Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
bssdb.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * File: bssdb.c
20  *
21  * Purpose: Handles the Basic Service Set & Node Database functions
22  *
23  * Functions:
24  * BSSpSearchBSSList - Search known BSS list for Desire SSID or BSSID
25  * BSSvClearBSSList - Clear BSS List
26  * BSSbInsertToBSSList - Insert a BSS set into known BSS list
27  * BSSbUpdateToBSSList - Update BSS set in known BSS list
28  * BSSbIsSTAInNodeDB - Search Node DB table to find the index of matched DstAddr
29  * BSSvCreateOneNode - Allocate an Node for Node DB
30  * BSSvUpdateAPNode - Update AP Node content in Index 0 of KnownNodeDB
31  * BSSvSecondCallBack - One second timer callback function to update Node DB info & AP link status
32  * BSSvUpdateNodeTxCounter - Update Tx attemps, Tx failure counter in Node DB for auto-fall back rate control
33  *
34  * Revision History:
35  *
36  * Author: Lyndon Chen
37  *
38  * Date: July 17, 2002
39  *
40  */
41 
42 #include "ttype.h"
43 #include "tmacro.h"
44 #include "tether.h"
45 #include "device.h"
46 #include "80211hdr.h"
47 #include "bssdb.h"
48 #include "wmgr.h"
49 #include "datarate.h"
50 #include "desc.h"
51 #include "wcmd.h"
52 #include "wpa.h"
53 #include "baseband.h"
54 #include "rf.h"
55 #include "card.h"
56 #include "mac.h"
57 #include "wpa2.h"
58 #include "control.h"
59 #include "rndis.h"
60 #include "iowpa.h"
61 
62 /*--------------------- Static Definitions -------------------------*/
63 
64 
65 
66 
67 /*--------------------- Static Classes ----------------------------*/
68 
69 /*--------------------- Static Variables --------------------------*/
70 static int msglevel =MSG_LEVEL_INFO;
71 //static int msglevel =MSG_LEVEL_DEBUG;
72 
73 
74 
75 const WORD awHWRetry0[5][5] = {
76  {RATE_18M, RATE_18M, RATE_12M, RATE_12M, RATE_12M},
77  {RATE_24M, RATE_24M, RATE_18M, RATE_12M, RATE_12M},
78  {RATE_36M, RATE_36M, RATE_24M, RATE_18M, RATE_18M},
79  {RATE_48M, RATE_48M, RATE_36M, RATE_24M, RATE_24M},
80  {RATE_54M, RATE_54M, RATE_48M, RATE_36M, RATE_36M}
81  };
82 const WORD awHWRetry1[5][5] = {
83  {RATE_18M, RATE_18M, RATE_12M, RATE_6M, RATE_6M},
84  {RATE_24M, RATE_24M, RATE_18M, RATE_6M, RATE_6M},
85  {RATE_36M, RATE_36M, RATE_24M, RATE_12M, RATE_12M},
86  {RATE_48M, RATE_48M, RATE_24M, RATE_12M, RATE_12M},
87  {RATE_54M, RATE_54M, RATE_36M, RATE_18M, RATE_18M}
88  };
89 
90 
91 
92 /*--------------------- Static Functions --------------------------*/
93 
94 void s_vCheckSensitivity(void *hDeviceContext);
95 void s_vCheckPreEDThreshold(void *hDeviceContext);
96 void s_uCalculateLinkQual(void *hDeviceContext);
97 
98 /*--------------------- Export Variables --------------------------*/
99 
100 
101 /*--------------------- Export Functions --------------------------*/
102 
103 
104 
105 
106 
107 /*+
108  *
109  * Routine Description:
110  * Search known BSS list for Desire SSID or BSSID.
