Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vfio_pci_config.c
Go to the documentation of this file.
1 /*
2  * VFIO PCI config space virtualization
3  *
4  * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5  * Author: Alex Williamson <[email protected]>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Derived from original vfio:
12  * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13  * Author: Tom Lyon, [email protected]
14  */
15 
16 /*
17  * This code handles reading and writing of PCI configuration registers.
18  * This is hairy because we want to allow a lot of flexibility to the
19  * user driver, but cannot trust it with all of the config fields.
20  * Tables determine which fields can be read and written, as well as
21  * which fields are 'virtualized' - special actions and translations to
22  * make it appear to the user that he has control, when in fact things
23  * must be negotiated with the underlying OS.
24  */
25 
26 #include <linux/fs.h>
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30 
31 #include "vfio_pci_private.h"
32 
33 #define PCI_CFG_SPACE_SIZE 256
34 
35 /* Useful "pseudo" capabilities */
36 #define PCI_CAP_ID_BASIC 0
37 #define PCI_CAP_ID_INVALID 0xFF
38 
39 #define is_bar(offset) \
40  ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
41  (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
42 
43 /*
44  * Lengths of PCI Config Capabilities
45  * 0: Removed from the user visible capability list
46  * FF: Variable length
47  */
48 static u8 pci_cap_length[] = {
49  [PCI_CAP_ID_BASIC] = PCI_STD_HEADER_SIZEOF, /* pci config header */
53  [PCI_CAP_ID_SLOTID] = 0, /* bridge - don't care */
54  [PCI_CAP_ID_MSI] = 0xFF, /* 10, 14, 20, or 24 */
55  [PCI_CAP_ID_CHSWP] = 0, /* cpci - not yet */
56  [PCI_CAP_ID_PCIX] = 0xFF, /* 8 or 24 */
57  [PCI_CAP_ID_HT] = 0xFF, /* hypertransport */
58  [PCI_CAP_ID_VNDR] = 0xFF, /* variable */
59  [PCI_CAP_ID_DBG] = 0, /* debug - don't care */
60  [PCI_CAP_ID_CCRC] = 0, /* cpci - not yet */
61  [PCI_CAP_ID_SHPC] = 0, /* hotswap - not yet */
62  [PCI_CAP_ID_SSVID] = 0, /* bridge - don't care */
63  [PCI_CAP_ID_AGP3] = 0, /* AGP8x - not yet */
64  [PCI_CAP_ID_SECDEV] = 0, /* secure device not yet */
65  [PCI_CAP_ID_EXP] = 0xFF, /* 20 or 44 */
67  [PCI_CAP_ID_SATA] = 0xFF,
69 };
70 
71 /*
72  * Lengths of PCIe/PCI-X Extended Config Capabilities
73  * 0: Removed or masked from the user visible capabilty list
74  * FF: Variable length
75  */
76 static u16 pci_ext_cap_length[] = {
78  [PCI_EXT_CAP_ID_VC] = 0xFF,
81  [PCI_EXT_CAP_ID_RCLD] = 0, /* root only - don't care */
82  [PCI_EXT_CAP_ID_RCILC] = 0, /* root only - don't care */
83  [PCI_EXT_CAP_ID_RCEC] = 0, /* root only - don't care */
84  [PCI_EXT_CAP_ID_MFVC] = 0xFF,
85  [PCI_EXT_CAP_ID_VC9] = 0xFF, /* same as CAP_ID_VC */
86  [PCI_EXT_CAP_ID_RCRB] = 0, /* root only - don't care */
87  [PCI_EXT_CAP_ID_VNDR] = 0xFF,
88  [PCI_EXT_CAP_ID_CAC] = 0, /* obsolete */
89  [PCI_EXT_CAP_ID_ACS] = 0xFF,
93  [PCI_EXT_CAP_ID_MRIOV] = 0, /* not yet */
96  [PCI_EXT_CAP_ID_AMD_XXX] = 0, /* not yet */
97  [PCI_EXT_CAP_ID_REBAR] = 0xFF,
98  [PCI_EXT_CAP_ID_DPA] = 0xFF,
99  [PCI_EXT_CAP_ID_TPH] = 0xFF,
101  [PCI_EXT_CAP_ID_SECPCI] = 0, /* not yet */
102  [PCI_EXT_CAP_ID_PMUX] = 0, /* not yet */
103  [PCI_EXT_CAP_ID_PASID] = 0, /* not yet */
104 };
105 
106 /*
107  * Read/Write Permission Bits - one bit for each bit in capability
108  * Any field can be read if it exists, but what is read depends on
109  * whether the field is 'virtualized', or just pass thru to the
110  * hardware. Any virtualized field is also virtualized for writes.
111  * Writes are only permitted if they have a 1 bit here.
