:
356  for (xattr = new_xattrs; xattr->name != NULL; xattr++) {
357  kfree(xattr->name);
358  kfree(xattr->value);
359  }
360  return (ret == -EOPNOTSUPP) ? 0 : ret;
361 }
363 
364 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
365  const struct qstr *qstr, char **name,
366  void **value, size_t *len)
367 {
368  if (unlikely(IS_PRIVATE(inode)))
369  return -EOPNOTSUPP;
370  return security_ops->inode_init_security(inode, dir, qstr, name, value,
371  len);
372 }
374 
375 #ifdef CONFIG_SECURITY_PATH
376 int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
377  unsigned int dev)
378 {
379  if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
380  return 0;
381  return security_ops->path_mknod(dir, dentry, mode, dev);
382 }
383 EXPORT_SYMBOL(security_path_mknod);
384 
385 int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
386 {
387  if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
388  return 0;
389  return security_ops->path_mkdir(dir, dentry, mode);
390 }
391 EXPORT_SYMBOL(security_path_mkdir);
392 
393 int security_path_rmdir(struct path *dir, struct dentry *dentry)
394 {
395  if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
396  return 0;
397  return security_ops->path_rmdir(dir, dentry);
398 }
399 
400 int security_path_unlink(struct path *dir, struct dentry *dentry)
401 {
402  if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
403  return 0;
404  return security_ops->path_unlink(dir, dentry);
405 }
406 EXPORT_SYMBOL(security_path_unlink);
407 
408 int security_path_symlink(struct path *dir, struct dentry *dentry,
409  const char *old_name)
410 {
411  if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
412  return 0;
413  return security_ops->path_symlink(dir, dentry, old_name);
414 }
415 
416 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
417  struct dentry *new_dentry)
418 {
419  if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
420  return 0;
421  return security_ops->path_link(old_dentry, new_dir, new_dentry);
422 }
423 
424 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
425  struct path *new_dir, struct dentry *new_dentry)
426 {
427  if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
428  (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
429  return 0;
430  return security_ops->path_rename(old_dir, old_dentry, new_dir,
431  new_dentry);
432 }
433 EXPORT_SYMBOL(security_path_rename);
434 
435 int security_path_truncate(struct path *path)
436 {
437  if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
438  return 0;
439  return security_ops->path_truncate(path);
440 }
441 
442 int security_path_chmod(struct path *path, umode_t mode)
443 {
444  if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
445  return 0;
446  return security_ops->path_chmod(path, mode);
447 }
448 
449 int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
450 {
451  if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
452  return 0;
453  return security_ops->path_chown(path, uid, gid);
454 }
455 
456 int security_path_chroot(struct path *path)
457 {
458  return security_ops->path_chroot(path);
459 }
460 #endif
461 
462 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
463 {
464  if (unlikely(IS_PRIVATE(dir)))
465  return 0;
466  return security_ops->inode_create(dir, dentry, mode);
467 }
469 
470 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
471  struct dentry *new_dentry)
472 {
473  if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
474  return 0;
475  return security_ops->inode_link(old_dentry, dir, new_dentry);
476 }
477 
478 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
479 {
480  if (unlikely(IS_PRIVATE(dentry->d_inode)))
481  return 0;
482  return security_ops->inode_unlink(dir, dentry);
483 }
484 
485 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
486  const char *old_name)
487 {
488  if (unlikely(IS_PRIVATE(dir)))
489  return 0;
490  return security_ops->inode_symlink(dir, dentry, old_name);
491 }
492 
493 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
494 {
495  if (unlikely(IS_PRIVATE(dir)))
496  return 0;
497  return security_ops->inode_mkdir(dir, dentry, mode);
498 }
500 
501 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
502 {
503  if (unlikely(IS_PRIVATE(dentry->d_inode)))
504  return 0;
505  return security_ops->inode_rmdir(dir, dentry);
506 }
507 
508 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
509 {
510  if (unlikely(IS_PRIVATE(dir)))
511  return 0;
512  return security_ops->inode_mknod(dir, dentry, mode, dev);
513 }
514 