111  *
112  * Return Value:
113  * PTR to KnownBSS or NULL
114  *
115 -*/
116 
117 PKnownBSS BSSpSearchBSSList(void *hDeviceContext,
118  PBYTE pbyDesireBSSID,
119  PBYTE pbyDesireSSID,
120  CARD_PHY_TYPE ePhyType)
121 {
122  PSDevice pDevice = (PSDevice)hDeviceContext;
123  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
124  PBYTE pbyBSSID = NULL;
125  PWLAN_IE_SSID pSSID = NULL;
126  PKnownBSS pCurrBSS = NULL;
127  PKnownBSS pSelect = NULL;
128  BYTE ZeroBSSID[WLAN_BSSID_LEN]={0x00,0x00,0x00,0x00,0x00,0x00};
129  unsigned int ii = 0;
130  unsigned int jj = 0;
131  if (pbyDesireBSSID != NULL) {
133  "BSSpSearchBSSList BSSID[%pM]\n", pbyDesireBSSID);
134  if ((!is_broadcast_ether_addr(pbyDesireBSSID)) &&
135  (memcmp(pbyDesireBSSID, ZeroBSSID, 6)!= 0)){
136  pbyBSSID = pbyDesireBSSID;
137  }
138  }
139  if (pbyDesireSSID != NULL) {
140  if (((PWLAN_IE_SSID)pbyDesireSSID)->len != 0) {
141  pSSID = (PWLAN_IE_SSID) pbyDesireSSID;
142  }
143  }
144 
145  if ((pbyBSSID != NULL)&&(pDevice->bRoaming == FALSE)) {
146  // match BSSID first
147  for (ii = 0; ii <MAX_BSS_NUM; ii++) {
148  pCurrBSS = &(pMgmt->sBSSList[ii]);
149 
150  pCurrBSS->bSelected = FALSE;
151 
152  if ((pCurrBSS->bActive) &&
153  (pCurrBSS->bSelected == FALSE)) {
154  if (!compare_ether_addr(pCurrBSS->abyBSSID, pbyBSSID)) {
155  if (pSSID != NULL) {
156  // compare ssid
157  if ( !memcmp(pSSID->abySSID,
158  ((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
159  pSSID->len)) {
160  if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
161  ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
162  ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
163  ) {
164  pCurrBSS->bSelected = TRUE;
165  return(pCurrBSS);
166  }
167  }
168  } else {
169  if ((pMgmt->eConfigMode == WMAC_CONFIG_AUTO) ||
170  ((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo)) ||
171  ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo))
172  ) {
173  pCurrBSS->bSelected = TRUE;
174  return(pCurrBSS);
175  }
176  }
177  }
178  }
179  }
180  } else {
181  // ignore BSSID
182  for (ii = 0; ii <MAX_BSS_NUM; ii++) {
183  pCurrBSS = &(pMgmt->sBSSList[ii]);
184 
185  //2007-0721-01<Mark>by MikeLiu
186  // if ((pCurrBSS->bActive) &&
187  // (pCurrBSS->bSelected == FALSE)) {
188 
189  pCurrBSS->bSelected = FALSE;
190  if (pCurrBSS->bActive) {
191 
192  if (pSSID != NULL) {
193  // matched SSID
194  if (memcmp(pSSID->abySSID,
195  ((PWLAN_IE_SSID)pCurrBSS->abySSID)->abySSID,
196  pSSID->len) ||
197  (pSSID->len != ((PWLAN_IE_SSID)pCurrBSS->abySSID)->len)) {
198  // SSID not match skip this BSS
199  continue;
200  }
201  }
202  if (((pMgmt->eConfigMode == WMAC_CONFIG_IBSS_STA) && WLAN_GET_CAP_INFO_ESS(pCurrBSS->wCapInfo)) ||
203  ((pMgmt->eConfigMode == WMAC_CONFIG_ESS_STA) && WLAN_GET_CAP_INFO_IBSS(pCurrBSS->wCapInfo))
204  ){
205  // Type not match skip this BSS
206  DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSS type mismatch.... Config[%d] BSS[0x%04x]\n", pMgmt->eConfigMode, pCurrBSS->wCapInfo);
207  continue;
208  }
209 
210  if (ePhyType != PHY_TYPE_AUTO) {
211  if (((ePhyType == PHY_TYPE_11A) && (PHY_TYPE_11A != pCurrBSS->eNetworkTypeInUse)) ||
212  ((ePhyType != PHY_TYPE_11A) && (PHY_TYPE_11A == pCurrBSS->eNetworkTypeInUse))) {
213  // PhyType not match skip this BSS
214  DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"Physical type mismatch.... ePhyType[%d] BSS[%d]\n", ePhyType, pCurrBSS->eNetworkTypeInUse);
215  continue;
216  }
217  }
218 
219  pMgmt->pSameBSS[jj].uChannel = pCurrBSS->uChannel;
221  "BSSpSearchBSSList pSelect1[%pM]\n",
222  pCurrBSS->abyBSSID);
223  jj++;
224 
225 
226  if (pSelect == NULL) {
227  pSelect = pCurrBSS;
228  } else {
229  // compare RSSI, select the strongest signal
230  if (pCurrBSS->uRSSI < pSelect->uRSSI) {
231  pSelect = pCurrBSS;
232  }
233  }
234  }
235  }
236 
237 pDevice->bSameBSSMaxNum = jj;
238 
239  if (pSelect != NULL) {
240  pSelect->bSelected = TRUE;
241  if (pDevice->bRoaming == FALSE) {
242  // Einsn Add @20070907
243  memset(pbyDesireSSID, 0, WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1);
244  memcpy(pbyDesireSSID,pCurrBSS->abySSID,WLAN_IEHDR_LEN + WLAN_SSID_MAXLEN + 1) ;
245  }
246 
247  return(pSelect);
248  }
249  }
250  return(NULL);
251 
252 }
253 
254 
255 /*+
256  *
257  * Routine Description:
258  * Clear BSS List
259  *
260  * Return Value:
261  * None.
