Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
time_32.c
Go to the documentation of this file.
1 /* linux/arch/sparc/kernel/time.c
2  *
3  * Copyright (C) 1995 David S. Miller ([email protected])
4  * Copyright (C) 1996 Thomas K. Dyas ([email protected])
5  *
6  * Chris Davis ([email protected]) 03/27/1998
7  * Added support for the intersil on the sun4/4200
8  *
9  * Gleb Raiko ([email protected]) 08/18/1998
10  * Support for MicroSPARC-IIep, PCI CPU.
11  *
12  * This file handles the Sparc specific time handling details.
13  *
14  * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
15  * "A Kernel Model for Precision Timekeeping" by Dave Mills
16  */
17 #include <linux/errno.h>
18 #include <linux/module.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/param.h>
22 #include <linux/string.h>
23 #include <linux/mm.h>
24 #include <linux/interrupt.h>
25 #include <linux/time.h>
26 #include <linux/rtc.h>
27 #include <linux/rtc/m48t59.h>
28 #include <linux/timex.h>
29 #include <linux/clocksource.h>
30 #include <linux/clockchips.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/ioport.h>
34 #include <linux/profile.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
37 #include <linux/platform_device.h>
38 
39 #include <asm/oplib.h>
40 #include <asm/timex.h>
41 #include <asm/timer.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 #include <asm/idprom.h>
45 #include <asm/page.h>
46 #include <asm/pcic.h>
47 #include <asm/irq_regs.h>
48 #include <asm/setup.h>
49 
50 #include "irq.h"
51 
52 static __cacheline_aligned_in_smp DEFINE_SEQLOCK(timer_cs_lock);
53 static __volatile__ u64 timer_cs_internal_counter = 0;
54 static char timer_cs_enabled = 0;
55 
56 static struct clock_event_device timer_ce;
57 static char timer_ce_enabled = 0;
58 
59 #ifdef CONFIG_SMP
60 DEFINE_PER_CPU(struct clock_event_device, sparc32_clockevent);
61 #endif
62 
63 DEFINE_SPINLOCK(rtc_lock);
64 EXPORT_SYMBOL(rtc_lock);
65 
66 static int set_rtc_mmss(unsigned long);
67 
68 unsigned long profile_pc(struct pt_regs *regs)
69 {
70  extern char __copy_user_begin[], __copy_user_end[];
71  extern char __bzero_begin[], __bzero_end[];
72 
73  unsigned long pc = regs->pc;
74 
75  if (in_lock_functions(pc) ||
76  (pc >= (unsigned long) __copy_user_begin &&
77  pc < (unsigned long) __copy_user_end) ||
78  (pc >= (unsigned long) __bzero_begin &&
79  pc < (unsigned long) __bzero_end))
80  pc = regs->u_regs[UREG_RETPC];
81  return pc;
82 }
83 
85 
86 __volatile__ unsigned int *master_l10_counter;
87 
89 {
90  return set_rtc_mmss(now.tv_sec);
91 }
92 
94 {
95  if (timer_cs_enabled) {
96  write_seqlock(&timer_cs_lock);
97  timer_cs_internal_counter++;
99  write_sequnlock(&timer_cs_lock);
100  } else {
102  }
103 
104  if (timer_ce_enabled)
105  timer_ce.event_handler(&timer_ce);
106 
107  return IRQ_HANDLED;
108 }
109 
110 static void timer_ce_set_mode(enum clock_event_mode mode,
111  struct clock_event_device *evt)
112 {
113  switch (mode) {
114  case CLOCK_EVT_MODE_PERIODIC:
115  case CLOCK_EVT_MODE_RESUME:
116  timer_ce_enabled = 1;
117  break;
118  case CLOCK_EVT_MODE_SHUTDOWN:
119  timer_ce_enabled = 0;
120  break;