515 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
516  struct inode *new_dir, struct dentry *new_dentry)
517 {
518  if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
519  (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
520  return 0;
521  return security_ops->inode_rename(old_dir, old_dentry,
522  new_dir, new_dentry);
523 }
524 
525 int security_inode_readlink(struct dentry *dentry)
526 {
527  if (unlikely(IS_PRIVATE(dentry->d_inode)))
528  return 0;
529  return security_ops->inode_readlink(dentry);
530 }
531 
532 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
533 {
534  if (unlikely(IS_PRIVATE(dentry->d_inode)))
535  return 0;
536  return security_ops->inode_follow_link(dentry, nd);
537 }
538 
540 {
541  if (unlikely(IS_PRIVATE(inode)))
542  return 0;
543  return security_ops->inode_permission(inode, mask);
544 }
545 
546 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
547 {
548  int ret;
549 
550  if (unlikely(IS_PRIVATE(dentry->d_inode)))
551  return 0;
552  ret = security_ops->inode_setattr(dentry, attr);
553  if (ret)
554  return ret;
555  return evm_inode_setattr(dentry, attr);
556 }
558 
559 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
560 {
561  if (unlikely(IS_PRIVATE(dentry->d_inode)))
562  return 0;
563  return security_ops->inode_getattr(mnt, dentry);
564 }
565 
566 int security_inode_setxattr(struct dentry *dentry, const char *name,
567  const void *value, size_t size, int flags)
568 {
569  int ret;
570 
571  if (unlikely(IS_PRIVATE(dentry->d_inode)))
572  return 0;
573  ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
574  if (ret)
575  return ret;
576  ret = ima_inode_setxattr(dentry, name, value, size);
577  if (ret)
578  return ret;
579  return evm_inode_setxattr(dentry, name, value, size);
580 }
581 
582 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
583  const void *value, size_t size, int flags)
584 {
585  if (unlikely(IS_PRIVATE(dentry->d_inode)))
586  return;
587  security_ops->inode_post_setxattr(dentry, name, value, size, flags);
588  evm_inode_post_setxattr(dentry, name, value, size);
589 }
590 
591 int security_inode_getxattr(struct dentry *dentry, const char *name)
592 {
593  if (unlikely(IS_PRIVATE(dentry->d_inode)))
594  return 0;
595  return security_ops->inode_getxattr(dentry, name);
596 }
597 
598 int security_inode_listxattr(struct dentry *dentry)
599 {
600  if (unlikely(IS_PRIVATE(dentry->d_inode)))
601  return 0;
602  return security_ops->inode_listxattr(dentry);
603 }
604 
605 int security_inode_removexattr(struct dentry *dentry, const char *name)
606 {
607  int ret;
608 
609  if (unlikely(IS_PRIVATE(dentry->d_inode)))
610  return 0;
611  ret = security_ops->inode_removexattr(dentry, name);
612  if (ret)
613  return ret;
614  ret = ima_inode_removexattr(dentry, name);
615  if (ret)
616  return ret;
617  return evm_inode_removexattr(dentry, name);
618 }
619 
620 int security_inode_need_killpriv(struct dentry *dentry)
621 {
622  return security_ops->inode_need_killpriv(dentry);
623 }
624 
625 int security_inode_killpriv(struct dentry *dentry)
626 {
627  return security_ops->inode_killpriv(dentry);
628 }
629 
630 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
631 {
632  if (unlikely(IS_PRIVATE(inode)))
633  return -EOPNOTSUPP;
634  return security_ops->inode_getsecurity(inode, name, buffer, alloc);
635 }
636 
637 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
638 {
639  if (unlikely(IS_PRIVATE(inode)))
640  return -EOPNOTSUPP;
641  return security_ops->inode_setsecurity(inode, name, value, size, flags);
642 }
643 
644 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
645 {
646  if (unlikely(IS_PRIVATE(inode)))
647  return 0;
648  return security_ops->inode_listsecurity(inode, buffer, buffer_size);
649 }
650 
651 void security_inode_getsecid(const struct inode *inode, u32 *secid)
652 {
653  security_ops->inode_getsecid(inode, secid);
654 }
655 
657 {
658  int ret;
659 
660  ret = security_ops->file_permission(file, mask);
661  if (ret)
662  return ret;
663 
664  return fsnotify_perm(file, mask);
665 }
666 
668 {
669  return security_ops->file_alloc_security(file);
670 }
671 
673 {
674  security_ops->file_free_security(file);
675 }
676 
677 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
678 {
679  return security_ops->file_ioctl(file, cmd, arg);
680 }
681 
682 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
683 {
684  /*
685  * Does we have PROT_READ and does the application expect
686  * it to imply PROT_EXEC? If not, nothing to talk about...