112  */
113 struct perm_bits {
114  u8 *virt; /* read/write virtual data, not hw */
115  u8 *write; /* writeable bits */
116  int (*readfn)(struct vfio_pci_device *vdev, int pos, int count,
117  struct perm_bits *perm, int offset, __le32 *val);
118  int (*writefn)(struct vfio_pci_device *vdev, int pos, int count,
119  struct perm_bits *perm, int offset, __le32 val);
120 };
121 
122 #define NO_VIRT 0
123 #define ALL_VIRT 0xFFFFFFFFU
124 #define NO_WRITE 0
125 #define ALL_WRITE 0xFFFFFFFFU
126 
127 static int vfio_user_config_read(struct pci_dev *pdev, int offset,
128  __le32 *val, int count)
129 {
130  int ret = -EINVAL;
131  u32 tmp_val = 0;
132 
133  switch (count) {
134  case 1:
135  {
136  u8 tmp;
137  ret = pci_user_read_config_byte(pdev, offset, &tmp);
138  tmp_val = tmp;
139  break;
140  }
141  case 2:
142  {
143  u16 tmp;
144  ret = pci_user_read_config_word(pdev, offset, &tmp);
145  tmp_val = tmp;
146  break;
147  }
148  case 4:
149  ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
150  break;
151  }
152 
153  *val = cpu_to_le32(tmp_val);
154 
155  return pcibios_err_to_errno(ret);
156 }
157 
158 static int vfio_user_config_write(struct pci_dev *pdev, int offset,
159  __le32 val, int count)
160 {
161  int ret = -EINVAL;
162  u32 tmp_val = le32_to_cpu(val);
163 
164  switch (count) {
165  case 1:
166  ret = pci_user_write_config_byte(pdev, offset, tmp_val);
167  break;
168  case 2:
169  ret = pci_user_write_config_word(pdev, offset, tmp_val);
170  break;
171  case 4:
172  ret = pci_user_write_config_dword(pdev, offset, tmp_val);
173  break;
174  }
175 
176  return pcibios_err_to_errno(ret);
177 }
178 
179 static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
180  int count, struct perm_bits *perm,
181  int offset, __le32 *val)
182 {
183  __le32 virt = 0;
184 
185  memcpy(val, vdev->vconfig + pos, count);
186 
187  memcpy(&virt, perm->virt + offset, count);
188 
189  /* Any non-virtualized bits? */
190  if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
191  struct pci_dev *pdev = vdev->pdev;
192  __le32 phys_val = 0;
193  int ret;
194 
195  ret = vfio_user_config_read(pdev, pos, &phys_val, count);
196  if (ret)
197  return ret;
198 
199  *val = (phys_val & ~virt) | (*val & virt);
200  }
201 
202  return count;
203 }
204 
205 static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
206  int count, struct perm_bits *perm,
207  int offset, __le32 val)
208 {
209  __le32 virt = 0, write = 0;
210 
211  memcpy(&write, perm->write + offset, count);
212 
213  if (!write)
214  return count; /* drop, no writable bits */
215 
216  memcpy(&virt, perm->virt + offset, count);
217 
218  /* Virtualized and writable bits go to vconfig */
219  if (write & virt) {
220  __le32 virt_val = 0;
221 
222  memcpy(&virt_val, vdev->vconfig + pos, count);
223 
224  virt_val &= ~(write & virt);
225  virt_val |= (val & (write & virt));
226 
227  memcpy(vdev->vconfig + pos, &virt_val, count);
228  }
229 
230  /* Non-virtualzed and writable bits go to hardware */
231  if (write & ~virt) {
232  struct pci_dev *pdev = vdev->pdev;
233  __le32 phys_val = 0;
234  int ret;
235 
236  ret = vfio_user_config_read(pdev, pos, &phys_val, count);
237  if (ret)
238  return ret;
239 
240  phys_val &= ~(write & ~virt);
241  phys_val |= (val & (write & ~virt));
242 
243  ret = vfio_user_config_write(pdev, pos, phys_val, count);
244  if (ret)
245  return ret;
246  }
247 
248  return count;
249 }
250 
251 /* Allow direct read from hardware, except for capability next pointer */
252 static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
253  int count, struct perm_bits *perm,
254  int offset, __le32 *val)
255 {
256  int ret;
257 
258  ret = vfio_user_config_read(vdev->pdev, pos, val, count);
259  if (ret)
260  return pcibios_err_to_errno(ret);
261 
262  if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
263  if (offset < 4)
264  memcpy(val, vdev->vconfig + pos, count);
265  } else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
266  if (offset == PCI_CAP_LIST_ID && count > 1)
267  memcpy(val, vdev->vconfig + pos,
268  min(PCI_CAP_FLAGS, count));
269  else if (offset == PCI_CAP_LIST_NEXT)
270  memcpy(val, vdev->vconfig + pos, 1);
271  }
272 
273  return count;
274 }
275 
276 static int vfio_direct_config_write(struct vfio_pci_device *vdev, int pos,
277  int count, struct perm_bits *perm,
278  int offset, __le32 val)
279 {
280  int ret;
281 
282  ret = vfio_user_config_write(vdev->pdev, pos, val, count);
283  if (ret)
284  return ret;
285 
286  return count;
287 }
288 
289 /* Default all regions to read-only, no-virtualization */
290 static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
291  [0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
292 };
293 static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
294  [0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
295 };
296 
297 static void free_perm_bits(struct perm_bits *perm)
298 {
299  kfree(perm->virt);
300  kfree(perm->write);
301  perm->virt = NULL;
302  perm->write = NULL;
303 }
304 
305 static int alloc_perm_bits(struct perm_bits *perm, int size)
306 {
307  /*
308  * Round up all permission bits to the next dword, this lets us
309  * ignore whether a read/write exceeds the defined capability
310  * structure. We can do this because:
311  * - Standard config space is already dword aligned
312  * - Capabilities are all dword alinged (bits 0:1 of next reserved)
313  * - Express capabilities defined as dword aligned
314  */
315  size = round_up(size, 4);
316 
317  /*
318  * Zero state is
319  * - All Readable, None Writeable, None Virtualized
320  */
321  perm->virt = kzalloc(size, GFP_KERNEL);
322  perm->write = kzalloc(size, GFP_KERNEL);
323  if (!perm->virt || !perm->write) {
324  free_perm_bits(perm);
325  return -ENOMEM;
326  }
327 
328  perm->readfn = vfio_default_config_read;
329  perm->writefn = vfio_default_config_write;
330 
331  return 0;
332 }
333 
334 /*
335  * Helper functions for filling in permission tables
336  */
337 static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
338 {
339  p->virt[off] = virt;
340  p->write[off] = write;
341 }
342 
343 /* Handle endian-ness - pci and tables are little-endian */
344 static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
345 {
346  *(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
347  *(__le16 *)(&p->write[off]) = cpu_to_le16(write);
348 }
349 
350 /* Handle endian-ness - pci and tables are little-endian */
351 static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
352 {
353  *(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
354  *(__le32 *)(&p->write[off]) = cpu_to_le32(write);
355 }
356 
357 /*
358  * Restore the *real* BARs after we detect a FLR or backdoor reset.