262  *
263 -*/
264 
265 
266 void BSSvClearBSSList(void *hDeviceContext, BOOL bKeepCurrBSSID)
267 {
268  PSDevice pDevice = (PSDevice)hDeviceContext;
269  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
270  unsigned int ii;
271 
272  for (ii = 0; ii < MAX_BSS_NUM; ii++) {
273  if (bKeepCurrBSSID) {
274  if (pMgmt->sBSSList[ii].bActive &&
275  !compare_ether_addr(pMgmt->sBSSList[ii].abyBSSID,
276  pMgmt->abyCurrBSSID)) {
277  //mike mark: there are two BSSID's in list. If that AP is in hidden ssid mode, one SSID is null,
278  // but other's might not be obvious, so if it associate's with your STA,
279  // you must keep the two of them!!
280  // bKeepCurrBSSID = FALSE;
281  continue;
282  }
283  }
284 
285  pMgmt->sBSSList[ii].bActive = FALSE;
286  memset(&pMgmt->sBSSList[ii], 0, sizeof(KnownBSS));
287  }
288  BSSvClearAnyBSSJoinRecord(pDevice);
289 }
290 
291 
292 
293 /*+
294  *
295  * Routine Description:
296  * search BSS list by BSSID & SSID if matched
297  *
298  * Return Value:
299  * TRUE if found.
300  *
301 -*/
302 PKnownBSS BSSpAddrIsInBSSList(void *hDeviceContext,
303  PBYTE abyBSSID,
304  PWLAN_IE_SSID pSSID)
305 {
306  PSDevice pDevice = (PSDevice)hDeviceContext;
307  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
308  PKnownBSS pBSSList = NULL;
309  unsigned int ii;
310 
311  for (ii = 0; ii < MAX_BSS_NUM; ii++) {
312  pBSSList = &(pMgmt->sBSSList[ii]);
313  if (pBSSList->bActive) {
314  if (!compare_ether_addr(pBSSList->abyBSSID, abyBSSID)) {
315  if (pSSID->len == ((PWLAN_IE_SSID)pBSSList->abySSID)->len){
316  if (memcmp(pSSID->abySSID,
317  ((PWLAN_IE_SSID)pBSSList->abySSID)->abySSID,
318  pSSID->len) == 0)
319  return pBSSList;
320  }
321  }
322  }
323  }
324 
325  return NULL;
326 };
327 
328 
329 
330 /*+
331  *
332  * Routine Description:
333  * Insert a BSS set into known BSS list
334  *
335  * Return Value:
336  * TRUE if success.
