Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
spi-ep93xx.c
Go to the documentation of this file.
1 /*
2  * Driver for Cirrus Logic EP93xx SPI controller.
3  *
4  * Copyright (C) 2010-2011 Mika Westerberg
5  *
6  * Explicit FIFO handling code was inspired by amba-pl022 driver.
7  *
8  * Chip select support using other than built-in GPIOs by H. Hartley Sweeten.
9  *
10  * For more information about the SPI controller see documentation on Cirrus
11  * Logic web site:
12  * http://www.cirrus.com/en/pubs/manual/EP93xx_Users_Guide_UM1.pdf
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 
19 #include <linux/io.h>
20 #include <linux/clk.h>
21 #include <linux/err.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dmaengine.h>
25 #include <linux/bitops.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/sched.h>
31 #include <linux/scatterlist.h>
32 #include <linux/spi/spi.h>
33 
36 
37 #define SSPCR0 0x0000
38 #define SSPCR0_MODE_SHIFT 6
39 #define SSPCR0_SCR_SHIFT 8
40 
41 #define SSPCR1 0x0004
42 #define SSPCR1_RIE BIT(0)
43 #define SSPCR1_TIE BIT(1)
44 #define SSPCR1_RORIE BIT(2)
45 #define SSPCR1_LBM BIT(3)
46 #define SSPCR1_SSE BIT(4)
47 #define SSPCR1_MS BIT(5)
48 #define SSPCR1_SOD BIT(6)
49 
50 #define SSPDR 0x0008
51 
52 #define SSPSR 0x000c
53 #define SSPSR_TFE BIT(0)
54 #define SSPSR_TNF BIT(1)
55 #define SSPSR_RNE BIT(2)
56 #define SSPSR_RFF BIT(3)
57 #define SSPSR_BSY BIT(4)
58 #define SSPCPSR 0x0010
59 
60 #define SSPIIR 0x0014
61 #define SSPIIR_RIS BIT(0)
62 #define SSPIIR_TIS BIT(1)
63 #define SSPIIR_RORIS BIT(2)
64 #define SSPICR SSPIIR
65 
66 /* timeout in milliseconds */
67 #define SPI_TIMEOUT 5
68 /* maximum depth of RX/TX FIFO */
69 #define SPI_FIFO_SIZE 8
70 
110 struct ep93xx_spi {
112  const struct platform_device *pdev;
113  struct clk *clk;
115  unsigned long sspdr_phys;
116  unsigned long min_rate;
117  unsigned long max_rate;
118  bool running;
121  struct completion wait;
124  size_t tx;
125  size_t rx;
126  size_t fifo_level;
127  struct dma_chan *dma_rx;
128  struct dma_chan *dma_tx;
131  struct sg_table rx_sgt;
132  struct sg_table tx_sgt;
133  void *zeropage;
134 };
135 
150  const struct spi_device *spi;
151  unsigned long rate;
156 };
157 
158 /* converts bits per word to CR0.DSS value */
159 #define bits_per_word_to_dss(bpw) ((bpw) - 1)
160 
161 static inline void
162 ep93xx_spi_write_u8(const struct ep93xx_spi *espi, u16 reg, u8 value)
163 {
164  __raw_writeb(value, espi->regs_base + reg);
165 }
166 
167 static inline u8
168 ep93xx_spi_read_u8(const struct ep93xx_spi *spi, u16 reg)
169 {
170  return __raw_readb(spi->regs_base + reg);
171 }
172 
173 static inline void
174 ep93xx_spi_write_u16(const struct ep93xx_spi *espi, u16 reg, u16 value)
175 {
176  __raw_writew(value, espi->regs_base + reg);
177 }
178 
179 static inline u16
180 ep93xx_spi_read_u16(const struct ep93xx_spi *spi, u16 reg)
181 {
182  return __raw_readw(spi->regs_base + reg);
183 }
184 
185 static int ep93xx_spi_enable(const struct ep93xx_spi *espi)
186 {
187  u8 regval;
188  int err;
189 
190  err = clk_enable(espi->clk);
191  if (err)
192  return err;
193 
194  regval = ep93xx_spi_read_u8(espi, SSPCR1);
195  regval |= SSPCR1_SSE;
196  ep93xx_spi_write_u8(espi, SSPCR1, regval);
197 
198  return 0;
199 }
200 
201 static void ep93xx_spi_disable(const struct ep93xx_spi *espi)
202 {
203  u8 regval;
204 
205  regval = ep93xx_spi_read_u8(espi, SSPCR1);
206  regval &= ~SSPCR1_SSE;
207  ep93xx_spi_write_u8(espi, SSPCR1, regval);
208 
209  clk_disable(espi->clk);
210 }
211 
212 static void ep93xx_spi_enable_interrupts(const struct ep93xx_spi *espi)
213 {
214  u8 regval;
215 
216  regval = ep93xx_spi_read_u8(espi, SSPCR1);
217  regval |= (SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
218  ep93xx_spi_write_u8(espi, SSPCR1, regval);
219 }
220 
221 static void ep93xx_spi_disable_interrupts(const struct ep93xx_spi *espi)
222 {
223  u8 regval;
224 
225  regval = ep93xx_spi_read_u8(espi, SSPCR1);
226  regval &= ~(SSPCR1_RORIE | SSPCR1_TIE | SSPCR1_RIE);
227  ep93xx_spi_write_u8(espi, SSPCR1, regval);
228 }
229 
241 static int ep93xx_spi_calc_divisors(const struct ep93xx_spi *espi,
242  struct ep93xx_spi_chip *chip,
243  unsigned long rate)
244 {
245  unsigned long spi_clk_rate = clk_get_rate(espi->clk);
246  int cpsr, scr;
247 
248  /*
249  * Make sure that max value is between values supported by the
250  * controller. Note that minimum value is already checked in
251  * ep93xx_spi_transfer().
