Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sunqe.c
Go to the documentation of this file.
1 /* sunqe.c: Sparc QuadEthernet 10baseT SBUS card driver.
2  * Once again I am out to prove that every ethernet
3  * controller out there can be most efficiently programmed
4  * if you make it look like a LANCE.
5  *
6  * Copyright (C) 1996, 1999, 2003, 2006, 2008 David S. Miller ([email protected])
7  */
8 
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/errno.h>
13 #include <linux/fcntl.h>
14 #include <linux/interrupt.h>
15 #include <linux/ioport.h>
16 #include <linux/in.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/delay.h>
20 #include <linux/init.h>
21 #include <linux/crc32.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/skbuff.h>
25 #include <linux/ethtool.h>
26 #include <linux/bitops.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/of.h>
29 #include <linux/of_device.h>
30 
31 #include <asm/io.h>
32 #include <asm/dma.h>
33 #include <asm/byteorder.h>
34 #include <asm/idprom.h>
35 #include <asm/openprom.h>
36 #include <asm/oplib.h>
37 #include <asm/auxio.h>
38 #include <asm/pgtable.h>
39 #include <asm/irq.h>
40 
41 #include "sunqe.h"
42 
43 #define DRV_NAME "sunqe"
44 #define DRV_VERSION "4.1"
45 #define DRV_RELDATE "August 27, 2008"
46 #define DRV_AUTHOR "David S. Miller ([email protected])"
47 
48 static char version[] =
49  DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
50 
53 MODULE_DESCRIPTION("Sun QuadEthernet 10baseT SBUS card driver");
54 MODULE_LICENSE("GPL");
55 
56 static struct sunqec *root_qec_dev;
57 
58 static void qe_set_multicast(struct net_device *dev);
59 
60 #define QEC_RESET_TRIES 200
61 
62 static inline int qec_global_reset(void __iomem *gregs)
63 {
64  int tries = QEC_RESET_TRIES;
65 
67  while (--tries) {
68  u32 tmp = sbus_readl(gregs + GLOB_CTRL);
69  if (tmp & GLOB_CTRL_RESET) {
70  udelay(20);
71  continue;
72  }
73  break;
74  }
75  if (tries)
76  return 0;
77  printk(KERN_ERR "QuadEther: AIEEE cannot reset the QEC!\n");
78  return -1;
79 }
80 
81 #define MACE_RESET_RETRIES 200
82 #define QE_RESET_RETRIES 200
83 
84 static inline int qe_stop(struct sunqe *qep)
85 {
86  void __iomem *cregs = qep->qcregs;
87  void __iomem *mregs = qep->mregs;
88  int tries;
89 
90  /* Reset the MACE, then the QEC channel. */
92  tries = MACE_RESET_RETRIES;
93  while (--tries) {
94  u8 tmp = sbus_readb(mregs + MREGS_BCONFIG);
95  if (tmp & MREGS_BCONFIG_RESET) {
96  udelay(20);
97  continue;
98  }
99  break;
100  }
101  if (!tries) {
102  printk(KERN_ERR "QuadEther: AIEEE cannot reset the MACE!\n");
103  return -1;
104  }
105 
107  tries = QE_RESET_RETRIES;
108  while (--tries) {
109  u32 tmp = sbus_readl(cregs + CREG_CTRL);
110  if (tmp & CREG_CTRL_RESET) {
111  udelay(20);
112  continue;
113  }
114  break;
115  }
116  if (!tries) {
117  printk(KERN_ERR "QuadEther: Cannot reset QE channel!\n");
118  return -1;
119  }
120  return 0;
121 }
122 
123 static void qe_init_rings(struct sunqe *qep)
124 {
125  struct qe_init_block *qb = qep->qe_block;
126  struct sunqe_buffers *qbufs = qep->buffers;
127  __u32 qbufs_dvma = qep->buffers_dvma;
128  int i;
129 
130  qep->rx_new = qep->rx_old = qep->tx_new = qep->tx_old = 0;
131  memset(qb, 0, sizeof(struct qe_init_block));
132  memset(qbufs, 0, sizeof(struct sunqe_buffers));
133  for (i = 0; i < RX_RING_SIZE; i++) {
134  qb->qe_rxd[i].rx_addr = qbufs_dvma + qebuf_offset(rx_buf, i);
135  qb->qe_rxd[i].rx_flags =
136  (RXD_OWN | ((RXD_PKT_SZ) & RXD_LENGTH));
137  }
138 }