687  */
688  if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
689  return prot;
690  if (!(current->personality & READ_IMPLIES_EXEC))
691  return prot;
692  /*
693  * if that's an anonymous mapping, let it.
694  */
695  if (!file)
696  return prot | PROT_EXEC;
697  /*
698  * ditto if it's not on noexec mount, except that on !MMU we need
699  * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
700  */
701  if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
702 #ifndef CONFIG_MMU
703  unsigned long caps = 0;
704  struct address_space *mapping = file->f_mapping;
705  if (mapping && mapping->backing_dev_info)
706  caps = mapping->backing_dev_info->capabilities;
707  if (!(caps & BDI_CAP_EXEC_MAP))
708  return prot;
709 #endif
710  return prot | PROT_EXEC;
711  }
712  /* anything on noexec mount won't get PROT_EXEC */
713  return prot;
714 }
715 
716 int security_mmap_file(struct file *file, unsigned long prot,
717  unsigned long flags)
718 {
719  int ret;
720  ret = security_ops->mmap_file(file, prot,
721  mmap_prot(file, prot), flags);
722  if (ret)
723  return ret;
724  return ima_file_mmap(file, prot);
725 }
726 
727 int security_mmap_addr(unsigned long addr)
728 {
729  return security_ops->mmap_addr(addr);
730 }
731 
732 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
733  unsigned long prot)
734 {
735  return security_ops->file_mprotect(vma, reqprot, prot);
736 }
737 
738 int security_file_lock(struct file *file, unsigned int cmd)
739 {
740  return security_ops->file_lock(file, cmd);
741 }
742 
743 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
744 {
745  return security_ops->file_fcntl(file, cmd, arg);
746 }
747 
748 int security_file_set_fowner(struct file *file)
749 {
750  return security_ops->file_set_fowner(file);
751 }
752 
754  struct fown_struct *fown, int sig)
755 {
756  return security_ops->file_send_sigiotask(tsk, fown, sig);
757 }
758 
759 int security_file_receive(struct file *file)
760 {
761  return security_ops->file_receive(file);
762 }
763 
764 int security_file_open(struct file *file, const struct cred *cred)
765 {
766  int ret;
767 
768  ret = security_ops->file_open(file, cred);
769  if (ret)
770  return ret;
771 
772  return fsnotify_perm(file, MAY_OPEN);
773 }
774 
775 int security_task_create(unsigned long clone_flags)
776 {
777  return security_ops->task_create(clone_flags);
778 }
779 
781 {
782 #ifdef CONFIG_SECURITY_YAMA_STACKED
783  yama_task_free(task);
784 #endif
785  security_ops->task_free(task);
786 }
787 
789 {
790  return security_ops->cred_alloc_blank(cred, gfp);
791 }
792 
794 {
795  security_ops->cred_free(cred);
796 }
797 
798 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
799 {
800  return security_ops->cred_prepare(new, old, gfp);
801 }
802 
803 void security_transfer_creds(struct cred *new, const struct cred *old)
804 {
805  security_ops->cred_transfer(new, old);
806 }
807 
808 int security_kernel_act_as(struct cred *new, u32 secid)
809 {
810  return security_ops->kernel_act_as(new, secid);
811 }
812 
814 {
815  return security_ops->kernel_create_files_as(new, inode);
816 }
817 
818 int security_kernel_module_request(char *kmod_name)
819 {
820  return security_ops->kernel_module_request(kmod_name);
821 }
822 
823 int security_task_fix_setuid(struct cred *new, const struct cred *old,
824  int flags)
825 {
826  return security_ops->task_fix_setuid(new, old, flags);
827 }
828 
830 {
831  return security_ops->task_setpgid(p, pgid);
832 }
833 
835 {
836  return security_ops->task_getpgid(p);
837 }
838 
840 {
841  return security_ops->task_getsid(p);
842 }
843 
845 {
846  security_ops->task_getsecid(p, secid);
847 }
849 
850 int security_task_setnice(struct task_struct *p, int nice)
851 {
852  return security_ops->task_setnice(p, nice);
853 }
854 
855 int security_task_setioprio(struct task_struct *p, int ioprio)
856 {
857  return security_ops->task_setioprio(p, ioprio);
858 }
859 
861 {
862  return security_ops->task_getioprio(p);
863 }
864 
865 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
866  struct rlimit *new_rlim)
867 {
868  return security_ops->task_setrlimit(p, resource, new_rlim);
869 }
870 
872 {
873  return security_ops->task_setscheduler(p);
874 }
875 
877 {
878  return security_ops->task_getscheduler(p);
879 }
880 
882 {
883  return security_ops->task_movememory(p);
884 }
885 
887  int sig, u32 secid)
888 {