252  */
253  rate = clamp(rate, espi->min_rate, espi->max_rate);
254 
255  /*
256  * Calculate divisors so that we can get speed according the
257  * following formula:
258  * rate = spi_clock_rate / (cpsr * (1 + scr))
259  *
260  * cpsr must be even number and starts from 2, scr can be any number
261  * between 0 and 255.
262  */
263  for (cpsr = 2; cpsr <= 254; cpsr += 2) {
264  for (scr = 0; scr <= 255; scr++) {
265  if ((spi_clk_rate / (cpsr * (scr + 1))) <= rate) {
266  chip->div_scr = (u8)scr;
267  chip->div_cpsr = (u8)cpsr;
268  return 0;
269  }
270  }
271  }
272 
273  return -EINVAL;
274 }
275 
276 static void ep93xx_spi_cs_control(struct spi_device *spi, bool control)
277 {
278  struct ep93xx_spi_chip *chip = spi_get_ctldata(spi);
279  int value = (spi->mode & SPI_CS_HIGH) ? control : !control;
280 
281  if (chip->ops && chip->ops->cs_control)
282  chip->ops->cs_control(spi, value);
283 }
284 
294 static int ep93xx_spi_setup(struct spi_device *spi)
295 {
296  struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
297  struct ep93xx_spi_chip *chip;
298 
299  if (spi->bits_per_word < 4 || spi->bits_per_word > 16) {
300  dev_err(&espi->pdev->dev, "invalid bits per word %d\n",
301  spi->bits_per_word);
302  return -EINVAL;
303  }
304 
305  chip = spi_get_ctldata(spi);
306  if (!chip) {
307  dev_dbg(&espi->pdev->dev, "initial setup for %s\n",
308  spi->modalias);
309 
310  chip = kzalloc(sizeof(*chip), GFP_KERNEL);
311  if (!chip)
312  return -ENOMEM;
313 
314  chip->spi = spi;
315  chip->ops = spi->controller_data;
316 
317  if (chip->ops && chip->ops->setup) {
318  int ret = chip->ops->setup(spi);
319  if (ret) {
320  kfree(chip);
321  return ret;
322  }
323  }
324 
325  spi_set_ctldata(spi, chip);
326  }
327 
328  if (spi->max_speed_hz != chip->rate) {
329  int err;
330 
331  err = ep93xx_spi_calc_divisors(espi, chip, spi->max_speed_hz);
332  if (err != 0) {
333  spi_set_ctldata(spi, NULL);
334  kfree(chip);
335  return err;
336  }
337  chip->rate = spi->max_speed_hz;
338  }
339 
340  chip->dss = bits_per_word_to_dss(spi->bits_per_word);
341 
342  ep93xx_spi_cs_control(spi, false);
343  return 0;
344 }
345 
357 static int ep93xx_spi_transfer(struct spi_device *spi, struct spi_message *msg)
358 {
359  struct ep93xx_spi *espi = spi_master_get_devdata(spi->master);
360  struct spi_transfer *t;
361  unsigned long flags;
362 
363  if (!msg || !msg->complete)
364  return -EINVAL;
365 
366  /* first validate each transfer */
368  if (t->bits_per_word) {
369  if (t->bits_per_word < 4 || t->bits_per_word > 16)
370  return -EINVAL;
371  }
372  if (t->speed_hz && t->speed_hz < espi->min_rate)
373  return -EINVAL;
374  }
375 
376  /*
377  * Now that we own the message, let's initialize it so that it is
378  * suitable for us. We use @msg->status to signal whether there was
379  * error in transfer and @msg->state is used to hold pointer to the
380  * current transfer (or %NULL if no active current transfer).