139 
140 static int qe_init(struct sunqe *qep, int from_irq)
141 {
142  struct sunqec *qecp = qep->parent;
143  void __iomem *cregs = qep->qcregs;
144  void __iomem *mregs = qep->mregs;
145  void __iomem *gregs = qecp->gregs;
146  unsigned char *e = &qep->dev->dev_addr[0];
147  u32 tmp;
148  int i;
149 
150  /* Shut it up. */
151  if (qe_stop(qep))
152  return -EAGAIN;
153 
154  /* Setup initial rx/tx init block pointers. */
155  sbus_writel(qep->qblock_dvma + qib_offset(qe_rxd, 0), cregs + CREG_RXDS);
156  sbus_writel(qep->qblock_dvma + qib_offset(qe_txd, 0), cregs + CREG_TXDS);
157 
158  /* Enable/mask the various irq's. */
159  sbus_writel(0, cregs + CREG_RIMASK);
160  sbus_writel(1, cregs + CREG_TIMASK);
161 
162  sbus_writel(0, cregs + CREG_QMASK);
164 
165  /* Setup the FIFO pointers into QEC local memory. */
166  tmp = qep->channel * sbus_readl(gregs + GLOB_MSIZE);
167  sbus_writel(tmp, cregs + CREG_RXRBUFPTR);
168  sbus_writel(tmp, cregs + CREG_RXWBUFPTR);
169 
170  tmp = sbus_readl(cregs + CREG_RXRBUFPTR) +
171  sbus_readl(gregs + GLOB_RSIZE);
172  sbus_writel(tmp, cregs + CREG_TXRBUFPTR);
173  sbus_writel(tmp, cregs + CREG_TXWBUFPTR);
174 
175  /* Clear the channel collision counter. */
176  sbus_writel(0, cregs + CREG_CCNT);
177 
178  /* For 10baseT, inter frame space nor throttle seems to be necessary. */
179  sbus_writel(0, cregs + CREG_PIPG);
180 
181  /* Now dork with the AMD MACE. */
184  sbus_writeb(0, mregs + MREGS_RXFCNTL);
185 
186  /* The QEC dma's the rx'd packets from local memory out to main memory,
187  * and therefore it interrupts when the packet reception is "complete".
188  * So don't listen for the MACE talking about it.
189  */
194  mregs + MREGS_FCONFIG);
195 
196  /* Only usable interface on QuadEther is twisted pair. */
198 
199  /* Tell MACE we are changing the ether address. */
201  mregs + MREGS_IACONFIG);
202  while ((sbus_readb(mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
203  barrier();
204  sbus_writeb(e[0], mregs + MREGS_ETHADDR);
205  sbus_writeb(e[1], mregs + MREGS_ETHADDR);
206  sbus_writeb(e[2], mregs + MREGS_ETHADDR);
207  sbus_writeb(e[3], mregs + MREGS_ETHADDR);
208  sbus_writeb(e[4], mregs + MREGS_ETHADDR);
209  sbus_writeb(e[5], mregs + MREGS_ETHADDR);
210 
211  /* Clear out the address filter. */
212  sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
213  mregs + MREGS_IACONFIG);
214  while ((sbus_readb(mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
215  barrier();
216  for (i = 0; i < 8; i++)
217  sbus_writeb(0, mregs + MREGS_FILTER);
218 
219  /* Address changes are now complete. */
220  sbus_writeb(0, mregs + MREGS_IACONFIG);
221 
222  qe_init_rings(qep);
223 
224  /* Wait a little bit for the link to come up... */
225  mdelay(5);
227  int tries = 50;
228 
229  while (--tries) {
230  u8 tmp;
231 
232  mdelay(5);
233  barrier();
234  tmp = sbus_readb(mregs + MREGS_PHYCONFIG);
235  if ((tmp & MREGS_PHYCONFIG_LSTAT) != 0)
236  break;
237  }
238  if (tries == 0)
239  printk(KERN_NOTICE "%s: Warning, link state is down.\n", qep->dev->name);
240  }
241 
242  /* Missed packet counter is cleared on a read. */
243  sbus_readb(mregs + MREGS_MPCNT);
244 
245  /* Reload multicast information, this will enable the receiver
246  * and transmitter.
247  */
248  qe_set_multicast(qep->dev);
249 
250  /* QEC should now start to show interrupts. */
251  return 0;
252 }
253 
254 /* Grrr, certain error conditions completely lock up the AMD MACE,
255  * so when we get these we _must_ reset the chip.