359  * (backdoor = some device specific technique that we didn't catch)
360  */
361 static void vfio_bar_restore(struct vfio_pci_device *vdev)
362 {
363  struct pci_dev *pdev = vdev->pdev;
364  u32 *rbar = vdev->rbar;
365  int i;
366 
367  if (pdev->is_virtfn)
368  return;
369 
370  pr_info("%s: %s reset recovery - restoring bars\n",
371  __func__, dev_name(&pdev->dev));
372 
373  for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
374  pci_user_write_config_dword(pdev, i, *rbar);
375 
376  pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
377 }
378 
379 static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
380 {
381  unsigned long flags = pci_resource_flags(pdev, bar);
382  u32 val;
383 
384  if (flags & IORESOURCE_IO)
386 
388 
389  if (flags & IORESOURCE_PREFETCH)
391 
392  if (flags & IORESOURCE_MEM_64)
394 
395  return cpu_to_le32(val);
396 }
397 
398 /*
399  * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
400  * to reflect the hardware capabilities. This implements BAR sizing.
401  */
402 static void vfio_bar_fixup(struct vfio_pci_device *vdev)
403 {
404  struct pci_dev *pdev = vdev->pdev;
405  int i;
406  __le32 *bar;
407  u64 mask;
408 
409  bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
410 
411  for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
412  if (!pci_resource_start(pdev, i)) {
413  *bar = 0; /* Unmapped by host = unimplemented to user */
414  continue;
415  }
416 
417  mask = ~(pci_resource_len(pdev, i) - 1);
418 
419  *bar &= cpu_to_le32((u32)mask);
420  *bar |= vfio_generate_bar_flags(pdev, i);
421 
423  bar++;
424  *bar &= cpu_to_le32((u32)(mask >> 32));
425  i++;
426  }
427  }
428 
429  bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
430 
431  /*
432  * NB. we expose the actual BAR size here, regardless of whether
433  * we can read it. When we report the REGION_INFO for the ROM
434  * we report what PCI tells us is the actual ROM size.
435  */
437  mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
438  mask |= PCI_ROM_ADDRESS_ENABLE;
439  *bar &= cpu_to_le32((u32)mask);
440  } else
441  *bar = 0;
442 
443  vdev->bardirty = false;
444 }
445 
446 static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
447  int count, struct perm_bits *perm,
448  int offset, __le32 *val)
449 {
450  if (is_bar(offset)) /* pos == offset for basic config */
451  vfio_bar_fixup(vdev);
452 
453  count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
454 
455  /* Mask in virtual memory enable for SR-IOV devices */
456  if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
457  u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
458  u32 tmp_val = le32_to_cpu(*val);
459 
460  tmp_val |= cmd & PCI_COMMAND_MEMORY;
461  *val = cpu_to_le32(tmp_val);
462  }
463 
464  return count;
465 }
466 
467 static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
468  int count, struct perm_bits *perm,
469  int offset, __le32 val)
470 {
471  struct pci_dev *pdev = vdev->pdev;
472  __le16 *virt_cmd;
473  u16 new_cmd = 0;
474  int ret;
475 
476  virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
477 
478  if (offset == PCI_COMMAND) {
479  bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
480  u16 phys_cmd;
481 
482  ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
483  if (ret)
484  return ret;
485 
486  new_cmd = le32_to_cpu(val);
487 
488  phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
489  virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
490  new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
491 
492  phys_io = !!(phys_cmd & PCI_COMMAND_IO);
493  virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
494  new_io = !!(new_cmd & PCI_COMMAND_IO);
495 
496  /*
497  * If the user is writing mem/io enable (new_mem/io) and we
498  * think it's already enabled (virt_mem/io), but the hardware
499  * shows it disabled (phys_mem/io, then the device has
500  * undergone some kind of backdoor reset and needs to be
501  * restored before we allow it to enable the bars.
502  * SR-IOV devices will trigger this, but we catch them later
503  */
504  if ((new_mem && virt_mem && !phys_mem) ||
505  (new_io && virt_io && !phys_io))
506  vfio_bar_restore(vdev);
507  }
508 
509  count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
510  if (count < 0)
511  return count;
512 
513  /*
514  * Save current memory/io enable bits in vconfig to allow for
515  * the test above next time.
516  */
517  if (offset == PCI_COMMAND) {
519 
520  *virt_cmd &= cpu_to_le16(~mask);
521  *virt_cmd |= cpu_to_le16(new_cmd & mask);
522  }
523 
524  /* Emulate INTx disable */
525  if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
526  bool virt_intx_disable;
527 
528  virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
530 
531  if (virt_intx_disable && !vdev->virq_disabled) {
532  vdev->virq_disabled = true;
533  vfio_pci_intx_mask(vdev);
534  } else if (!virt_intx_disable && vdev->virq_disabled) {
535  vdev->virq_disabled = false;
536  vfio_pci_intx_unmask(vdev);
537  }
538  }
539 
540  if (is_bar(offset))
541  vdev->bardirty = true;
542 
543  return count;
544 }
545 
546 /* Permissions for the Basic PCI Header */
547 static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
548 {
549  if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
550  return -ENOMEM;
551 
552  perm->readfn = vfio_basic_config_read;
553  perm->writefn = vfio_basic_config_write;
554 
555  /* Virtualized for SR-IOV functions, which just have FFFF */
556  p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
557  p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
558 
559  /*
560  * Virtualize INTx disable, we use it internally for interrupt
561  * control and can emulate it for non-PCI 2.3 devices.