381  */
382  msg->state = NULL;
383  msg->status = 0;
384  msg->actual_length = 0;
385 
386  spin_lock_irqsave(&espi->lock, flags);
387  if (!espi->running) {
388  spin_unlock_irqrestore(&espi->lock, flags);
389  return -ESHUTDOWN;
390  }
391  list_add_tail(&msg->queue, &espi->msg_queue);
392  queue_work(espi->wq, &espi->msg_work);
393  spin_unlock_irqrestore(&espi->lock, flags);
394 
395  return 0;
396 }
397 
405 static void ep93xx_spi_cleanup(struct spi_device *spi)
406 {
407  struct ep93xx_spi_chip *chip;
408 
409  chip = spi_get_ctldata(spi);
410  if (chip) {
411  if (chip->ops && chip->ops->cleanup)
412  chip->ops->cleanup(spi);
413  spi_set_ctldata(spi, NULL);
414  kfree(chip);
415  }
416 }
417 
427 static void ep93xx_spi_chip_setup(const struct ep93xx_spi *espi,
428  const struct ep93xx_spi_chip *chip)
429 {
430  u16 cr0;
431 
432  cr0 = chip->div_scr << SSPCR0_SCR_SHIFT;
433  cr0 |= (chip->spi->mode & (SPI_CPHA|SPI_CPOL)) << SSPCR0_MODE_SHIFT;
434  cr0 |= chip->dss;
435 
436  dev_dbg(&espi->pdev->dev, "setup: mode %d, cpsr %d, scr %d, dss %d\n",
437  chip->spi->mode, chip->div_cpsr, chip->div_scr, chip->dss);
438  dev_dbg(&espi->pdev->dev, "setup: cr0 %#x", cr0);
439 
440  ep93xx_spi_write_u8(espi, SSPCPSR, chip->div_cpsr);
441  ep93xx_spi_write_u16(espi, SSPCR0, cr0);
442 }
443 
444 static inline int bits_per_word(const struct ep93xx_spi *espi)
445 {
446  struct spi_message *msg = espi->current_msg;
447  struct spi_transfer *t = msg->state;
448 
449  return t->bits_per_word ? t->bits_per_word : msg->spi->bits_per_word;
450 }
451 
452 static void ep93xx_do_write(struct ep93xx_spi *espi, struct spi_transfer *t)
453 {
454  if (bits_per_word(espi) > 8) {
455  u16 tx_val = 0;
456 
457  if (t->tx_buf)
458  tx_val = ((u16 *)t->tx_buf)[espi->tx];
459  ep93xx_spi_write_u16(espi, SSPDR, tx_val);
460  espi->tx += sizeof(tx_val);
461  } else {
462  u8 tx_val = 0;
463 
464  if (t->tx_buf)
465  tx_val = ((u8 *)t->tx_buf)[espi->tx];
466  ep93xx_spi_write_u8(espi, SSPDR, tx_val);
467  espi->tx += sizeof(tx_val);
468  }
469 }
470 
471 static void ep93xx_do_read(struct ep93xx_spi *espi, struct spi_transfer *t)
472 {
473  if (bits_per_word(espi) > 8) {
474  u16 rx_val;
475 
476  rx_val = ep93xx_spi_read_u16(espi, SSPDR);
477  if (t->rx_buf)
478  ((u16 *)t->rx_buf)[espi->rx] = rx_val;
479  espi->rx += sizeof(rx_val);
480  } else {
481  u8 rx_val;
482 
483  rx_val = ep93xx_spi_read_u8(espi, SSPDR);
484  if (t->rx_buf)
485  ((u8 *)t->rx_buf)[espi->rx] = rx_val;
486  espi->rx += sizeof(rx_val);
487  }
488 }
489 
501 static int ep93xx_spi_read_write(struct ep93xx_spi *espi)
502 {
503  struct spi_message *msg = espi->current_msg;
504  struct spi_transfer *t = msg->state;
505 
506  /* read as long as RX FIFO has frames in it */
507  while ((ep93xx_spi_read_u8(espi, SSPSR) & SSPSR_RNE)) {
508  ep93xx_do_read(espi, t);
509  espi->fifo_level--;
510  }
511 
512  /* write as long as TX FIFO has room */
513  while (espi->fifo_level < SPI_FIFO_SIZE && espi->tx < t->len) {
514  ep93xx_do_write(espi, t);
515  espi->fifo_level++;
516  }
517 
518  if (espi->rx == t->len)
519  return 0;
520 
521  return -EINPROGRESS;
522 }
523 
524 static void ep93xx_spi_pio_transfer(struct ep93xx_spi *espi)
525 {
526  /*
527  * Now everything is set up for the current transfer. We prime the TX
528  * FIFO, enable interrupts, and wait for the transfer to complete.
