Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sun4m_smp.c
Go to the documentation of this file.
1 /*
2  * sun4m SMP support.
3  *
4  * Copyright (C) 1996 David S. Miller ([email protected])
5  */
6 
7 #include <linux/clockchips.h>
8 #include <linux/interrupt.h>
9 #include <linux/profile.h>
10 #include <linux/delay.h>
11 #include <linux/sched.h>
12 #include <linux/cpu.h>
13 
14 #include <asm/cacheflush.h>
15 #include <asm/switch_to.h>
16 #include <asm/tlbflush.h>
17 #include <asm/timer.h>
18 #include <asm/oplib.h>
19 
20 #include "irq.h"
21 #include "kernel.h"
22 
23 #define IRQ_IPI_SINGLE 12
24 #define IRQ_IPI_MASK 13
25 #define IRQ_IPI_RESCHED 14
26 #define IRQ_CROSS_CALL 15
27 
28 static inline unsigned long
29 swap_ulong(volatile unsigned long *ptr, unsigned long val)
30 {
31  __asm__ __volatile__("swap [%1], %0\n\t" :
32  "=&r" (val), "=&r" (ptr) :
33  "0" (val), "1" (ptr));
34  return val;
35 }
36 
38 {
40 
41  local_ops->cache_all();
42  local_ops->tlb_all();
43 
44  notify_cpu_starting(cpuid);
45 
46  register_percpu_ce(cpuid);
47 
49  smp_store_cpu_info(cpuid);
50 
51  local_ops->cache_all();
52  local_ops->tlb_all();
53 
54  /*
55  * Unblock the master CPU _only_ when the scheduler state
56  * of all secondary CPUs will be up-to-date, so after
57  * the SMP initialization the master will be just allowed
58  * to call the scheduler code.
59  */
60  /* Allow master to continue. */
61  swap_ulong(&cpu_callin_map[cpuid], 1);
62 
63  /* XXX: What's up with all the flushes? */
64  local_ops->cache_all();
65  local_ops->tlb_all();
66 
67  /* Fix idle thread fields. */
68  __asm__ __volatile__("ld [%0], %%g6\n\t"
69  : : "r" (&current_set[cpuid])
70  : "memory" /* paranoid */);
71 
72  /* Attach to the address space of init_task. */
73  atomic_inc(&init_mm.mm_count);
74  current->active_mm = &init_mm;
75 
76  while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
77  mb();
78 
80 
81  set_cpu_online(cpuid, true);
82 }
83 
84 /*
85  * Cycle through the processors asking the PROM to start each one.
86  */
88 {
90  local_ops->cache_all();
91 }
92 
94 {
95  unsigned long *entry = &sun4m_cpu_startup;
96  int timeout;
97  int cpu_node;
98 
99  cpu_find_by_mid(i, &cpu_node);
100  current_set[i] = task_thread_info(idle);
101 
102  /* See trampoline.S for details... */
103  entry += ((i - 1) * 3);
104 
105  /*
106  * Initialize the contexts table
107  * Since the call to prom_startcpu() trashes the structure,
108  * we need to re-initialize it for each cpu
109  */
110  smp_penguin_ctable.which_io = 0;
111  smp_penguin_ctable.phys_addr = (unsigned int) srmmu_ctx_table_phys;
112  smp_penguin_ctable.reg_size = 0;
113 
114  /* whirrr, whirrr, whirrrrrrrrr... */
115  printk(KERN_INFO "Starting CPU %d at %p\n", i, entry);
116  local_ops->cache_all();
117  prom_startcpu(cpu_node, &smp_penguin_ctable, 0, (char *)entry);
118 
119  /* wheee... it's going... */
120  for (timeout = 0; timeout < 10000; timeout++) {
121  if (cpu_callin_map[i])
122  break;
123  udelay(200);
124  }
125 
126  if (!(cpu_callin_map[i])) {
127  printk(KERN_ERR "Processor %d is stuck.\n", i);
128  return -ENODEV;
129  }
130 
131  local_ops->cache_all();
132  return 0;
133 }
134 
136 {
137  int i, first;
138  int *prev;
139 
140  /* setup cpu list for irq rotation */
141  first = 0;
142  prev = &first;
144  *prev = i;
145  prev = &cpu_data(i).next;
146  }
147  *prev = first;