562  */
564 
565  /* Virtualize capability list, we might want to skip/disable */
566  p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
567 
568  /* No harm to write */
569  p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
570  p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
571  p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
572 
573  /* Virtualize all bars, can't touch the real ones */
574  p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
575  p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
576  p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
577  p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
578  p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
579  p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
580  p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
581 
582  /* Allow us to adjust capability chain */
583  p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
584 
585  /* Sometimes used by sw, just virtualize */
586  p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
587  return 0;
588 }
589 
590 /* Permissions for the Power Management capability */
591 static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
592 {
593  if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
594  return -ENOMEM;
595 
596  /*
597  * We always virtualize the next field so we can remove
598  * capabilities from the chain if we want to.
599  */
600  p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
601 
602  /*
603  * Power management is defined *per function*,
604  * so we let the user write this
605  */
606  p_setd(perm, PCI_PM_CTRL, NO_VIRT, ALL_WRITE);
607  return 0;
608 }
609 
610 /* Permissions for PCI-X capability */
611 static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
612 {
613  /* Alloc 24, but only 8 are used in v0 */
614  if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
615  return -ENOMEM;
616 
617  p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
618 
619  p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
620  p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
621  return 0;
622 }
623 
624 /* Permissions for PCI Express capability */
625 static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
626 {
627  /* Alloc larger of two possible sizes */
628  if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
629  return -ENOMEM;
630 
631  p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
632 
633  /*
634  * Allow writes to device control fields (includes FLR!)
635  * but not to devctl_phantom which could confuse IOMMU
636  * or to the ARI bit in devctl2 which is set at probe time
637  */
640  return 0;
641 }
642 
643 /* Permissions for Advanced Function capability */
644 static int __init init_pci_cap_af_perm(struct perm_bits *perm)
645 {
646  if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
647  return -ENOMEM;
648 
649  p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
650  p_setb(perm, PCI_AF_CTRL, NO_VIRT, PCI_AF_CTRL_FLR);
651  return 0;
652 }
653 
654 /* Permissions for Advanced Error Reporting extended capability */
655 static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
656 {
657  u32 mask;
658 
659  if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
660  return -ENOMEM;
661 
662  /*
663  * Virtualize the first dword of all express capabilities
664  * because it includes the next pointer. This lets us later
665  * remove capabilities from the chain if we need to.
666  */
667  p_setd(perm, 0, ALL_VIRT, NO_WRITE);
668 
669  /* Writable bits mask */
670  mask = PCI_ERR_UNC_TRAIN | /* Training */
671  PCI_ERR_UNC_DLP | /* Data Link Protocol */
672  PCI_ERR_UNC_SURPDN | /* Surprise Down */
673  PCI_ERR_UNC_POISON_TLP | /* Poisoned TLP */
674  PCI_ERR_UNC_FCP | /* Flow Control Protocol */
675  PCI_ERR_UNC_COMP_TIME | /* Completion Timeout */
676  PCI_ERR_UNC_COMP_ABORT | /* Completer Abort */
677  PCI_ERR_UNC_UNX_COMP | /* Unexpected Completion */
678  PCI_ERR_UNC_RX_OVER | /* Receiver Overflow */
679  PCI_ERR_UNC_MALF_TLP | /* Malformed TLP */
680  PCI_ERR_UNC_ECRC | /* ECRC Error Status */
681  PCI_ERR_UNC_UNSUP | /* Unsupported Request */
682  PCI_ERR_UNC_ACSV | /* ACS Violation */
683  PCI_ERR_UNC_INTN | /* internal error */
684  PCI_ERR_UNC_MCBTLP | /* MC blocked TLP */
685  PCI_ERR_UNC_ATOMEG | /* Atomic egress blocked */
686  PCI_ERR_UNC_TLPPRE; /* TLP prefix blocked */
687  p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
688  p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
689  p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
690 
691  mask = PCI_ERR_COR_RCVR | /* Receiver Error Status */
692  PCI_ERR_COR_BAD_TLP | /* Bad TLP Status */
693  PCI_ERR_COR_BAD_DLLP | /* Bad DLLP Status */
694  PCI_ERR_COR_REP_ROLL | /* REPLAY_NUM Rollover */
695  PCI_ERR_COR_REP_TIMER | /* Replay Timer Timeout */
696  PCI_ERR_COR_ADV_NFAT | /* Advisory Non-Fatal */
697  PCI_ERR_COR_INTERNAL | /* Corrected Internal */
698  PCI_ERR_COR_LOG_OVER; /* Header Log Overflow */
699  p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
700  p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
701 
702  mask = PCI_ERR_CAP_ECRC_GENE | /* ECRC Generation Enable */
703  PCI_ERR_CAP_ECRC_CHKE; /* ECRC Check Enable */
704  p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
705  return 0;
706 }
707 
708 /* Permissions for Power Budgeting extended capability */
709 static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
710 {
711  if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
712  return -ENOMEM;
713 
714  p_setd(perm, 0, ALL_VIRT, NO_WRITE);
715 
716  /* Writing the data selector is OK, the info is still read-only */
717  p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
718  return 0;
719 }
720 
721 /*
722  * Initialize the shared permission tables
723  */
725 {
726  free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
727 
728  free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
729  free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
730  free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
731  free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
732 
733  free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
734  free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
735 }
736 
738 {
739  int ret;
740 
741  /* Basic config space */
742  ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
743 
744  /* Capabilities */
745  ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
746  cap_perms[PCI_CAP_ID_VPD].writefn = vfio_direct_config_write;
747  ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
748  cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_direct_config_write;
749  ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
750  ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