529  */
530  if (ep93xx_spi_read_write(espi)) {
531  ep93xx_spi_enable_interrupts(espi);
532  wait_for_completion(&espi->wait);
533  }
534 }
535 
545 static struct dma_async_tx_descriptor *
546 ep93xx_spi_dma_prepare(struct ep93xx_spi *espi, enum dma_transfer_direction dir)
547 {
548  struct spi_transfer *t = espi->current_msg->state;
549  struct dma_async_tx_descriptor *txd;
551  struct dma_slave_config conf;
552  struct scatterlist *sg;
553  struct sg_table *sgt;
554  struct dma_chan *chan;
555  const void *buf, *pbuf;
556  size_t len = t->len;
557  int i, ret, nents;
558 
559  if (bits_per_word(espi) > 8)
560  buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
561  else
562  buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
563 
564  memset(&conf, 0, sizeof(conf));
565  conf.direction = dir;
566 
567  if (dir == DMA_DEV_TO_MEM) {
568  chan = espi->dma_rx;
569  buf = t->rx_buf;
570  sgt = &espi->rx_sgt;
571 
572  conf.src_addr = espi->sspdr_phys;
573  conf.src_addr_width = buswidth;
574  } else {
575  chan = espi->dma_tx;
576  buf = t->tx_buf;
577  sgt = &espi->tx_sgt;
578 
579  conf.dst_addr = espi->sspdr_phys;
580  conf.dst_addr_width = buswidth;
581  }
582 
583  ret = dmaengine_slave_config(chan, &conf);
584  if (ret)
585  return ERR_PTR(ret);
586 
587  /*
588  * We need to split the transfer into PAGE_SIZE'd chunks. This is
589  * because we are using @espi->zeropage to provide a zero RX buffer
590  * for the TX transfers and we have only allocated one page for that.
591  *
592  * For performance reasons we allocate a new sg_table only when
593  * needed. Otherwise we will re-use the current one. Eventually the
594  * last sg_table is released in ep93xx_spi_release_dma().
595  */
596 
597  nents = DIV_ROUND_UP(len, PAGE_SIZE);
598  if (nents != sgt->nents) {
599  sg_free_table(sgt);
600 
601  ret = sg_alloc_table(sgt, nents, GFP_KERNEL);
602  if (ret)
603  return ERR_PTR(ret);
604  }
605 
606  pbuf = buf;
607  for_each_sg(sgt->sgl, sg, sgt->nents, i) {
608  size_t bytes = min_t(size_t, len, PAGE_SIZE);
609 
610  if (buf) {
611  sg_set_page(sg, virt_to_page(pbuf), bytes,
612  offset_in_page(pbuf));
613  } else {
614  sg_set_page(sg, virt_to_page(espi->zeropage),
615  bytes, 0);
616  }
617 
618  pbuf += bytes;
619  len -= bytes;
620  }
621 
622  if (WARN_ON(len)) {
623  dev_warn(&espi->pdev->dev, "len = %d expected 0!", len);
624  return ERR_PTR(-EINVAL);
625  }
626 
627  nents = dma_map_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
628  if (!nents)
629  return ERR_PTR(-ENOMEM);
630 
631  txd = dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir, DMA_CTRL_ACK);
632  if (!txd) {
633  dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
634  return ERR_PTR(-ENOMEM);
635  }
636  return txd;
637 }
638 
647 static void ep93xx_spi_dma_finish(struct ep93xx_spi *espi,
648  enum dma_transfer_direction dir)
649 {
650  struct dma_chan *chan;
651  struct sg_table *sgt;
652 
653  if (dir == DMA_DEV_TO_MEM) {
654  chan = espi->dma_rx;
655  sgt = &espi->rx_sgt;
656  } else {
657  chan = espi->dma_tx;
658  sgt = &espi->tx_sgt;
659  }
660 
661  dma_unmap_sg(chan->device->dev, sgt->sgl, sgt->nents, dir);
662 }
663 
664 static void ep93xx_spi_dma_callback(void *callback_param)
665 {
666  complete(callback_param);
667 }
668 
669 static void ep93xx_spi_dma_transfer(struct ep93xx_spi *espi)
670 {
671  struct spi_message *msg = espi->current_msg;
672  struct dma_async_tx_descriptor *rxd, *txd;
673 
674  rxd = ep93xx_spi_dma_prepare(espi, DMA_DEV_TO_MEM);