256  */
257 static int qe_is_bolixed(struct sunqe *qep, u32 qe_status)
258 {
259  struct net_device *dev = qep->dev;
260  int mace_hwbug_workaround = 0;
261 
262  if (qe_status & CREG_STAT_EDEFER) {
263  printk(KERN_ERR "%s: Excessive transmit defers.\n", dev->name);
264  dev->stats.tx_errors++;
265  }
266 
267  if (qe_status & CREG_STAT_CLOSS) {
268  printk(KERN_ERR "%s: Carrier lost, link down?\n", dev->name);
269  dev->stats.tx_errors++;
270  dev->stats.tx_carrier_errors++;
271  }
272 
273  if (qe_status & CREG_STAT_ERETRIES) {
274  printk(KERN_ERR "%s: Excessive transmit retries (more than 16).\n", dev->name);
275  dev->stats.tx_errors++;
276  mace_hwbug_workaround = 1;
277  }
278 
279  if (qe_status & CREG_STAT_LCOLL) {
280  printk(KERN_ERR "%s: Late transmit collision.\n", dev->name);
281  dev->stats.tx_errors++;
282  dev->stats.collisions++;
283  mace_hwbug_workaround = 1;
284  }
285 
286  if (qe_status & CREG_STAT_FUFLOW) {
287  printk(KERN_ERR "%s: Transmit fifo underflow, driver bug.\n", dev->name);
288  dev->stats.tx_errors++;
289  mace_hwbug_workaround = 1;
290  }
291 
292  if (qe_status & CREG_STAT_JERROR) {
293  printk(KERN_ERR "%s: Jabber error.\n", dev->name);
294  }
295 
296  if (qe_status & CREG_STAT_BERROR) {
297  printk(KERN_ERR "%s: Babble error.\n", dev->name);
298  }
299 
300  if (qe_status & CREG_STAT_CCOFLOW) {
301  dev->stats.tx_errors += 256;
302  dev->stats.collisions += 256;
303  }
304 
305  if (qe_status & CREG_STAT_TXDERROR) {
306  printk(KERN_ERR "%s: Transmit descriptor is bogus, driver bug.\n", dev->name);
307  dev->stats.tx_errors++;
308  dev->stats.tx_aborted_errors++;
309  mace_hwbug_workaround = 1;
310  }
311 
312  if (qe_status & CREG_STAT_TXLERR) {
313  printk(KERN_ERR "%s: Transmit late error.\n", dev->name);
314  dev->stats.tx_errors++;
315  mace_hwbug_workaround = 1;
316  }
317 
318  if (qe_status & CREG_STAT_TXPERR) {
319  printk(KERN_ERR "%s: Transmit DMA parity error.\n", dev->name);
320  dev->stats.tx_errors++;
321  dev->stats.tx_aborted_errors++;
322  mace_hwbug_workaround = 1;
323  }
324 
325  if (qe_status & CREG_STAT_TXSERR) {
326  printk(KERN_ERR "%s: Transmit DMA sbus error ack.\n", dev->name);
327  dev->stats.tx_errors++;
328  dev->stats.tx_aborted_errors++;
329  mace_hwbug_workaround = 1;
330  }
331 
332  if (qe_status & CREG_STAT_RCCOFLOW) {
333  dev->stats.rx_errors += 256;
334  dev->stats.collisions += 256;
335  }
336 
337  if (qe_status & CREG_STAT_RUOFLOW) {
338  dev->stats.rx_errors += 256;
339  dev->stats.rx_over_errors += 256;
340  }
341 
342  if (qe_status & CREG_STAT_MCOFLOW) {
343  dev->stats.rx_errors += 256;
344  dev->stats.rx_missed_errors += 256;
345  }
346 
347  if (qe_status & CREG_STAT_RXFOFLOW) {
348  printk(KERN_ERR "%s: Receive fifo overflow.\n", dev->name);
349  dev->stats.rx_errors++;
350  dev->stats.rx_over_errors++;
351  }
352 
353  if (qe_status & CREG_STAT_RLCOLL) {
354  printk(KERN_ERR "%s: Late receive collision.\n", dev->name);
355  dev->stats.rx_errors++;
356  dev->stats.collisions++;
357  }
358 
359  if (qe_status & CREG_STAT_FCOFLOW) {
360  dev->stats.rx_errors += 256;
361  dev->stats.rx_frame_errors += 256;
362  }
363 
364  if (qe_status & CREG_STAT_CECOFLOW) {
365  dev->stats.rx_errors += 256;