751 
752  /* Extended capabilities */
753  ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
754  ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
755  ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_direct_config_write;
756 
757  if (ret)
759 
760  return ret;
761 }
762 
763 static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
764 {
765  u8 cap;
766  int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
768  base /= 4;
769  pos /= 4;
770 
771  cap = vdev->pci_config_map[pos];
772 
773  if (cap == PCI_CAP_ID_BASIC)
774  return 0;
775 
776  /* XXX Can we have to abutting capabilities of the same type? */
777  while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
778  pos--;
779 
780  return pos * 4;
781 }
782 
783 static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
784  int count, struct perm_bits *perm,
785  int offset, __le32 *val)
786 {
787  /* Update max available queue size from msi_qmax */
789  __le16 *flags;
790  int start;
791 
792  start = vfio_find_cap_start(vdev, pos);
793 
794  flags = (__le16 *)&vdev->vconfig[start];
795 
796  *flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
797  *flags |= cpu_to_le16(vdev->msi_qmax << 1);
798  }
799 
800  return vfio_default_config_read(vdev, pos, count, perm, offset, val);
801 }
802 
803 static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
804  int count, struct perm_bits *perm,
805  int offset, __le32 val)
806 {
807  count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
808  if (count < 0)
809  return count;
810 
811  /* Fixup and write configured queue size and enable to hardware */
813  __le16 *pflags;
814  u16 flags;
815  int start, ret;
816 
817  start = vfio_find_cap_start(vdev, pos);
818 
819  pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
820 
821  flags = le16_to_cpu(*pflags);
822 
823  /* MSI is enabled via ioctl */
824  if (!is_msi(vdev))
825  flags &= ~PCI_MSI_FLAGS_ENABLE;
826 
827  /* Check queue size */
828  if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
829  flags &= ~PCI_MSI_FLAGS_QSIZE;
830  flags |= vdev->msi_qmax << 4;
831  }
832 
833  /* Write back to virt and to hardware */
834  *pflags = cpu_to_le16(flags);
835  ret = pci_user_write_config_word(vdev->pdev,
836  start + PCI_MSI_FLAGS,
837  flags);
838  if (ret)
839  return pcibios_err_to_errno(ret);
840  }
841 
842  return count;
843 }
844 
845 /*
846  * MSI determination is per-device, so this routine gets used beyond
847  * initialization time. Don't add __init
848  */
849 static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
850 {
851  if (alloc_perm_bits(perm, len))
852  return -ENOMEM;
853 
854  perm->readfn = vfio_msi_config_read;
855  perm->writefn = vfio_msi_config_write;
856 
857  p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
858 
859  /*
860  * The upper byte of the control register is reserved,
861  * just setup the lower byte.
862  */
863  p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
864  p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
865  if (flags & PCI_MSI_FLAGS_64BIT) {
866  p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
867  p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
868  if (flags & PCI_MSI_FLAGS_MASKBIT) {
869  p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
870  p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
871  }
872  } else {
873  p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
874  if (flags & PCI_MSI_FLAGS_MASKBIT) {
875  p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
876  p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
877  }
878  }
879  return 0;
880 }
881 
882 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
883 static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
884 {
885  struct pci_dev *pdev = vdev->pdev;
886  int len, ret;
887  u16 flags;
888 
889  ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
890  if (ret)
891  return pcibios_err_to_errno(ret);
892 
893  len = 10; /* Minimum size */
894  if (flags & PCI_MSI_FLAGS_64BIT)
895  len += 4;
896  if (flags & PCI_MSI_FLAGS_MASKBIT)
897  len += 10;
898 
899  if (vdev->msi_perm)
900  return len;
901 
902  vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
903  if (!vdev->msi_perm)
904  return -ENOMEM;
905 
906  ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
907  if (ret)
908  return ret;
909 
910  return len;
911 }
912 
913 /* Determine extended capability length for VC (2 & 9) and MFVC */
914 static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
915 {
916  struct pci_dev *pdev = vdev->pdev;
917  u32 tmp;
918  int ret, evcc, phases, vc_arb;
919  int len = PCI_CAP_VC_BASE_SIZEOF;
920 
921  ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_REG1, &tmp);
922  if (ret)
923  return pcibios_err_to_errno(ret);
924 
925  evcc = tmp & PCI_VC_REG1_EVCC; /* extended vc count */
926  ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_REG2, &tmp);
927  if (ret)
928  return pcibios_err_to_errno(ret);
929 
930  if (tmp & PCI_VC_REG2_128_PHASE)
931  phases = 128;
932  else if (tmp & PCI_VC_REG2_64_PHASE)
933  phases = 64;
934  else if (tmp & PCI_VC_REG2_32_PHASE)
935  phases = 32;
936  else
937  phases = 0;
938 
939  vc_arb = phases * 4;
940 
941  /*
942  * Port arbitration tables are root & switch only;
943  * function arbitration tables are function 0 only.
944  * In either case, we'll never let user write them so
945  * we don't care how big they are
946  */
947  len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
948  if (vc_arb) {
949  len = round_up(len, 16);
950  len += vc_arb / 8;
951  }
952  return len;
953 }
954 
955 static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
956 {
957  struct pci_dev *pdev = vdev->pdev;
958  u16 word;
959  u8 byte;
960  int ret;
961 
962  switch (cap) {
963  case PCI_CAP_ID_MSI:
964  return vfio_msi_cap_len(vdev, pos);
965  case PCI_CAP_ID_PCIX:
966  ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
967  if (ret)
968  return pcibios_err_to_errno(ret);
969 
970  if (PCI_X_CMD_VERSION(word)) {
971  vdev->extended_caps = true;
972  return PCI_CAP_PCIX_SIZEOF_V2;
973  } else
974  return PCI_CAP_PCIX_SIZEOF_V0;
975  case PCI_CAP_ID_VNDR:
976  /* length follows next field */
977  ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
978  if (ret)
979  return pcibios_err_to_errno(ret);
980 
981  return byte;
982  case PCI_CAP_ID_EXP:
983  /* length based on version */
984  ret = pci_read_config_word(pdev, pos + PCI_EXP_FLAGS, &word);
985  if (ret)
986  return pcibios_err_to_errno(ret);
987 
988  if ((word & PCI_EXP_FLAGS_VERS) == 1)
990  else {
991  vdev->extended_caps = true;
993  }
994  case PCI_CAP_ID_HT:
995  ret = pci_read_config_byte(pdev, pos + 3, &byte);
996  if (ret)
997  return pcibios_err_to_errno(ret);
998 
999  return (byte & HT_3BIT_CAP_MASK) ?