889  return security_ops->task_kill(p, info, sig, secid);
890 }
891 
893 {
894  return security_ops->task_wait(p);
895 }
896 
897 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
898  unsigned long arg4, unsigned long arg5)
899 {
900 #ifdef CONFIG_SECURITY_YAMA_STACKED
901  int rc;
902  rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
903  if (rc != -ENOSYS)
904  return rc;
905 #endif
906  return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
907 }
908 
910 {
911  security_ops->task_to_inode(p, inode);
912 }
913 
915 {
916  return security_ops->ipc_permission(ipcp, flag);
917 }
918 
919 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
920 {
921  security_ops->ipc_getsecid(ipcp, secid);
922 }
923 
925 {
926  return security_ops->msg_msg_alloc_security(msg);
927 }
928 
930 {
931  security_ops->msg_msg_free_security(msg);
932 }
933 
935 {
936  return security_ops->msg_queue_alloc_security(msq);
937 }
938 
940 {
941  security_ops->msg_queue_free_security(msq);
942 }
943 
944 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
945 {
946  return security_ops->msg_queue_associate(msq, msqflg);
947 }
948 
950 {
951  return security_ops->msg_queue_msgctl(msq, cmd);
952 }
953 
955  struct msg_msg *msg, int msqflg)
956 {
957  return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
958 }
959 
961  struct task_struct *target, long type, int mode)
962 {
963  return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
964 }
965 
967 {
968  return security_ops->shm_alloc_security(shp);
969 }
970 
972 {
973  security_ops->shm_free_security(shp);
974 }
975 
976 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
977 {
978  return security_ops->shm_associate(shp, shmflg);
979 }
980 
981 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
982 {
983  return security_ops->shm_shmctl(shp, cmd);
984 }
985 
986 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
987 {
988  return security_ops->shm_shmat(shp, shmaddr, shmflg);
989 }
990 
992 {
993  return security_ops->sem_alloc_security(sma);
994 }
995 
996 void security_sem_free(struct sem_array *sma)
997 {
998  security_ops->sem_free_security(sma);
999 }
1000 
1001 int security_sem_associate(struct sem_array *sma, int semflg)
1002 {
1003  return security_ops->sem_associate(sma, semflg);
1004 }
1005 
1006 int security_sem_semctl(struct sem_array *sma, int cmd)
1007 {
1008  return security_ops->sem_semctl(sma, cmd);
1009 }
1010 
1011 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1012  unsigned nsops, int alter)
1013 {
1014  return security_ops->sem_semop(sma, sops, nsops, alter);
1015 }
1016 
1017 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1018 {
1019  if (unlikely(inode && IS_PRIVATE(inode)))
1020  return;
1021  security_ops->d_instantiate(dentry, inode);
1022 }
1024 
1025 int security_getprocattr(struct task_struct *p, char *name, char **value)
1026 {
1027  return security_ops->getprocattr(p, name, value);
1028 }
1029 
1030 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1031 {
1032  return security_ops->setprocattr(p, name, value, size);
1033 }
1034 
1035 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1036 {
1037  return security_ops->netlink_send(sk, skb);
1038 }
1039 
1040 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1041 {
1042  return security_ops->secid_to_secctx(secid, secdata, seclen);
1043 }
1045 
1046 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1047 {
1048  return security_ops->secctx_to_secid(secdata, seclen, secid);
1049 }
1051 
1052 void security_release_secctx(char *secdata, u32 seclen)
1053 {
1054  security_ops->release_secctx(secdata, seclen);
1055 }
1057 
1058 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1059 {
1060  return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1061 }
1063 
1064 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1065 {
1066  return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1067 }
1069 
1070 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1071 {
1072  return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1073 }
1075 
1076 #ifdef CONFIG_SECURITY_NETWORK
1077 
1078 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1079 {
1080  return security_ops->unix_stream_connect(sock, other, newsk);
1081 }
1082 EXPORT_SYMBOL(security_unix_stream_connect);
1083 
1084 int security_unix_may_send(struct socket *sock, struct socket *other)
1085 {
1086  return security_ops->unix_may_send(sock, other);