366  dev->stats.rx_crc_errors += 256;
367  }
368 
369  if (qe_status & CREG_STAT_RXDROP) {
370  printk(KERN_ERR "%s: Receive packet dropped.\n", dev->name);
371  dev->stats.rx_errors++;
372  dev->stats.rx_dropped++;
373  dev->stats.rx_missed_errors++;
374  }
375 
376  if (qe_status & CREG_STAT_RXSMALL) {
377  printk(KERN_ERR "%s: Receive buffer too small, driver bug.\n", dev->name);
378  dev->stats.rx_errors++;
379  dev->stats.rx_length_errors++;
380  }
381 
382  if (qe_status & CREG_STAT_RXLERR) {
383  printk(KERN_ERR "%s: Receive late error.\n", dev->name);
384  dev->stats.rx_errors++;
385  mace_hwbug_workaround = 1;
386  }
387 
388  if (qe_status & CREG_STAT_RXPERR) {
389  printk(KERN_ERR "%s: Receive DMA parity error.\n", dev->name);
390  dev->stats.rx_errors++;
391  dev->stats.rx_missed_errors++;
392  mace_hwbug_workaround = 1;
393  }
394 
395  if (qe_status & CREG_STAT_RXSERR) {
396  printk(KERN_ERR "%s: Receive DMA sbus error ack.\n", dev->name);
397  dev->stats.rx_errors++;
398  dev->stats.rx_missed_errors++;
399  mace_hwbug_workaround = 1;
400  }
401 
402  if (mace_hwbug_workaround)
403  qe_init(qep, 1);
404  return mace_hwbug_workaround;
405 }
406 
407 /* Per-QE receive interrupt service routine. Just like on the happy meal
408  * we receive directly into skb's with a small packet copy water mark.
409  */
410 static void qe_rx(struct sunqe *qep)
411 {
412  struct qe_rxd *rxbase = &qep->qe_block->qe_rxd[0];
413  struct net_device *dev = qep->dev;
414  struct qe_rxd *this;
415  struct sunqe_buffers *qbufs = qep->buffers;
416  __u32 qbufs_dvma = qep->buffers_dvma;
417  int elem = qep->rx_new, drops = 0;
418  u32 flags;
419 
420  this = &rxbase[elem];
421  while (!((flags = this->rx_flags) & RXD_OWN)) {
422  struct sk_buff *skb;
423  unsigned char *this_qbuf =
424  &qbufs->rx_buf[elem & (RX_RING_SIZE - 1)][0];
425  __u32 this_qbuf_dvma = qbufs_dvma +
426  qebuf_offset(rx_buf, (elem & (RX_RING_SIZE - 1)));
427  struct qe_rxd *end_rxd =
428  &rxbase[(elem+RX_RING_SIZE)&(RX_RING_MAXSIZE-1)];
429  int len = (flags & RXD_LENGTH) - 4; /* QE adds ether FCS size to len */
430 
431  /* Check for errors. */
432  if (len < ETH_ZLEN) {
433  dev->stats.rx_errors++;
434  dev->stats.rx_length_errors++;
435  dev->stats.rx_dropped++;
436  } else {
437  skb = netdev_alloc_skb(dev, len + 2);
438  if (skb == NULL) {
439  drops++;
440  dev->stats.rx_dropped++;
441  } else {
442  skb_reserve(skb, 2);
443  skb_put(skb, len);
444  skb_copy_to_linear_data(skb, this_qbuf,
445  len);
446  skb->protocol = eth_type_trans(skb, qep->dev);
447  netif_rx(skb);
448  dev->stats.rx_packets++;
449  dev->stats.rx_bytes += len;
450  }
451  }
452  end_rxd->rx_addr = this_qbuf_dvma;
453  end_rxd->rx_flags = (RXD_OWN | ((RXD_PKT_SZ) & RXD_LENGTH));
454 
455  elem = NEXT_RX(elem);
456  this = &rxbase[elem];
457  }
458  qep->rx_new = elem;
459  if (drops)
460  printk(KERN_NOTICE "%s: Memory squeeze, deferring packet.\n", qep->dev->name);
461 }
462 
463 static void qe_tx_reclaim(struct sunqe *qep);
464 
465 /* Interrupts for all QE's get filtered out via the QEC master controller,
466  * so we just run through each qe and check to see who is signaling
467  * and thus needs to be serviced.