1001  case PCI_CAP_ID_SATA:
1002  ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1003  if (ret)
1004  return pcibios_err_to_errno(ret);
1005 
1006  byte &= PCI_SATA_REGS_MASK;
1007  if (byte == PCI_SATA_REGS_INLINE)
1008  return PCI_SATA_SIZEOF_LONG;
1009  else
1010  return PCI_SATA_SIZEOF_SHORT;
1011  default:
1012  pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1013  dev_name(&pdev->dev), __func__, cap, pos);
1014  }
1015 
1016  return 0;
1017 }
1018 
1019 static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1020 {
1021  struct pci_dev *pdev = vdev->pdev;
1022  u8 byte;
1023  u32 dword;
1024  int ret;
1025 
1026  switch (ecap) {
1027  case PCI_EXT_CAP_ID_VNDR:
1028  ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1029  if (ret)
1030  return pcibios_err_to_errno(ret);
1031 
1032  return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1033  case PCI_EXT_CAP_ID_VC:
1034  case PCI_EXT_CAP_ID_VC9:
1035  case PCI_EXT_CAP_ID_MFVC:
1036  return vfio_vc_cap_len(vdev, epos);
1037  case PCI_EXT_CAP_ID_ACS:
1038  ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1039  if (ret)
1040  return pcibios_err_to_errno(ret);
1041 
1042  if (byte & PCI_ACS_EC) {
1043  int bits;
1044 
1045  ret = pci_read_config_byte(pdev,
1046  epos + PCI_ACS_EGRESS_BITS,
1047  &byte);
1048  if (ret)
1049  return pcibios_err_to_errno(ret);
1050 
1051  bits = byte ? round_up(byte, 32) : 256;
1052  return 8 + (bits / 8);
1053  }
1054  return 8;
1055 
1056  case PCI_EXT_CAP_ID_REBAR:
1057  ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1058  if (ret)
1059  return pcibios_err_to_errno(ret);
1060 
1061  byte &= PCI_REBAR_CTRL_NBAR_MASK;
1062  byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1063 
1064  return 4 + (byte * 8);
1065  case PCI_EXT_CAP_ID_DPA:
1066  ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1067  if (ret)
1068  return pcibios_err_to_errno(ret);
1069 
1070  byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1071  byte = round_up(byte + 1, 4);
1072  return PCI_DPA_BASE_SIZEOF + byte;
1073  case PCI_EXT_CAP_ID_TPH:
1074  ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1075  if (ret)
1076  return pcibios_err_to_errno(ret);
1077 
1078  if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1079  int sts;
1080 
1081  sts = byte & PCI_TPH_CAP_ST_MASK;
1082  sts >>= PCI_TPH_CAP_ST_SHIFT;
1083  return PCI_TPH_BASE_SIZEOF + round_up(sts * 2, 4);
1084  }
1085  return PCI_TPH_BASE_SIZEOF;
1086  default:
1087  pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1088  dev_name(&pdev->dev), __func__, ecap, epos);
1089  }
1090 
1091  return 0;
1092 }
1093 
1094 static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1095  int offset, int size)
1096 {
1097  struct pci_dev *pdev = vdev->pdev;
1098  int ret = 0;
1099 
1100  /*
1101  * We try to read physical config space in the largest chunks
1102  * we can, assuming that all of the fields support dword access.
1103  * pci_save_state() makes this same assumption and seems to do ok.