121  default:
122  break;
123  }
124  smp_mb();
125 }
126 
127 static __init void setup_timer_ce(void)
128 {
129  struct clock_event_device *ce = &timer_ce;
130 
132 
133  ce->name = "timer_ce";
134  ce->rating = 100;
135  ce->features = CLOCK_EVT_FEAT_PERIODIC;
136  ce->set_mode = timer_ce_set_mode;
137  ce->cpumask = cpu_possible_mask;
138  ce->shift = 32;
139  ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
140  ce->shift);
142 }
143 
144 static unsigned int sbus_cycles_offset(void)
145 {
146  unsigned int val, offset;
147 
148  val = *master_l10_counter;
149  offset = (val >> TIMER_VALUE_SHIFT) & TIMER_VALUE_MASK;
150 
151  /* Limit hit? */
152  if (val & TIMER_LIMIT_BIT)
153  offset += sparc_config.cs_period;
154 
155  return offset;
156 }
157 
158 static cycle_t timer_cs_read(struct clocksource *cs)
159 {
160  unsigned int seq, offset;
161  u64 cycles;
162 
163  do {
164  seq = read_seqbegin(&timer_cs_lock);
165 
166  cycles = timer_cs_internal_counter;
167  offset = sparc_config.get_cycles_offset();
168  } while (read_seqretry(&timer_cs_lock, seq));
169 
170  /* Count absolute cycles */
171  cycles *= sparc_config.cs_period;
172  cycles += offset;
173 
174  return cycles;
175 }
176 
177 static struct clocksource timer_cs = {
178  .name = "timer_cs",
179  .rating = 100,
180  .read = timer_cs_read,
181  .mask = CLOCKSOURCE_MASK(64),
182  .shift = 2,
184 };
185 
186 static __init int setup_timer_cs(void)
187 {
188  timer_cs_enabled = 1;
189  timer_cs.mult = clocksource_hz2mult(sparc_config.clock_rate,
190  timer_cs.shift);
191 
192  return clocksource_register(&timer_cs);
193 }
194 
195 #ifdef CONFIG_SMP
196 static void percpu_ce_setup(enum clock_event_mode mode,
197  struct clock_event_device *evt)
198 {
199  int cpu = __first_cpu(evt->cpumask);
200 
201  switch (mode) {
202  case CLOCK_EVT_MODE_PERIODIC:
204  SBUS_CLOCK_RATE / HZ);
205  break;
206  case CLOCK_EVT_MODE_ONESHOT:
207  case CLOCK_EVT_MODE_SHUTDOWN:
208  case CLOCK_EVT_MODE_UNUSED:
210  break;
211  default:
212  break;
213  }
214 }
215 
216 static int percpu_ce_set_next_event(unsigned long delta,
217  struct clock_event_device *evt)
218 {
219  int cpu = __first_cpu(evt->cpumask);
220  unsigned int next = (unsigned int)delta;
221 
222  sparc_config.load_profile_irq(cpu, next);
223  return 0;
224 }
225 
226 void register_percpu_ce(int cpu)
227 {
228  struct clock_event_device *ce = &per_cpu(sparc32_clockevent, cpu);
229  unsigned int features = CLOCK_EVT_FEAT_PERIODIC;
230 
232  features |= CLOCK_EVT_FEAT_ONESHOT;
233 
234  ce->name = "percpu_ce";
235  ce->rating = 200;
236  ce->features = features;
237  ce->set_mode = percpu_ce_setup;
238  ce->set_next_event = percpu_ce_set_next_event;
239  ce->cpumask = cpumask_of(cpu);
240  ce->shift = 32;
241  ce->mult = div_sc(sparc_config.clock_rate, NSEC_PER_SEC,
242  ce->shift);
243  ce->max_delta_ns = clockevent_delta2ns(sparc_config.clock_rate, ce);
244  ce->min_delta_ns = clockevent_delta2ns(100, ce);
245 
247 }
248 #endif
249 
250 static unsigned char mostek_read_byte(struct device *dev, u32 ofs)
251 {
252  struct platform_device *pdev = to_platform_device(dev);