337  *
338 -*/
339 
340 BOOL BSSbInsertToBSSList(void *hDeviceContext,
341  PBYTE abyBSSIDAddr,
342  QWORD qwTimestamp,
344  WORD wCapInfo,
346  PWLAN_IE_SSID pSSID,
347  PWLAN_IE_SUPP_RATES pSuppRates,
348  PWLAN_IE_SUPP_RATES pExtSuppRates,
349  PERPObject psERP,
350  PWLAN_IE_RSN pRSN,
351  PWLAN_IE_RSN_EXT pRSNWPA,
352  PWLAN_IE_COUNTRY pIE_Country,
353  PWLAN_IE_QUIET pIE_Quiet,
354  unsigned int uIELength,
355  PBYTE pbyIEs,
356  void *pRxPacketContext)
357 {
358 
359  PSDevice pDevice = (PSDevice)hDeviceContext;
360  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
361  PSRxMgmtPacket pRxPacket = (PSRxMgmtPacket)pRxPacketContext;
362  PKnownBSS pBSSList = NULL;
363  unsigned int ii;
364  BOOL bParsingQuiet = FALSE;
365 
366 
367 
368  pBSSList = (PKnownBSS)&(pMgmt->sBSSList[0]);
369 
370  for (ii = 0; ii < MAX_BSS_NUM; ii++) {
371  pBSSList = (PKnownBSS)&(pMgmt->sBSSList[ii]);
372  if (!pBSSList->bActive)
373  break;
374  }
375 
376  if (ii == MAX_BSS_NUM){
377  DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Get free KnowBSS node failed.\n");
378  return FALSE;
379  }
380  // save the BSS info
381  pBSSList->bActive = TRUE;
382  memcpy( pBSSList->abyBSSID, abyBSSIDAddr, WLAN_BSSID_LEN);
383  HIDWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(HIDWORD(qwTimestamp));
384  LODWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(LODWORD(qwTimestamp));
385  pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
386  pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
387  pBSSList->uClearCount = 0;
388 
389  if (pSSID->len > WLAN_SSID_MAXLEN)
390  pSSID->len = WLAN_SSID_MAXLEN;
391  memcpy( pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
392 
393  pBSSList->uChannel = byCurrChannel;
394 
395  if (pSuppRates->len > WLAN_RATES_MAXLEN)
396  pSuppRates->len = WLAN_RATES_MAXLEN;
397  memcpy( pBSSList->abySuppRates, pSuppRates, pSuppRates->len + WLAN_IEHDR_LEN);
398 
399  if (pExtSuppRates != NULL) {
400  if (pExtSuppRates->len > WLAN_RATES_MAXLEN)
401  pExtSuppRates->len = WLAN_RATES_MAXLEN;
402  memcpy(pBSSList->abyExtSuppRates, pExtSuppRates, pExtSuppRates->len + WLAN_IEHDR_LEN);
403  DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"BSSbInsertToBSSList: pExtSuppRates->len = %d\n", pExtSuppRates->len);
404 
405  } else {
406  memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
407  }
408  pBSSList->sERP.byERP = psERP->byERP;
409  pBSSList->sERP.bERPExist = psERP->bERPExist;
410 
411  // Check if BSS is 802.11a/b/g
412  if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
413  pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
414  } else {
415  if (pBSSList->sERP.bERPExist == TRUE) {
416  pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
417  } else {
418  pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
419  }
420  }
421 
422  pBSSList->byRxRate = pRxPacket->byRxRate;
423  pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
424  pBSSList->uRSSI = pRxPacket->uRSSI;
425  pBSSList->bySQ = pRxPacket->bySQ;
426 
427  if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
428  (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
429  // assoc with BSS
430  if (pBSSList == pMgmt->pCurrBSS) {
431  bParsingQuiet = TRUE;
432  }
433  }
434 
435  WPA_ClearRSN(pBSSList);
436 
437  if (pRSNWPA != NULL) {
438  unsigned int uLen = pRSNWPA->len + 2;
439 
440  if (uLen <= (uIELength -
441  (unsigned int) (ULONG_PTR) ((PBYTE) pRSNWPA - pbyIEs))) {
442  pBSSList->wWPALen = uLen;
443  memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
444  WPA_ParseRSN(pBSSList, pRSNWPA);
445  }
446  }
447 
448  WPA2_ClearRSN(pBSSList);
449 
450  if (pRSN != NULL) {
451  unsigned int uLen = pRSN->len + 2;
452 
453  if (uLen <= (uIELength -
454  (unsigned int) (ULONG_PTR) ((PBYTE) pRSN - pbyIEs))) {
455  pBSSList->wRSNLen = uLen;
456  memcpy(pBSSList->byRSNIE, pRSN, uLen);
457  WPA2vParseRSN(pBSSList, pRSN);
458  }
459  }
460 
461  if ((pMgmt->eAuthenMode == WMAC_AUTH_WPA2) || (pBSSList->bWPA2Valid == TRUE)) {
462 
463  PSKeyItem pTransmitKey = NULL;
464  BOOL bIs802_1x = FALSE;
465 
466  for (ii = 0; ii < pBSSList->wAKMSSAuthCount; ii ++) {
467  if (pBSSList->abyAKMSSAuthType[ii] == WLAN_11i_AKMSS_802_1X) {
468  bIs802_1x = TRUE;
469  break;
470  }
471  }
472  if ((bIs802_1x == TRUE) && (pSSID->len == ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->len) &&
473  ( !memcmp(pSSID->abySSID, ((PWLAN_IE_SSID)pMgmt->abyDesireSSID)->abySSID, pSSID->len))) {
474 
475  bAdd_PMKID_Candidate((void *) pDevice,
476  pBSSList->abyBSSID,
477  &pBSSList->sRSNCapObj);
478 
479  if ((pDevice->bLinkPass == TRUE) && (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
480  if ((KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, PAIRWISE_KEY, &pTransmitKey) == TRUE) ||
481  (KeybGetTransmitKey(&(pDevice->sKey), pDevice->abyBSSID, GROUP_KEY, &pTransmitKey) == TRUE)) {
483  pDevice->gsPMKIDCandidate.Version = 1;
484 
485  }
486 
487  }
488  }
489  }
490 
491  if (pDevice->bUpdateBBVGA) {
492  // Monitor if RSSI is too strong.