675  if (IS_ERR(rxd)) {
676  dev_err(&espi->pdev->dev, "DMA RX failed: %ld\n", PTR_ERR(rxd));
677  msg->status = PTR_ERR(rxd);
678  return;
679  }
680 
681  txd = ep93xx_spi_dma_prepare(espi, DMA_MEM_TO_DEV);
682  if (IS_ERR(txd)) {
683  ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
684  dev_err(&espi->pdev->dev, "DMA TX failed: %ld\n", PTR_ERR(rxd));
685  msg->status = PTR_ERR(txd);
686  return;
687  }
688 
689  /* We are ready when RX is done */
690  rxd->callback = ep93xx_spi_dma_callback;
691  rxd->callback_param = &espi->wait;
692 
693  /* Now submit both descriptors and wait while they finish */
694  dmaengine_submit(rxd);
695  dmaengine_submit(txd);
696 
697  dma_async_issue_pending(espi->dma_rx);
698  dma_async_issue_pending(espi->dma_tx);
699 
700  wait_for_completion(&espi->wait);
701 
702  ep93xx_spi_dma_finish(espi, DMA_MEM_TO_DEV);
703  ep93xx_spi_dma_finish(espi, DMA_DEV_TO_MEM);
704 }
705 
716 static void ep93xx_spi_process_transfer(struct ep93xx_spi *espi,
717  struct spi_message *msg,
718  struct spi_transfer *t)
719 {
720  struct ep93xx_spi_chip *chip = spi_get_ctldata(msg->spi);
721 
722  msg->state = t;
723 
724  /*
725  * Handle any transfer specific settings if needed. We use
726  * temporary chip settings here and restore original later when
727  * the transfer is finished.
728  */
729  if (t->speed_hz || t->bits_per_word) {
730  struct ep93xx_spi_chip tmp_chip = *chip;
731 
732  if (t->speed_hz) {
733  int err;
734 
735  err = ep93xx_spi_calc_divisors(espi, &tmp_chip,
736  t->speed_hz);
737  if (err) {
738  dev_err(&espi->pdev->dev,
739  "failed to adjust speed\n");
740  msg->status = err;
741  return;
742  }
743  }
744 
745  if (t->bits_per_word)
746  tmp_chip.dss = bits_per_word_to_dss(t->bits_per_word);
747 
748  /*
749  * Set up temporary new hw settings for this transfer.
750  */
751  ep93xx_spi_chip_setup(espi, &tmp_chip);
752  }
753 
754  espi->rx = 0;
755  espi->tx = 0;
756 
757  /*
758  * There is no point of setting up DMA for the transfers which will
759  * fit into the FIFO and can be transferred with a single interrupt.
760  * So in these cases we will be using PIO and don't bother for DMA.
761  */
762  if (espi->dma_rx && t->len > SPI_FIFO_SIZE)
763  ep93xx_spi_dma_transfer(espi);
764  else
765  ep93xx_spi_pio_transfer(espi);
766 
767  /*
768  * In case of error during transmit, we bail out from processing
769  * the message.
770  */
771  if (msg->status)
772  return;
773 
774  msg->actual_length += t->len;
775 
776  /*
777  * After this transfer is finished, perform any possible
778  * post-transfer actions requested by the protocol driver.
779  */
780  if (t->delay_usecs) {
783  }
784  if (t->cs_change) {
785  if (!list_is_last(&t->transfer_list, &msg->transfers)) {
786  /*
787  * In case protocol driver is asking us to drop the
788  * chipselect briefly, we let the scheduler to handle
789  * any "delay" here.
790  */
791  ep93xx_spi_cs_control(msg->spi, false);
792  cond_resched();
793  ep93xx_spi_cs_control(msg->spi, true);
794  }
795  }
796 
797  if (t->speed_hz || t->bits_per_word)
798  ep93xx_spi_chip_setup(espi, chip);
799 }
800 
801 /*
802  * ep93xx_spi_process_message() - process one SPI message
803  * @espi: ep93xx SPI controller struct
804  * @msg: message to process
805  *
806  * This function processes a single SPI message. We go through all transfers in
807  * the message and pass them to ep93xx_spi_process_transfer(). Chipselect is
808  * asserted during the whole message (unless per transfer cs_change is set).