253  struct m48t59_plat_data *pdata = pdev->dev.platform_data;
254 
255  return readb(pdata->ioaddr + ofs);
256 }
257 
258 static void mostek_write_byte(struct device *dev, u32 ofs, u8 val)
259 {
260  struct platform_device *pdev = to_platform_device(dev);
261  struct m48t59_plat_data *pdata = pdev->dev.platform_data;
262 
263  writeb(val, pdata->ioaddr + ofs);
264 }
265 
266 static struct m48t59_plat_data m48t59_data = {
267  .read_byte = mostek_read_byte,
268  .write_byte = mostek_write_byte,
269 };
270 
271 /* resource is set at runtime */
272 static struct platform_device m48t59_rtc = {
273  .name = "rtc-m48t59",
274  .id = 0,
275  .num_resources = 1,
276  .dev = {
277  .platform_data = &m48t59_data,
278  },
279 };
280 
281 static int __devinit clock_probe(struct platform_device *op)
282 {
283  struct device_node *dp = op->dev.of_node;
284  const char *model = of_get_property(dp, "model", NULL);
285 
286  if (!model)
287  return -ENODEV;
288 
289  /* Only the primary RTC has an address property */
290  if (!of_find_property(dp, "address", NULL))
291  return -ENODEV;
292 
293  m48t59_rtc.resource = &op->resource[0];
294  if (!strcmp(model, "mk48t02")) {
295  /* Map the clock register io area read-only */
296  m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
297  2048, "rtc-m48t59");
298  m48t59_data.type = M48T59RTC_TYPE_M48T02;
299  } else if (!strcmp(model, "mk48t08")) {
300  m48t59_data.ioaddr = of_ioremap(&op->resource[0], 0,
301  8192, "rtc-m48t59");
302  m48t59_data.type = M48T59RTC_TYPE_M48T08;
303  } else
304  return -ENODEV;
305 
306  if (platform_device_register(&m48t59_rtc) < 0)
307  printk(KERN_ERR "Registering RTC device failed\n");
308 
309  return 0;
310 }
311 
312 static struct of_device_id clock_match[] = {
313  {
314  .name = "eeprom",
315  },
316  {},
317 };
318 
319 static struct platform_driver clock_driver = {
320  .probe = clock_probe,
321  .driver = {
322  .name = "rtc",
323  .owner = THIS_MODULE,
324  .of_match_table = clock_match,
325  },
326 };
327 
328 
329 /* Probe for the mostek real time clock chip. */
330 static int __init clock_init(void)
331 {
332  return platform_driver_register(&clock_driver);
333 }
334 /* Must be after subsys_initcall() so that busses are probed. Must
335  * be before device_initcall() because things like the RTC driver
336  * need to see the clock registers.
337  */
338 fs_initcall(clock_init);
339 
340 static void __init sparc32_late_time_init(void)
341 {
343  setup_timer_ce();
345  setup_timer_cs();
346 #ifdef CONFIG_SMP
347  register_percpu_ce(smp_processor_id());
348 #endif
349 }
350 
351 static void __init sbus_time_init(void)
352 {
353  sparc_config.get_cycles_offset = sbus_cycles_offset;
355 }
356 
357 void __init time_init(void)
358 {
360  late_time_init = sparc32_late_time_init;
361 
362  if (pcic_present())
363  pci_time_init();
364  else
365  sbus_time_init();
366 }
367 
368 
369 static int set_rtc_mmss(unsigned long secs)
370 {
371  struct rtc_device *rtc = rtc_class_open("rtc0");
372  int err = -1;
373 
374  if (rtc) {
375  err = rtc_set_mmss(rtc, secs);
376  rtc_class_close(rtc);
377  }
378 
379  return err;
380 }