493  pBSSList->byRSSIStatCnt = 0;
494  RFvRSSITodBm(pDevice, (BYTE)(pRxPacket->uRSSI), &pBSSList->ldBmMAX);
495  pBSSList->ldBmAverage[0] = pBSSList->ldBmMAX;
496  pBSSList->ldBmAverRange = pBSSList->ldBmMAX;
497  for (ii = 1; ii < RSSI_STAT_COUNT; ii++)
498  pBSSList->ldBmAverage[ii] = 0;
499  }
500 
501  pBSSList->uIELength = uIELength;
502  if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
503  pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
504  memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
505 
506  return TRUE;
507 }
508 
509 
510 /*+
511  *
512  * Routine Description:
513  * Update BSS set in known BSS list
514  *
515  * Return Value:
516  * TRUE if success.
517  *
518 -*/
519 // TODO: input structure modify
520 
521 BOOL BSSbUpdateToBSSList(void *hDeviceContext,
522  QWORD qwTimestamp,
524  WORD wCapInfo,
526  BOOL bChannelHit,
527  PWLAN_IE_SSID pSSID,
528  PWLAN_IE_SUPP_RATES pSuppRates,
529  PWLAN_IE_SUPP_RATES pExtSuppRates,
530  PERPObject psERP,
531  PWLAN_IE_RSN pRSN,
532  PWLAN_IE_RSN_EXT pRSNWPA,
533  PWLAN_IE_COUNTRY pIE_Country,
534  PWLAN_IE_QUIET pIE_Quiet,
535  PKnownBSS pBSSList,
536  unsigned int uIELength,
537  PBYTE pbyIEs,
538  void *pRxPacketContext)
539 {
540  int ii, jj;
541  PSDevice pDevice = (PSDevice)hDeviceContext;
542  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
543  PSRxMgmtPacket pRxPacket = (PSRxMgmtPacket)pRxPacketContext;
544  signed long ldBm, ldBmSum;
545  BOOL bParsingQuiet = FALSE;
546 
547  if (pBSSList == NULL)
548  return FALSE;
549 
550 
551  HIDWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(HIDWORD(qwTimestamp));
552  LODWORD(pBSSList->qwBSSTimestamp) = cpu_to_le32(LODWORD(qwTimestamp));
553  pBSSList->wBeaconInterval = cpu_to_le16(wBeaconInterval);
554  pBSSList->wCapInfo = cpu_to_le16(wCapInfo);
555  pBSSList->uClearCount = 0;
556  pBSSList->uChannel = byCurrChannel;
557 
558  if (pSSID->len > WLAN_SSID_MAXLEN)
559  pSSID->len = WLAN_SSID_MAXLEN;
560 
561  if ((pSSID->len != 0) && (pSSID->abySSID[0] != 0))
562  memcpy(pBSSList->abySSID, pSSID, pSSID->len + WLAN_IEHDR_LEN);
563  memcpy(pBSSList->abySuppRates, pSuppRates,pSuppRates->len + WLAN_IEHDR_LEN);
564 
565  if (pExtSuppRates != NULL) {
566  memcpy(pBSSList->abyExtSuppRates, pExtSuppRates,pExtSuppRates->len + WLAN_IEHDR_LEN);
567  } else {
568  memset(pBSSList->abyExtSuppRates, 0, WLAN_IEHDR_LEN + WLAN_RATES_MAXLEN + 1);
569  }
570  pBSSList->sERP.byERP = psERP->byERP;
571  pBSSList->sERP.bERPExist = psERP->bERPExist;
572 
573  // Check if BSS is 802.11a/b/g
574  if (pBSSList->uChannel > CB_MAX_CHANNEL_24G) {
575  pBSSList->eNetworkTypeInUse = PHY_TYPE_11A;
576  } else {
577  if (pBSSList->sERP.bERPExist == TRUE) {
578  pBSSList->eNetworkTypeInUse = PHY_TYPE_11G;
579  } else {
580  pBSSList->eNetworkTypeInUse = PHY_TYPE_11B;
581  }