809  *
810  * @msg->status contains %0 in case of success or negative error code in case of
811  * failure.
812  */
813 static void ep93xx_spi_process_message(struct ep93xx_spi *espi,
814  struct spi_message *msg)
815 {
816  unsigned long timeout;
817  struct spi_transfer *t;
818  int err;
819 
820  /*
821  * Enable the SPI controller and its clock.
822  */
823  err = ep93xx_spi_enable(espi);
824  if (err) {
825  dev_err(&espi->pdev->dev, "failed to enable SPI controller\n");
826  msg->status = err;
827  return;
828  }
829 
830  /*
831  * Just to be sure: flush any data from RX FIFO.
832  */
833  timeout = jiffies + msecs_to_jiffies(SPI_TIMEOUT);
834  while (ep93xx_spi_read_u16(espi, SSPSR) & SSPSR_RNE) {
835  if (time_after(jiffies, timeout)) {
836  dev_warn(&espi->pdev->dev,
837  "timeout while flushing RX FIFO\n");
838  msg->status = -ETIMEDOUT;
839  return;
840  }
841  ep93xx_spi_read_u16(espi, SSPDR);
842  }
843 
844  /*
845  * We explicitly handle FIFO level. This way we don't have to check TX
846  * FIFO status using %SSPSR_TNF bit which may cause RX FIFO overruns.
847  */
848  espi->fifo_level = 0;
849 
850  /*
851  * Update SPI controller registers according to spi device and assert
852  * the chipselect.
853  */
854  ep93xx_spi_chip_setup(espi, spi_get_ctldata(msg->spi));
855  ep93xx_spi_cs_control(msg->spi, true);
856 
858  ep93xx_spi_process_transfer(espi, msg, t);
859  if (msg->status)
860  break;
861  }
862 
863  /*
864  * Now the whole message is transferred (or failed for some reason). We
865  * deselect the device and disable the SPI controller.
866  */
867  ep93xx_spi_cs_control(msg->spi, false);
868  ep93xx_spi_disable(espi);
869 }
870 
871 #define work_to_espi(work) (container_of((work), struct ep93xx_spi, msg_work))
872 
885 static void ep93xx_spi_work(struct work_struct *work)
886 {
887  struct ep93xx_spi *espi = work_to_espi(work);
888  struct spi_message *msg;
889 
890  spin_lock_irq(&espi->lock);
891  if (!espi->running || espi->current_msg ||
892  list_empty(&espi->msg_queue)) {
893  spin_unlock_irq(&espi->lock);
894  return;
895  }
896  msg = list_first_entry(&espi->msg_queue, struct spi_message, queue);
897  list_del_init(&msg->queue);
898  espi->current_msg = msg;
899  spin_unlock_irq(&espi->lock);
900 
901  ep93xx_spi_process_message(espi, msg);
902 
903  /*
904  * Update the current message and re-schedule ourselves if there are
905  * more messages in the queue.
906  */
907  spin_lock_irq(&espi->lock);
908  espi->current_msg = NULL;
909  if (espi->running && !list_empty(&espi->msg_queue))
910  queue_work(espi->wq, &espi->msg_work);
911  spin_unlock_irq(&espi->lock);
912 
913  /* notify the protocol driver that we are done with this message */
914  msg->complete(msg->context);
915 }
916 
917 static irqreturn_t ep93xx_spi_interrupt(int irq, void *dev_id)
918 {
919  struct ep93xx_spi *espi = dev_id;
920  u8 irq_status = ep93xx_spi_read_u8(espi, SSPIIR);
921 
922  /*
923  * If we got ROR (receive overrun) interrupt we know that something is
924  * wrong. Just abort the message.
925  */
926  if (unlikely(irq_status & SSPIIR_RORIS)) {
927  /* clear the overrun interrupt */
928  ep93xx_spi_write_u8(espi, SSPICR, 0);
929  dev_warn(&espi->pdev->dev,
930  "receive overrun, aborting the message\n");
931  espi->current_msg->status = -EIO;
932  } else {
933  /*
934  * Interrupt is either RX (RIS) or TX (TIS). For both cases we
935  * simply execute next data transfer.
936  */
937  if (ep93xx_spi_read_write(espi)) {
938  /*
939  * In normal case, there still is some processing left
940  * for current transfer. Let's wait for the next
941  * interrupt then.