1087 }
1088 EXPORT_SYMBOL(security_unix_may_send);
1089 
1090 int security_socket_create(int family, int type, int protocol, int kern)
1091 {
1092  return security_ops->socket_create(family, type, protocol, kern);
1093 }
1094 
1095 int security_socket_post_create(struct socket *sock, int family,
1096  int type, int protocol, int kern)
1097 {
1098  return security_ops->socket_post_create(sock, family, type,
1099  protocol, kern);
1100 }
1101 
1102 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1103 {
1104  return security_ops->socket_bind(sock, address, addrlen);
1105 }
1106 
1107 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1108 {
1109  return security_ops->socket_connect(sock, address, addrlen);
1110 }
1111 
1112 int security_socket_listen(struct socket *sock, int backlog)
1113 {
1114  return security_ops->socket_listen(sock, backlog);
1115 }
1116 
1117 int security_socket_accept(struct socket *sock, struct socket *newsock)
1118 {
1119  return security_ops->socket_accept(sock, newsock);
1120 }
1121 
1122 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1123 {
1124  return security_ops->socket_sendmsg(sock, msg, size);
1125 }
1126 
1127 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1128  int size, int flags)
1129 {
1130  return security_ops->socket_recvmsg(sock, msg, size, flags);
1131 }
1132 
1133 int security_socket_getsockname(struct socket *sock)
1134 {
1135  return security_ops->socket_getsockname(sock);
1136 }
1137 
1138 int security_socket_getpeername(struct socket *sock)
1139 {
1140  return security_ops->socket_getpeername(sock);
1141 }
1142 
1143 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1144 {
1145  return security_ops->socket_getsockopt(sock, level, optname);
1146 }
1147 
1148 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1149 {
1150  return security_ops->socket_setsockopt(sock, level, optname);
1151 }
1152 
1153 int security_socket_shutdown(struct socket *sock, int how)
1154 {
1155  return security_ops->socket_shutdown(sock, how);
1156 }
1157 
1158 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1159 {
1160  return security_ops->socket_sock_rcv_skb(sk, skb);
1161 }
1162 EXPORT_SYMBOL(security_sock_rcv_skb);
1163 
1164 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1165  int __user *optlen, unsigned len)
1166 {
1167  return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1168 }
1169 
1170 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1171 {
1172  return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1173 }
1174 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1175 
1176 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1177 {
1178  return security_ops->sk_alloc_security(sk, family, priority);
1179 }
1180 
1181 void security_sk_free(struct sock *sk)
1182 {
1183  security_ops->sk_free_security(sk);
1184 }
1185 
1186 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1187 {
1188  security_ops->sk_clone_security(sk, newsk);
1189 }
1190 EXPORT_SYMBOL(security_sk_clone);
1191 
1192 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1193 {
1194  security_ops->sk_getsecid(sk, &fl->flowi_secid);
1195 }
1196 EXPORT_SYMBOL(security_sk_classify_flow);
1197 
1198 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1199 {
1200  security_ops->req_classify_flow(req, fl);
1201 }
1202 EXPORT_SYMBOL(security_req_classify_flow);
1203 
1204 void security_sock_graft(struct sock *sk, struct socket *parent)
1205 {
1206  security_ops->sock_graft(sk, parent);
1207 }
1208 EXPORT_SYMBOL(security_sock_graft);
1209 
1210 int security_inet_conn_request(struct sock *sk,
1211  struct sk_buff *skb, struct request_sock *req)
1212 {
1213  return security_ops->inet_conn_request(sk, skb, req);
1214 }
1215 EXPORT_SYMBOL(security_inet_conn_request);
1216 
1217 void security_inet_csk_clone(struct sock *newsk,
1218  const struct request_sock *req)
1219 {
1220  security_ops->inet_csk_clone(newsk, req);
1221 }
1222 
1223 void security_inet_conn_established(struct sock *sk,
1224  struct sk_buff *skb)
1225 {
1226  security_ops->inet_conn_established(sk, skb);
1227 }
1228 
1229 int security_secmark_relabel_packet(u32 secid)
1230 {
1231  return security_ops->secmark_relabel_packet(secid);
1232 }
1233 EXPORT_SYMBOL(security_secmark_relabel_packet);
1234 
1235 void security_secmark_refcount_inc(void)
1236 {
1237  security_ops->secmark_refcount_inc();
1238 }