582  }
583 
584  pBSSList->byRxRate = pRxPacket->byRxRate;
585  pBSSList->qwLocalTSF = pRxPacket->qwLocalTSF;
586  if(bChannelHit)
587  pBSSList->uRSSI = pRxPacket->uRSSI;
588  pBSSList->bySQ = pRxPacket->bySQ;
589 
590  if ((pMgmt->eCurrMode == WMAC_MODE_ESS_STA) &&
591  (pMgmt->eCurrState == WMAC_STATE_ASSOC)) {
592  // assoc with BSS
593  if (pBSSList == pMgmt->pCurrBSS) {
594  bParsingQuiet = TRUE;
595  }
596  }
597 
598  WPA_ClearRSN(pBSSList); //mike update
599 
600  if (pRSNWPA != NULL) {
601  unsigned int uLen = pRSNWPA->len + 2;
602  if (uLen <= (uIELength -
603  (unsigned int) (ULONG_PTR) ((PBYTE) pRSNWPA - pbyIEs))) {
604  pBSSList->wWPALen = uLen;
605  memcpy(pBSSList->byWPAIE, pRSNWPA, uLen);
606  WPA_ParseRSN(pBSSList, pRSNWPA);
607  }
608  }
609 
610  WPA2_ClearRSN(pBSSList); //mike update
611 
612  if (pRSN != NULL) {
613  unsigned int uLen = pRSN->len + 2;
614  if (uLen <= (uIELength -
615  (unsigned int) (ULONG_PTR) ((PBYTE) pRSN - pbyIEs))) {
616  pBSSList->wRSNLen = uLen;
617  memcpy(pBSSList->byRSNIE, pRSN, uLen);
618  WPA2vParseRSN(pBSSList, pRSN);
619  }
620  }
621 
622  if (pRxPacket->uRSSI != 0) {
623  RFvRSSITodBm(pDevice, (BYTE)(pRxPacket->uRSSI), &ldBm);
624  // Monitor if RSSI is too strong.
625  pBSSList->byRSSIStatCnt++;
626  pBSSList->byRSSIStatCnt %= RSSI_STAT_COUNT;
627  pBSSList->ldBmAverage[pBSSList->byRSSIStatCnt] = ldBm;
628  ldBmSum = 0;
629  for (ii = 0, jj = 0; ii < RSSI_STAT_COUNT; ii++) {
630  if (pBSSList->ldBmAverage[ii] != 0) {
631  pBSSList->ldBmMAX =
632  max(pBSSList->ldBmAverage[ii], ldBm);
633  ldBmSum +=
634  pBSSList->ldBmAverage[ii];
635  jj++;
636  }
637  }
638  pBSSList->ldBmAverRange = ldBmSum /jj;
639  }
640 
641  pBSSList->uIELength = uIELength;
642  if (pBSSList->uIELength > WLAN_BEACON_FR_MAXLEN)
643  pBSSList->uIELength = WLAN_BEACON_FR_MAXLEN;
644  memcpy(pBSSList->abyIEs, pbyIEs, pBSSList->uIELength);
645 
646  return TRUE;
647 }
648 
649 
650 
651 
652 
653 /*+
654  *
655  * Routine Description:
656  * Search Node DB table to find the index of matched DstAddr
657  *
658  * Return Value:
659  * None
660  *
661 -*/
662 
663 BOOL BSSbIsSTAInNodeDB(void *hDeviceContext,
665  unsigned int *puNodeIndex)
666 {
667  PSDevice pDevice = (PSDevice)hDeviceContext;
668  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
669  unsigned int ii;
670 
671  // Index = 0 reserved for AP Node
672  for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
673  if (pMgmt->sNodeDBTable[ii].bActive) {
674  if (!compare_ether_addr(abyDstAddr,
675  pMgmt->sNodeDBTable[ii].abyMACAddr)) {
676  *puNodeIndex = ii;
677  return TRUE;
678  }
679  }
680  }
681 
682  return FALSE;
683 };
684 
685 
686 
687 /*+
688  *
689  * Routine Description:
690  * Find an empty node and allocate it; if no empty node
691  * is found, then use the most inactive one.