942  */
943  return IRQ_HANDLED;
944  }
945  }
946 
947  /*
948  * Current transfer is finished, either with error or with success. In
949  * any case we disable interrupts and notify the worker to handle
950  * any post-processing of the message.
951  */
952  ep93xx_spi_disable_interrupts(espi);
953  complete(&espi->wait);
954  return IRQ_HANDLED;
955 }
956 
957 static bool ep93xx_spi_dma_filter(struct dma_chan *chan, void *filter_param)
958 {
959  if (ep93xx_dma_chan_is_m2p(chan))
960  return false;
961 
962  chan->private = filter_param;
963  return true;
964 }
965 
966 static int ep93xx_spi_setup_dma(struct ep93xx_spi *espi)
967 {
969  int ret;
970 
971  espi->zeropage = (void *)get_zeroed_page(GFP_KERNEL);
972  if (!espi->zeropage)
973  return -ENOMEM;
974 
975  dma_cap_zero(mask);
976  dma_cap_set(DMA_SLAVE, mask);
977 
978  espi->dma_rx_data.port = EP93XX_DMA_SSP;
979  espi->dma_rx_data.direction = DMA_DEV_TO_MEM;
980  espi->dma_rx_data.name = "ep93xx-spi-rx";
981 
982  espi->dma_rx = dma_request_channel(mask, ep93xx_spi_dma_filter,
983  &espi->dma_rx_data);
984  if (!espi->dma_rx) {
985  ret = -ENODEV;
986  goto fail_free_page;
987  }
988 
989  espi->dma_tx_data.port = EP93XX_DMA_SSP;
990  espi->dma_tx_data.direction = DMA_MEM_TO_DEV;
991  espi->dma_tx_data.name = "ep93xx-spi-tx";
992 
993  espi->dma_tx = dma_request_channel(mask, ep93xx_spi_dma_filter,
994  &espi->dma_tx_data);
995  if (!espi->dma_tx) {
996  ret = -ENODEV;
997  goto fail_release_rx;
998  }
999 
1000  return 0;
1001 
1002 fail_release_rx:
1003  dma_release_channel(espi->dma_rx);
1004  espi->dma_rx = NULL;
1005 fail_free_page:
1006  free_page((unsigned long)espi->zeropage);
1007 
1008  return ret;
1009 }
1010 
1011 static void ep93xx_spi_release_dma(struct ep93xx_spi *espi)
1012 {
1013  if (espi->dma_rx) {
1014  dma_release_channel(espi->dma_rx);
1015  sg_free_table(&espi->rx_sgt);
1016  }
1017  if (espi->dma_tx) {
1018  dma_release_channel(espi->dma_tx);
1019  sg_free_table(&espi->tx_sgt);
1020  }
1021 
1022  if (espi->zeropage)
1023  free_page((unsigned long)espi->zeropage);
1024 }
1025 
1026 static int __devinit ep93xx_spi_probe(struct platform_device *pdev)
1027 {
1028  struct spi_master *master;
1029  struct ep93xx_spi_info *info;
1030  struct ep93xx_spi *espi;
1031  struct resource *res;
1032  int irq;
1033  int error;
1034 
1035  info = pdev->dev.platform_data;
1036 
1037  master = spi_alloc_master(&pdev->dev, sizeof(*espi));
1038  if (!master) {
1039  dev_err(&pdev->dev, "failed to allocate spi master\n");
1040  return -ENOMEM;
1041  }
1042 
1043  master->setup = ep93xx_spi_setup;
1044  master->transfer = ep93xx_spi_transfer;
1045  master->cleanup = ep93xx_spi_cleanup;
1046  master->bus_num = pdev->id;
1047  master->num_chipselect = info->num_chipselect;
1048  master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1049 
1050  platform_set_drvdata(pdev, master);
1051 
1052  espi = spi_master_get_devdata(master);
1053 
1054  espi->clk = clk_get(&pdev->dev, NULL);
1055  if (IS_ERR(espi->clk)) {
1056  dev_err(&pdev->dev, "unable to get spi clock\n");
1057  error = PTR_ERR(espi->clk);
1058  goto fail_release_master;
1059  }
1060 
1061  spin_lock_init(&espi->lock);
1062  init_completion(&espi->wait);
1063 
1064  /*
1065  * Calculate maximum and minimum supported clock rates
1066  * for the controller.