468  */
469 static irqreturn_t qec_interrupt(int irq, void *dev_id)
470 {
471  struct sunqec *qecp = dev_id;
472  u32 qec_status;
473  int channel = 0;
474 
475  /* Latch the status now. */
476  qec_status = sbus_readl(qecp->gregs + GLOB_STAT);
477  while (channel < 4) {
478  if (qec_status & 0xf) {
479  struct sunqe *qep = qecp->qes[channel];
480  u32 qe_status;
481 
482  qe_status = sbus_readl(qep->qcregs + CREG_STAT);
483  if (qe_status & CREG_STAT_ERRORS) {
484  if (qe_is_bolixed(qep, qe_status))
485  goto next;
486  }
487  if (qe_status & CREG_STAT_RXIRQ)
488  qe_rx(qep);
489  if (netif_queue_stopped(qep->dev) &&
490  (qe_status & CREG_STAT_TXIRQ)) {
491  spin_lock(&qep->lock);
492  qe_tx_reclaim(qep);
493  if (TX_BUFFS_AVAIL(qep) > 0) {
494  /* Wake net queue and return to
495  * lazy tx reclaim.
496  */
497  netif_wake_queue(qep->dev);
498  sbus_writel(1, qep->qcregs + CREG_TIMASK);
499  }
500  spin_unlock(&qep->lock);
501  }
502  next:
503  ;
504  }
505  qec_status >>= 4;
506  channel++;
507  }
508 
509  return IRQ_HANDLED;
510 }
511 
512 static int qe_open(struct net_device *dev)
513 {
514  struct sunqe *qep = netdev_priv(dev);
515 
516  qep->mconfig = (MREGS_MCONFIG_TXENAB |
519  return qe_init(qep, 0);
520 }
521 
522 static int qe_close(struct net_device *dev)
523 {
524  struct sunqe *qep = netdev_priv(dev);
525 
526  qe_stop(qep);
527  return 0;
528 }
529 
530 /* Reclaim TX'd frames from the ring. This must always run under
531  * the IRQ protected qep->lock.
532  */
533 static void qe_tx_reclaim(struct sunqe *qep)
534 {
535  struct qe_txd *txbase = &qep->qe_block->qe_txd[0];
536  int elem = qep->tx_old;
537 
538  while (elem != qep->tx_new) {
539  u32 flags = txbase[elem].tx_flags;
540 
541  if (flags & TXD_OWN)
542  break;
543  elem = NEXT_TX(elem);
544  }
545  qep->tx_old = elem;
546 }
547 
548 static void qe_tx_timeout(struct net_device *dev)
549 {
550  struct sunqe *qep = netdev_priv(dev);
551  int tx_full;
552 
553  spin_lock_irq(&qep->lock);
554 
555  /* Try to reclaim, if that frees up some tx
556  * entries, we're fine.
557  */
558  qe_tx_reclaim(qep);
559  tx_full = TX_BUFFS_AVAIL(qep) <= 0;
560 
561  spin_unlock_irq(&qep->lock);
562 
563  if (! tx_full)
564  goto out;
565 
566  printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
567  qe_init(qep, 1);
568 
569 out:
570  netif_wake_queue(dev);
571 }
572 
573 /* Get a packet queued to go onto the wire. */
574 static int qe_start_xmit(struct sk_buff *skb, struct net_device *dev)
575 {
576  struct sunqe *qep = netdev_priv(dev);
577  struct sunqe_buffers *qbufs = qep->buffers;
578  __u32 txbuf_dvma, qbufs_dvma = qep->buffers_dvma;
579  unsigned char *txbuf;
580  int len, entry;
581 
582  spin_lock_irq(&qep->lock);
583 
584  qe_tx_reclaim(qep);
585 
586  len = skb->len;
587  entry = qep->tx_new;
588 
589  txbuf = &qbufs->tx_buf[entry & (TX_RING_SIZE - 1)][0];
590  txbuf_dvma = qbufs_dvma +
591  qebuf_offset(tx_buf, (entry & (TX_RING_SIZE - 1)));
592 
593  /* Avoid a race... */
594  qep->qe_block->qe_txd[entry].tx_flags = TXD_UPDATE;
595 
596  skb_copy_from_linear_data(skb, txbuf, len);
597 
598  qep->qe_block->qe_txd[entry].tx_addr = txbuf_dvma;
599  qep->qe_block->qe_txd[entry].tx_flags =
600  (TXD_OWN | TXD_SOP | TXD_EOP | (len & TXD_LENGTH));
601  qep->tx_new = NEXT_TX(entry);
602 
603  /* Get it going. */
605 
606  dev->stats.tx_packets++;
607  dev->stats.tx_bytes += len;
608 
609  if (TX_BUFFS_AVAIL(qep) <= 0) {
610  /* Halt the net queue and enable tx interrupts.
611  * When the tx queue empties the tx irq handler
612  * will wake up the queue and return us back to
613  * the lazy tx reclaim scheme.