1104  */
1105  while (size) {
1106  int filled;
1107 
1108  if (size >= 4 && !(offset % 4)) {
1109  __le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1110  u32 dword;
1111 
1112  ret = pci_read_config_dword(pdev, offset, &dword);
1113  if (ret)
1114  return ret;
1115  *dwordp = cpu_to_le32(dword);
1116  filled = 4;
1117  } else if (size >= 2 && !(offset % 2)) {
1118  __le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1119  u16 word;
1120 
1121  ret = pci_read_config_word(pdev, offset, &word);
1122  if (ret)
1123  return ret;
1124  *wordp = cpu_to_le16(word);
1125  filled = 2;
1126  } else {
1127  u8 *byte = &vdev->vconfig[offset];
1128  ret = pci_read_config_byte(pdev, offset, byte);
1129  if (ret)
1130  return ret;
1131  filled = 1;
1132  }
1133 
1134  offset += filled;
1135  size -= filled;
1136  }
1137 
1138  return ret;
1139 }
1140 
1141 static int vfio_cap_init(struct vfio_pci_device *vdev)
1142 {
1143  struct pci_dev *pdev = vdev->pdev;
1144  u8 *map = vdev->pci_config_map;
1145  u16 status;
1146  u8 pos, *prev, cap;
1147  int loops, ret, caps = 0;
1148 
1149  /* Any capabilities? */
1150  ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1151  if (ret)
1152  return ret;
1153 
1154  if (!(status & PCI_STATUS_CAP_LIST))
1155  return 0; /* Done */
1156 
1157  ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1158  if (ret)
1159  return ret;
1160 
1161  /* Mark the previous position in case we want to skip a capability */
1162  prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1163 
1164  /* We can bound our loop, capabilities are dword aligned */
1166  while (pos && loops--) {
1167  u8 next;
1168  int i, len = 0;
1169 
1170  ret = pci_read_config_byte(pdev, pos, &cap);
1171  if (ret)
1172  return ret;
1173 
1174  ret = pci_read_config_byte(pdev,
1175  pos + PCI_CAP_LIST_NEXT, &next);
1176  if (ret)
1177  return ret;
1178 
1179  if (cap <= PCI_CAP_ID_MAX) {
1180  len = pci_cap_length[cap];
1181  if (len == 0xFF) { /* Variable length */
1182  len = vfio_cap_len(vdev, cap, pos);
1183  if (len < 0)
1184  return len;
1185  }
1186  }
1187 
1188  if (!len) {
1189  pr_info("%s: %s hiding cap 0x%x\n",
1190  __func__, dev_name(&pdev->dev), cap);
1191  *prev = next;
1192  pos = next;
1193  continue;
1194  }
1195 
1196  /* Sanity check, do we overlap other capabilities? */
1197  for (i = 0; i < len; i += 4) {
1198  if (likely(map[(pos + i) / 4] == PCI_CAP_ID_INVALID))
1199  continue;
1200 
1201  pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1202  __func__, dev_name(&pdev->dev),
1203  pos + i, map[pos + i], cap);
1204  }
1205 
1206  memset(map + (pos / 4), cap, len / 4);
1207  ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1208  if (ret)
1209  return ret;
1210 
1211  prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1212  pos = next;
1213  caps++;
1214  }
1215 
1216  /* If we didn't fill any capabilities, clear the status flag */
1217  if (!caps) {
1218  __le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1219  *vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1220  }
1221 
1222  return 0;
1223 }
1224 
1225 static int vfio_ecap_init(struct vfio_pci_device *vdev)
1226 {
1227  struct pci_dev *pdev = vdev->pdev;
1228  u8 *map = vdev->pci_config_map;
1229  u16 epos;
1230  __le32 *prev = NULL;
1231  int loops, ret, ecaps = 0;
1232 
1233  if (!vdev->extended_caps)
1234  return 0;
1235 
1236  epos = PCI_CFG_SPACE_SIZE;
1237 
1238  loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1239 
1240  while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1241  u32 header;
1242  u16 ecap;
1243  int i, len = 0;
1244  bool hidden = false;
1245 
1246  ret = pci_read_config_dword(pdev, epos, &header);
1247  if (ret)
1248  return ret;
1249 
1250  ecap = PCI_EXT_CAP_ID(header);
1251 
1252  if (ecap <= PCI_EXT_CAP_ID_MAX) {
1253  len = pci_ext_cap_length[ecap];
1254  if (len == 0xFF) {
1255  len = vfio_ext_cap_len(vdev, ecap, epos);
1256  if (len < 0)
1257  return ret;
1258  }
1259  }
1260 
1261  if (!len) {
1262  pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1263  __func__, dev_name(&pdev->dev), ecap, epos);
1264 
1265  /* If not the first in the chain, we can skip over it */
1266  if (prev) {
1267  u32 val = epos = PCI_EXT_CAP_NEXT(header);
1268  *prev &= cpu_to_le32(~(0xffcU << 20));
1269  *prev |= cpu_to_le32(val << 20);
1270  continue;
1271  }
1272 
1273  /*
1274  * Otherwise, fill in a placeholder, the direct
1275  * readfn will virtualize this automatically
1276  */
1277  len = PCI_CAP_SIZEOF;
1278  hidden = true;
1279  }
1280 
1281  for (i = 0; i < len; i += 4) {
1282  if (likely(map[(epos + i) / 4] == PCI_CAP_ID_INVALID))
1283  continue;
1284 
1285  pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1286  __func__, dev_name(&pdev->dev),
1287  epos + i, map[epos + i], ecap);
1288  }
1289 
1290  /*
1291  * Even though ecap is 2 bytes, we're currently a long way
1292  * from exceeding 1 byte capabilities. If we ever make it
1293  * up to 0xFF we'll need to up this to a two-byte, byte map.
1294  */
1296 
1297  memset(map + (epos / 4), ecap, len / 4);
1298  ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1299  if (ret)
1300  return ret;
1301 
1302  /*
1303  * If we're just using this capability to anchor the list,
1304  * hide the real ID. Only count real ecaps. XXX PCI spec
1305  * indicates to use cap id = 0, version = 0, next = 0 if
1306  * ecaps are absent, hope users check all the way to next.
1307  */
1308  if (hidden)
1309  *(__le32 *)&vdev->vconfig[epos] &=
1310  cpu_to_le32((0xffcU << 20));
1311  else
1312  ecaps++;
1313 
1314  prev = (__le32 *)&vdev->vconfig[epos];
1315  epos = PCI_EXT_CAP_NEXT(header);
1316  }
1317 
1318  if (!ecaps)
1319  *(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1320 
1321  return 0;
1322 }
1323 
1324 /*
1325  * For each device we allocate a pci_config_map that indicates the
1326  * capability occupying each dword and thus the struct perm_bits we
1327  * use for read and write. We also allocate a virtualized config
1328  * space which tracks reads and writes to bits that we emulate for
1329  * the user. Initial values filled from device.
1330  *
1331  * Using shared stuct perm_bits between all vfio-pci devices saves
1332  * us from allocating cfg_size buffers for virt and write for every
1333  * device. We could remove vconfig and allocate individual buffers
1334  * for each area requring emulated bits, but the array of pointers
1335  * would be comparable in size (at least for standard config space).
1336  */
1338 {
1339  struct pci_dev *pdev = vdev->pdev;
1340  u8 *map, *vconfig;
1341  int ret;
1342 
1343  /*
1344  * Config space, caps and ecaps are all dword aligned, so we can
1345  * use one byte per dword to record the type.