1067  */
1068  espi->max_rate = clk_get_rate(espi->clk) / 2;
1069  espi->min_rate = clk_get_rate(espi->clk) / (254 * 256);
1070  espi->pdev = pdev;
1071 
1072  irq = platform_get_irq(pdev, 0);
1073  if (irq < 0) {
1074  error = -EBUSY;
1075  dev_err(&pdev->dev, "failed to get irq resources\n");
1076  goto fail_put_clock;
1077  }
1078 
1079  res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1080  if (!res) {
1081  dev_err(&pdev->dev, "unable to get iomem resource\n");
1082  error = -ENODEV;
1083  goto fail_put_clock;
1084  }
1085 
1086  espi->sspdr_phys = res->start + SSPDR;
1087 
1088  espi->regs_base = devm_request_and_ioremap(&pdev->dev, res);
1089  if (!espi->regs_base) {
1090  dev_err(&pdev->dev, "failed to map resources\n");
1091  error = -ENODEV;
1092  goto fail_put_clock;
1093  }
1094 
1095  error = devm_request_irq(&pdev->dev, irq, ep93xx_spi_interrupt,
1096  0, "ep93xx-spi", espi);
1097  if (error) {
1098  dev_err(&pdev->dev, "failed to request irq\n");
1099  goto fail_put_clock;
1100  }
1101 
1102  if (info->use_dma && ep93xx_spi_setup_dma(espi))
1103  dev_warn(&pdev->dev, "DMA setup failed. Falling back to PIO\n");
1104 
1105  espi->wq = create_singlethread_workqueue("ep93xx_spid");
1106  if (!espi->wq) {
1107  dev_err(&pdev->dev, "unable to create workqueue\n");
1108  goto fail_free_dma;
1109  }
1110  INIT_WORK(&espi->msg_work, ep93xx_spi_work);
1111  INIT_LIST_HEAD(&espi->msg_queue);
1112  espi->running = true;
1113 
1114  /* make sure that the hardware is disabled */
1115  ep93xx_spi_write_u8(espi, SSPCR1, 0);
1116 
1117  error = spi_register_master(master);
1118  if (error) {
1119  dev_err(&pdev->dev, "failed to register SPI master\n");
1120  goto fail_free_queue;
1121  }
1122 
1123  dev_info(&pdev->dev, "EP93xx SPI Controller at 0x%08lx irq %d\n",
1124  (unsigned long)res->start, irq);
1125 
1126  return 0;
1127 
1128 fail_free_queue:
1129  destroy_workqueue(espi->wq);
1130 fail_free_dma:
1131  ep93xx_spi_release_dma(espi);
1132 fail_put_clock:
1133  clk_put(espi->clk);
1134 fail_release_master:
1135  spi_master_put(master);
1136  platform_set_drvdata(pdev, NULL);
1137 
1138  return error;
1139 }
1140 
1141 static int __devexit ep93xx_spi_remove(struct platform_device *pdev)
1142 {
1143  struct spi_master *master = platform_get_drvdata(pdev);
1144  struct ep93xx_spi *espi = spi_master_get_devdata(master);
1145 
1146  spin_lock_irq(&espi->lock);
1147  espi->running = false;
1148  spin_unlock_irq(&espi->lock);
1149 
1150  destroy_workqueue(espi->wq);
1151 
1152  /*
1153  * Complete remaining messages with %-ESHUTDOWN status.
1154  */
1155  spin_lock_irq(&espi->lock);
1156  while (!list_empty(&espi->msg_queue)) {
1157  struct spi_message *msg;
1158 
1159  msg = list_first_entry(&espi->msg_queue,
1160  struct spi_message, queue);
1161  list_del_init(&msg->queue);
1162  msg->status = -ESHUTDOWN;
1163  spin_unlock_irq(&espi->lock);
1164  msg->complete(msg->context);
1165  spin_lock_irq(&espi->lock);
1166  }
1167  spin_unlock_irq(&espi->lock);
1168 
1169  ep93xx_spi_release_dma(espi);
1170  clk_put(espi->clk);
1171  platform_set_drvdata(pdev, NULL);
1172 
1173  spi_unregister_master(master);
1174  return 0;
1175 }
1176 
1177 static struct platform_driver ep93xx_spi_driver = {
1178  .driver = {
1179  .name = "ep93xx-spi",
1180  .owner = THIS_MODULE,
1181  },
1182  .probe = ep93xx_spi_probe,
1183  .remove = __devexit_p(ep93xx_spi_remove),
1184 };
1185 module_platform_driver(ep93xx_spi_driver);
1186 
1187 MODULE_DESCRIPTION("EP93xx SPI Controller driver");
1188 MODULE_AUTHOR("Mika Westerberg <[email protected]>");
1189 MODULE_LICENSE("GPL");
1190 MODULE_ALIAS("platform:ep93xx-spi");