614  */
615  netif_stop_queue(dev);
616  sbus_writel(0, qep->qcregs + CREG_TIMASK);
617  }
618  spin_unlock_irq(&qep->lock);
619 
620  dev_kfree_skb(skb);
621 
622  return NETDEV_TX_OK;
623 }
624 
625 static void qe_set_multicast(struct net_device *dev)
626 {
627  struct sunqe *qep = netdev_priv(dev);
628  struct netdev_hw_addr *ha;
629  u8 new_mconfig = qep->mconfig;
630  int i;
631  u32 crc;
632 
633  /* Lock out others. */
634  netif_stop_queue(dev);
635 
636  if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 64)) {
637  sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
638  qep->mregs + MREGS_IACONFIG);
639  while ((sbus_readb(qep->mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
640  barrier();
641  for (i = 0; i < 8; i++)
642  sbus_writeb(0xff, qep->mregs + MREGS_FILTER);
643  sbus_writeb(0, qep->mregs + MREGS_IACONFIG);
644  } else if (dev->flags & IFF_PROMISC) {
645  new_mconfig |= MREGS_MCONFIG_PROMISC;
646  } else {
647  u16 hash_table[4];
648  u8 *hbytes = (unsigned char *) &hash_table[0];
649 
650  memset(hash_table, 0, sizeof(hash_table));
651  netdev_for_each_mc_addr(ha, dev) {
652  crc = ether_crc_le(6, ha->addr);
653  crc >>= 26;
654  hash_table[crc >> 4] |= 1 << (crc & 0xf);
655  }
656  /* Program the qe with the new filter value. */
657  sbus_writeb(MREGS_IACONFIG_ACHNGE | MREGS_IACONFIG_LARESET,
658  qep->mregs + MREGS_IACONFIG);
659  while ((sbus_readb(qep->mregs + MREGS_IACONFIG) & MREGS_IACONFIG_ACHNGE) != 0)
660  barrier();
661  for (i = 0; i < 8; i++) {
662  u8 tmp = *hbytes++;
663  sbus_writeb(tmp, qep->mregs + MREGS_FILTER);
664  }
665  sbus_writeb(0, qep->mregs + MREGS_IACONFIG);
666  }
667 
668  /* Any change of the logical address filter, the physical address,
669  * or enabling/disabling promiscuous mode causes the MACE to disable
670  * the receiver. So we must re-enable them here or else the MACE
671  * refuses to listen to anything on the network. Sheesh, took
672  * me a day or two to find this bug.
673  */
674  qep->mconfig = new_mconfig;
675  sbus_writeb(qep->mconfig, qep->mregs + MREGS_MCONFIG);
676 
677  /* Let us get going again. */
678  netif_wake_queue(dev);
679 }
680 
681 /* Ethtool support... */
682 static void qe_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
683 {
684  const struct linux_prom_registers *regs;
685  struct sunqe *qep = netdev_priv(dev);
686  struct platform_device *op;
687 
688  strcpy(info->driver, "sunqe");
689  strcpy(info->version, "3.0");
690 
691  op = qep->op;
692  regs = of_get_property(op->dev.of_node, "reg", NULL);
693  if (regs)
694  sprintf(info->bus_info, "SBUS:%d", regs->which_io);
695 
696 }
697 
698 static u32 qe_get_link(struct net_device *dev)
699 {
700  struct sunqe *qep = netdev_priv(dev);
701  void __iomem *mregs = qep->mregs;
702  u8 phyconfig;
703 
704  spin_lock_irq(&qep->lock);
705  phyconfig = sbus_readb(mregs + MREGS_PHYCONFIG);
706  spin_unlock_irq(&qep->lock);
707 
708  return phyconfig & MREGS_PHYCONFIG_LSTAT;
709 }
710 
711 static const struct ethtool_ops qe_ethtool_ops = {
712  .get_drvinfo = qe_get_drvinfo,
713  .get_link = qe_get_link,
714 };
715 
716 /* This is only called once at boot time for each card probed. */
717 static void qec_init_once(struct sunqec *qecp, struct platform_device *op)
718 {
719  u8 bsizes = qecp->qec_bursts;
720 
721  if (sbus_can_burst64() && (bsizes & DMA_BURST64)) {
723  } else if (bsizes & DMA_BURST32) {
725  } else {
727  }
728 
729  /* Packetsize only used in 100baseT BigMAC configurations,
730  * set it to zero just to be on the safe side.
731  */
733 
734  /* Set the local memsize register, divided up to one piece per QE channel. */
735  sbus_writel((resource_size(&op->resource[1]) >> 2),
736  qecp->gregs + GLOB_MSIZE);
737 
738  /* Divide up the local QEC memory amongst the 4 QE receiver and
739  * transmitter FIFOs. Basically it is (total / 2 / num_channels).