1346  */
1347  map = kmalloc(pdev->cfg_size / 4, GFP_KERNEL);
1348  if (!map)
1349  return -ENOMEM;
1350 
1351  vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1352  if (!vconfig) {
1353  kfree(map);
1354  return -ENOMEM;
1355  }
1356 
1357  vdev->pci_config_map = map;
1358  vdev->vconfig = vconfig;
1359 
1362  (pdev->cfg_size - PCI_STD_HEADER_SIZEOF) / 4);
1363 
1364  ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1365  if (ret)
1366  goto out;
1367 
1368  vdev->bardirty = true;
1369 
1370  /*
1371  * XXX can we just pci_load_saved_state/pci_restore_state?
1372  * may need to rebuild vconfig after that
1373  */
1374 
1375  /* For restore after reset */
1376  vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1377  vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1378  vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1379  vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1380  vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1381  vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1382  vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1383 
1384  if (pdev->is_virtfn) {
1385  *(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1386  *(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1387  }
1388 
1389  ret = vfio_cap_init(vdev);
1390  if (ret)
1391  goto out;
1392 
1393  ret = vfio_ecap_init(vdev);
1394  if (ret)
1395  goto out;
1396 
1397  return 0;
1398 
1399 out:
1400  kfree(map);
1401  vdev->pci_config_map = NULL;
1402  kfree(vconfig);
1403  vdev->vconfig = NULL;
1404  return pcibios_err_to_errno(ret);
1405 }
1406 
1408 {
1409  kfree(vdev->vconfig);
1410  vdev->vconfig = NULL;
1411  kfree(vdev->pci_config_map);
1412  vdev->pci_config_map = NULL;
1413  kfree(vdev->msi_perm);
1414  vdev->msi_perm = NULL;
1415 }
1416 
1417 static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1418  size_t count, loff_t *ppos, bool iswrite)
1419 {
1420  struct pci_dev *pdev = vdev->pdev;
1421  struct perm_bits *perm;
1422  __le32 val = 0;
1423  int cap_start = 0, offset;
1424  u8 cap_id;
1425  ssize_t ret = count;
1426 
1427  if (*ppos < 0 || *ppos + count > pdev->cfg_size)
1428  return -EFAULT;
1429 
1430  /*
1431  * gcc can't seem to figure out we're a static function, only called
1432  * with count of 1/2/4 and hits copy_from_user_overflow without this.
1433  */
1434  if (count > sizeof(val))
1435  return -EINVAL;
1436 
1437  cap_id = vdev->pci_config_map[*ppos / 4];
1438 
1439  if (cap_id == PCI_CAP_ID_INVALID) {
1440  if (iswrite)
1441  return ret; /* drop */
1442 
1443  /*
1444  * Per PCI spec 3.0, section 6.1, reads from reserved and
1445  * unimplemented registers return 0
1446  */
1447  if (copy_to_user(buf, &val, count))
1448  return -EFAULT;
1449 
1450  return ret;
1451  }
1452 
1453  /*
1454  * All capabilities are minimum 4 bytes and aligned on dword
1455  * boundaries. Since we don't support unaligned accesses, we're
1456  * only ever accessing a single capability.
1457  */
1458  if (*ppos >= PCI_CFG_SPACE_SIZE) {
1459  WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1460 
1461  perm = &ecap_perms[cap_id];
1462  cap_start = vfio_find_cap_start(vdev, *ppos);
1463 
1464  } else {
1465  WARN_ON(cap_id > PCI_CAP_ID_MAX);
1466 
1467  perm = &cap_perms[cap_id];
1468 
1469  if (cap_id == PCI_CAP_ID_MSI)
1470  perm = vdev->msi_perm;
1471 
1472  if (cap_id > PCI_CAP_ID_BASIC)
1473  cap_start = vfio_find_cap_start(vdev, *ppos);
1474  }
1475 
1476  WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1477  WARN_ON(cap_start > *ppos);
1478 
1479  offset = *ppos - cap_start;
1480 
1481  if (iswrite) {
1482  if (!perm->writefn)
1483  return ret;
1484 
1485  if (copy_from_user(&val, buf, count))
1486  return -EFAULT;
1487 
1488  ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1489  } else {
1490  if (perm->readfn) {
1491  ret = perm->readfn(vdev, *ppos, count,
1492  perm, offset, &val);
1493  if (ret < 0)
1494  return ret;
1495  }
1496 
1497  if (copy_to_user(buf, &val, count))
1498  return -EFAULT;
1499  }
1500 
1501  return ret;
1502 }
1503 
1505  char __user *buf, size_t count,
1506  loff_t *ppos, bool iswrite)
1507 {
1508  size_t done = 0;
1509  int ret = 0;
1510  loff_t pos = *ppos;
1511 
1512  pos &= VFIO_PCI_OFFSET_MASK;
1513 
1514  /*
1515  * We want to both keep the access size the caller users as well as
1516  * support reading large chunks of config space in a single call.
1517  * PCI doesn't support unaligned accesses, so we can safely break
1518  * those apart.
1519  */
1520  while (count) {
1521  if (count >= 4 && !(pos % 4))
1522  ret = vfio_config_do_rw(vdev, buf, 4, &pos, iswrite);
1523  else if (count >= 2 && !(pos % 2))
1524  ret = vfio_config_do_rw(vdev, buf, 2, &pos, iswrite);
1525  else
1526  ret = vfio_config_do_rw(vdev, buf, 1, &pos, iswrite);
1527 
1528  if (ret < 0)
1529  return ret;
1530 
1531  count -= ret;
1532  done += ret;
1533  buf += ret;
1534  pos += ret;
1535  }
1536 
1537  *ppos += done;
1538 
1539  return done;
1540 }