1239 EXPORT_SYMBOL(security_secmark_refcount_inc);
1240 
1241 void security_secmark_refcount_dec(void)
1242 {
1243  security_ops->secmark_refcount_dec();
1244 }
1245 EXPORT_SYMBOL(security_secmark_refcount_dec);
1246 
1247 int security_tun_dev_create(void)
1248 {
1249  return security_ops->tun_dev_create();
1250 }
1251 EXPORT_SYMBOL(security_tun_dev_create);
1252 
1253 void security_tun_dev_post_create(struct sock *sk)
1254 {
1255  return security_ops->tun_dev_post_create(sk);
1256 }
1257 EXPORT_SYMBOL(security_tun_dev_post_create);
1258 
1259 int security_tun_dev_attach(struct sock *sk)
1260 {
1261  return security_ops->tun_dev_attach(sk);
1262 }
1263 EXPORT_SYMBOL(security_tun_dev_attach);
1264 
1265 #endif /* CONFIG_SECURITY_NETWORK */
1266 
1267 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1268 
1269 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1270 {
1271  return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1272 }
1273 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1274 
1275 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1276  struct xfrm_sec_ctx **new_ctxp)
1277 {
1278  return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1279 }
1280 
1281 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1282 {
1283  security_ops->xfrm_policy_free_security(ctx);
1284 }
1285 EXPORT_SYMBOL(security_xfrm_policy_free);
1286 
1287 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1288 {
1289  return security_ops->xfrm_policy_delete_security(ctx);
1290 }
1291 
1292 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1293 {
1294  return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1295 }
1296 EXPORT_SYMBOL(security_xfrm_state_alloc);
1297 
1298 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1299  struct xfrm_sec_ctx *polsec, u32 secid)
1300 {
1301  if (!polsec)
1302  return 0;
1303  /*
1304  * We want the context to be taken from secid which is usually
1305  * from the sock.
1306  */
1307  return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1308 }
1309 
1310 int security_xfrm_state_delete(struct xfrm_state *x)
1311 {
1312  return security_ops->xfrm_state_delete_security(x);
1313 }
1314 EXPORT_SYMBOL(security_xfrm_state_delete);
1315 
1316 void security_xfrm_state_free(struct xfrm_state *x)
1317 {
1318  security_ops->xfrm_state_free_security(x);
1319 }
1320 
1321 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1322 {
1323  return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1324 }
1325 
1326 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1327  struct xfrm_policy *xp,
1328  const struct flowi *fl)
1329 {
1330  return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1331 }
1332 
1333 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1334 {
1335  return security_ops->xfrm_decode_session(skb, secid, 1);
1336 }
1337 
1338 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1339 {
1340  int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1341 
1342  BUG_ON(rc);
1343 }
1344 EXPORT_SYMBOL(security_skb_classify_flow);
1345 
1346 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
1347 
1348 #ifdef CONFIG_KEYS
1349 
1350 int security_key_alloc(struct key *key, const struct cred *cred,
1351  unsigned long flags)
1352 {
1353  return security_ops->key_alloc(key, cred, flags);
1354 }
1355 
1356 void security_key_free(struct key *key)
1357 {
1358  security_ops->key_free(key);
1359 }
1360 
1361 int security_key_permission(key_ref_t key_ref,
1362  const struct cred *cred, key_perm_t perm)
1363 {
1364  return security_ops->key_permission(key_ref, cred, perm);
1365 }
1366 
1367 int security_key_getsecurity(struct key *key, char **_buffer)
1368 {
1369  return security_ops->key_getsecurity(key, _buffer);
1370 }
1371 
1372 #endif /* CONFIG_KEYS */
1373 
1374 #ifdef CONFIG_AUDIT
1375 
1376 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1377 {
1378  return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1379 }
1380 
1381 int security_audit_rule_known(struct audit_krule *krule)
1382 {
1383  return security_ops->audit_rule_known(krule);
1384 }
1385 
1386 void security_audit_rule_free(void *lsmrule)
1387 {
1388  security_ops->audit_rule_free(lsmrule);
1389 }
1390 
1391 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1392  struct audit_context *actx)
1393 {
1394  return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1395 }
1396 
1397 #endif /* CONFIG_AUDIT */