740  */
741  sbus_writel((resource_size(&op->resource[1]) >> 2) >> 1,
742  qecp->gregs + GLOB_TSIZE);
743  sbus_writel((resource_size(&op->resource[1]) >> 2) >> 1,
744  qecp->gregs + GLOB_RSIZE);
745 }
746 
747 static u8 __devinit qec_get_burst(struct device_node *dp)
748 {
749  u8 bsizes, bsizes_more;
750 
751  /* Find and set the burst sizes for the QEC, since it
752  * does the actual dma for all 4 channels.
753  */
754  bsizes = of_getintprop_default(dp, "burst-sizes", 0xff);
755  bsizes &= 0xff;
756  bsizes_more = of_getintprop_default(dp->parent, "burst-sizes", 0xff);
757 
758  if (bsizes_more != 0xff)
759  bsizes &= bsizes_more;
760  if (bsizes == 0xff || (bsizes & DMA_BURST16) == 0 ||
761  (bsizes & DMA_BURST32)==0)
762  bsizes = (DMA_BURST32 - 1);
763 
764  return bsizes;
765 }
766 
767 static struct sunqec * __devinit get_qec(struct platform_device *child)
768 {
769  struct platform_device *op = to_platform_device(child->dev.parent);
770  struct sunqec *qecp;
771 
772  qecp = dev_get_drvdata(&op->dev);
773  if (!qecp) {
774  qecp = kzalloc(sizeof(struct sunqec), GFP_KERNEL);
775  if (qecp) {
776  u32 ctrl;
777 
778  qecp->op = op;
779  qecp->gregs = of_ioremap(&op->resource[0], 0,
781  "QEC Global Registers");
782  if (!qecp->gregs)
783  goto fail;
784 
785  /* Make sure the QEC is in MACE mode. */
786  ctrl = sbus_readl(qecp->gregs + GLOB_CTRL);
787  ctrl &= 0xf0000000;
788  if (ctrl != GLOB_CTRL_MMODE) {
789  printk(KERN_ERR "qec: Not in MACE mode!\n");
790  goto fail;
791  }
792 
793  if (qec_global_reset(qecp->gregs))
794  goto fail;
795 
796  qecp->qec_bursts = qec_get_burst(op->dev.of_node);
797 
798  qec_init_once(qecp, op);
799 
800  if (request_irq(op->archdata.irqs[0], qec_interrupt,
801  IRQF_SHARED, "qec", (void *) qecp)) {
802  printk(KERN_ERR "qec: Can't register irq.\n");
803  goto fail;
804  }
805 
806  dev_set_drvdata(&op->dev, qecp);
807 
808  qecp->next_module = root_qec_dev;
809  root_qec_dev = qecp;
810  }
811  }
812 
813  return qecp;
814 
815 fail:
816  if (qecp->gregs)
817  of_iounmap(&op->resource[0], qecp->gregs, GLOB_REG_SIZE);
818  kfree(qecp);
819  return NULL;
820 }
821 
822 static const struct net_device_ops qec_ops = {
823  .ndo_open = qe_open,
824  .ndo_stop = qe_close,
825  .ndo_start_xmit = qe_start_xmit,
826  .ndo_set_rx_mode = qe_set_multicast,
827  .ndo_tx_timeout = qe_tx_timeout,
828  .ndo_change_mtu = eth_change_mtu,
829  .ndo_set_mac_address = eth_mac_addr,
830  .ndo_validate_addr = eth_validate_addr,
831 };
832 
833 static int __devinit qec_ether_init(struct platform_device *op)
834 {
835  static unsigned version_printed;
836  struct net_device *dev;
837  struct sunqec *qecp;
838  struct sunqe *qe;
839  int i, res;
840 
841  if (version_printed++ == 0)
842  printk(KERN_INFO "%s", version);
843 
844  dev = alloc_etherdev(sizeof(struct sunqe));
845  if (!dev)
846  return -ENOMEM;
847 
848  memcpy(dev->dev_addr, idprom->id_ethaddr, 6);
849 
850  qe = netdev_priv(dev);
851 
852  res = -ENODEV;
853 
854  i = of_getintprop_default(op->dev.of_node, "channel#", -1);
855  if (i == -1)
856  goto fail;
857  qe->channel = i;
858  spin_lock_init(&qe->lock);
859 
860  qecp = get_qec(op);
861  if (!qecp)
862  goto fail;
863 
864  qecp->qes[qe->channel] = qe;
865  qe->dev = dev;
866  qe->parent = qecp;
867  qe->op = op;
868 
869  res = -ENOMEM;