148  local_ops->cache_all();
149 
150  /* Ok, they are spinning and ready to go. */
151 }
152 
153 static void sun4m_send_ipi(int cpu, int level)
154 {
155  sbus_writel(SUN4M_SOFT_INT(level), &sun4m_irq_percpu[cpu]->set);
156 }
157 
158 static void sun4m_ipi_resched(int cpu)
159 {
160  sun4m_send_ipi(cpu, IRQ_IPI_RESCHED);
161 }
162 
163 static void sun4m_ipi_single(int cpu)
164 {
165  sun4m_send_ipi(cpu, IRQ_IPI_SINGLE);
166 }
167 
168 static void sun4m_ipi_mask_one(int cpu)
169 {
170  sun4m_send_ipi(cpu, IRQ_IPI_MASK);
171 }
172 
173 static struct smp_funcall {
174  smpfunc_t func;
175  unsigned long arg1;
176  unsigned long arg2;
177  unsigned long arg3;
178  unsigned long arg4;
179  unsigned long arg5;
180  unsigned long processors_in[SUN4M_NCPUS]; /* Set when ipi entered. */
181  unsigned long processors_out[SUN4M_NCPUS]; /* Set when ipi exited. */
182 } ccall_info;
183 
184 static DEFINE_SPINLOCK(cross_call_lock);
185 
186 /* Cross calls must be serialized, at least currently. */
187 static void sun4m_cross_call(smpfunc_t func, cpumask_t mask, unsigned long arg1,
188  unsigned long arg2, unsigned long arg3,
189  unsigned long arg4)
190 {
191  register int ncpus = SUN4M_NCPUS;
192  unsigned long flags;
193 
194  spin_lock_irqsave(&cross_call_lock, flags);
195 
196  /* Init function glue. */
197  ccall_info.func = func;
198  ccall_info.arg1 = arg1;
199  ccall_info.arg2 = arg2;
200  ccall_info.arg3 = arg3;
201  ccall_info.arg4 = arg4;
202  ccall_info.arg5 = 0;
203 
204  /* Init receive/complete mapping, plus fire the IPI's off. */
205  {
206  register int i;
207 
208  cpumask_clear_cpu(smp_processor_id(), &mask);
209  cpumask_and(&mask, cpu_online_mask, &mask);
210  for (i = 0; i < ncpus; i++) {
211  if (cpumask_test_cpu(i, &mask)) {
212  ccall_info.processors_in[i] = 0;
213  ccall_info.processors_out[i] = 0;
214  sun4m_send_ipi(i, IRQ_CROSS_CALL);
215  } else {
216  ccall_info.processors_in[i] = 1;
217  ccall_info.processors_out[i] = 1;
218  }
219  }
220  }
221 
222  {
223  register int i;
224 
225  i = 0;
226  do {
227  if (!cpumask_test_cpu(i, &mask))
228  continue;
229  while (!ccall_info.processors_in[i])
230  barrier();
231  } while (++i < ncpus);
232 
233  i = 0;
234  do {
235  if (!cpumask_test_cpu(i, &mask))
236  continue;
237  while (!ccall_info.processors_out[i])
238  barrier();
239  } while (++i < ncpus);
240  }
241  spin_unlock_irqrestore(&cross_call_lock, flags);
242 }
243 
244 /* Running cross calls. */
246 {
247  int i = smp_processor_id();
248 
249  ccall_info.processors_in[i] = 1;
250  ccall_info.func(ccall_info.arg1, ccall_info.arg2, ccall_info.arg3,
251  ccall_info.arg4, ccall_info.arg5);
252  ccall_info.processors_out[i] = 1;
253 }
254 
256 {
257  struct pt_regs *old_regs;
258  struct clock_event_device *ce;
259  int cpu = smp_processor_id();
260 
261  old_regs = set_irq_regs(regs);
262 
263  ce = &per_cpu(sparc32_clockevent, cpu);
264 
265  if (ce->mode & CLOCK_EVT_MODE_PERIODIC)
267  else
268  sparc_config.load_profile_irq(cpu, 0); /* Is this needless? */
269 
270  irq_enter();
271  ce->event_handler(ce);
272  irq_exit();
273 
274  set_irq_regs(old_regs);
275 }
276 
277 static const struct sparc32_ipi_ops sun4m_ipi_ops = {
278  .cross_call = sun4m_cross_call,
279  .resched = sun4m_ipi_resched,
280  .single = sun4m_ipi_single,
281  .mask_one = sun4m_ipi_mask_one,
282 };
283 
285 {
286  sparc32_ipi_ops = &sun4m_ipi_ops;
287 }