870  qe->qcregs = of_ioremap(&op->resource[0], 0,
871  CREG_REG_SIZE, "QEC Channel Registers");
872  if (!qe->qcregs) {
873  printk(KERN_ERR "qe: Cannot map channel registers.\n");
874  goto fail;
875  }
876 
877  qe->mregs = of_ioremap(&op->resource[1], 0,
878  MREGS_REG_SIZE, "QE MACE Registers");
879  if (!qe->mregs) {
880  printk(KERN_ERR "qe: Cannot map MACE registers.\n");
881  goto fail;
882  }
883 
885  &qe->qblock_dvma, GFP_ATOMIC);
886  qe->buffers = dma_alloc_coherent(&op->dev, sizeof(struct sunqe_buffers),
887  &qe->buffers_dvma, GFP_ATOMIC);
888  if (qe->qe_block == NULL || qe->qblock_dvma == 0 ||
889  qe->buffers == NULL || qe->buffers_dvma == 0)
890  goto fail;
891 
892  /* Stop this QE. */
893  qe_stop(qe);
894 
895  SET_NETDEV_DEV(dev, &op->dev);
896 
897  dev->watchdog_timeo = 5*HZ;
898  dev->irq = op->archdata.irqs[0];
899  dev->dma = 0;
900  dev->ethtool_ops = &qe_ethtool_ops;
901  dev->netdev_ops = &qec_ops;
902 
903  res = register_netdev(dev);
904  if (res)
905  goto fail;
906 
907  dev_set_drvdata(&op->dev, qe);
908 
909  printk(KERN_INFO "%s: qe channel[%d] %pM\n", dev->name, qe->channel,
910  dev->dev_addr);
911  return 0;
912 
913 fail:
914  if (qe->qcregs)
915  of_iounmap(&op->resource[0], qe->qcregs, CREG_REG_SIZE);
916  if (qe->mregs)
917  of_iounmap(&op->resource[1], qe->mregs, MREGS_REG_SIZE);
918  if (qe->qe_block)
920  qe->qe_block, qe->qblock_dvma);
921  if (qe->buffers)
922  dma_free_coherent(&op->dev,
923  sizeof(struct sunqe_buffers),
924  qe->buffers,
925  qe->buffers_dvma);
926 
927  free_netdev(dev);
928 
929  return res;
930 }
931 
932 static int __devinit qec_sbus_probe(struct platform_device *op)
933 {
934  return qec_ether_init(op);
935 }
936 
937 static int __devexit qec_sbus_remove(struct platform_device *op)
938 {
939  struct sunqe *qp = dev_get_drvdata(&op->dev);
940  struct net_device *net_dev = qp->dev;
941 
942  unregister_netdev(net_dev);
943 
944  of_iounmap(&op->resource[0], qp->qcregs, CREG_REG_SIZE);
945  of_iounmap(&op->resource[1], qp->mregs, MREGS_REG_SIZE);
947  qp->qe_block, qp->qblock_dvma);
948  dma_free_coherent(&op->dev, sizeof(struct sunqe_buffers),
949  qp->buffers, qp->buffers_dvma);
950 
951  free_netdev(net_dev);
952 
953  dev_set_drvdata(&op->dev, NULL);
954 
955  return 0;
956 }
957 
958 static const struct of_device_id qec_sbus_match[] = {
959  {
960  .name = "qe",
961  },
962  {},
963 };
964 
965 MODULE_DEVICE_TABLE(of, qec_sbus_match);
966 
967 static struct platform_driver qec_sbus_driver = {
968  .driver = {
969  .name = "qec",
970  .owner = THIS_MODULE,
971  .of_match_table = qec_sbus_match,
972  },
973  .probe = qec_sbus_probe,
974  .remove = __devexit_p(qec_sbus_remove),
975 };
976 
977 static int __init qec_init(void)
978 {
979  return platform_driver_register(&qec_sbus_driver);
980 }
981 
982 static void __exit qec_exit(void)
983 {
984  platform_driver_unregister(&qec_sbus_driver);
985 
986  while (root_qec_dev) {
987  struct sunqec *next = root_qec_dev->next_module;
988  struct platform_device *op = root_qec_dev->op;
989 
990  free_irq(op->archdata.irqs[0], (void *) root_qec_dev);
991  of_iounmap(&op->resource[0], root_qec_dev->gregs,
992  GLOB_REG_SIZE);
993  kfree(root_qec_dev);
994 
995  root_qec_dev = next;
996  }
997 }
998 
999 module_init(qec_init);
1000 module_exit(qec_exit);