692  *
693  * Return Value:
694  * None
695  *
696 -*/
697 void BSSvCreateOneNode(void *hDeviceContext, unsigned int *puNodeIndex)
698 {
699 
700  PSDevice pDevice = (PSDevice)hDeviceContext;
701  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
702  unsigned int ii;
703  unsigned int BigestCount = 0;
704  unsigned int SelectIndex;
705  struct sk_buff *skb;
706  // Index = 0 reserved for AP Node (In STA mode)
707  // Index = 0 reserved for Broadcast/MultiCast (In AP mode)
708  SelectIndex = 1;
709  for (ii = 1; ii < (MAX_NODE_NUM + 1); ii++) {
710  if (pMgmt->sNodeDBTable[ii].bActive) {
711  if (pMgmt->sNodeDBTable[ii].uInActiveCount > BigestCount) {
712  BigestCount = pMgmt->sNodeDBTable[ii].uInActiveCount;
713  SelectIndex = ii;
714  }
715  }
716  else {
717  break;
718  }
719  }
720 
721  // if not found replace uInActiveCount with the largest one.
722  if ( ii == (MAX_NODE_NUM + 1)) {
723  *puNodeIndex = SelectIndex;
724  DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Replace inactive node = %d\n", SelectIndex);
725  // clear ps buffer
726  if (pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue.next != NULL) {
727  while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue)) != NULL)
728  dev_kfree_skb(skb);
729  }
730  }
731  else {
732  *puNodeIndex = ii;
733  }
734 
735  memset(&pMgmt->sNodeDBTable[*puNodeIndex], 0, sizeof(KnownNodeDB));
736  pMgmt->sNodeDBTable[*puNodeIndex].bActive = TRUE;
737  pMgmt->sNodeDBTable[*puNodeIndex].uRatePollTimeout = FALLBACK_POLL_SECOND;
738  // for AP mode PS queue
739  skb_queue_head_init(&pMgmt->sNodeDBTable[*puNodeIndex].sTxPSQueue);
740  pMgmt->sNodeDBTable[*puNodeIndex].byAuthSequence = 0;
741  pMgmt->sNodeDBTable[*puNodeIndex].wEnQueueCnt = 0;
742  DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Create node index = %d\n", ii);
743 };
744 
745 
746 
747 /*+
748  *
749  * Routine Description:
750  * Remove Node by NodeIndex
751  *
752  *
753  * Return Value:
754  * None
755  *
756 -*/
757 
758 void BSSvRemoveOneNode(void *hDeviceContext, unsigned int uNodeIndex)
759 {
760 
761  PSDevice pDevice = (PSDevice)hDeviceContext;
762  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
763  BYTE byMask[8] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80};
764  struct sk_buff *skb;
765 
766 
767  while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[uNodeIndex].sTxPSQueue)) != NULL)
768  dev_kfree_skb(skb);
769  // clear context
770  memset(&pMgmt->sNodeDBTable[uNodeIndex], 0, sizeof(KnownNodeDB));
771  // clear tx bit map
772  pMgmt->abyPSTxMap[pMgmt->sNodeDBTable[uNodeIndex].wAID >> 3] &= ~byMask[pMgmt->sNodeDBTable[uNodeIndex].wAID & 7];
773 };
774 /*+
775  *
776  * Routine Description:
777  * Update AP Node content in Index 0 of KnownNodeDB
778  *
779  *
780  * Return Value:
781  * None
782  *
783 -*/
784 
785 void BSSvUpdateAPNode(void *hDeviceContext,
786  PWORD pwCapInfo,
787  PWLAN_IE_SUPP_RATES pSuppRates,
788  PWLAN_IE_SUPP_RATES pExtSuppRates)
789 {
790  PSDevice pDevice = (PSDevice)hDeviceContext;
791  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
792  unsigned int uRateLen = WLAN_RATES_MAXLEN;
793 
794  memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
795 
796  pMgmt->sNodeDBTable[0].bActive = TRUE;
797  if (pDevice->byBBType == BB_TYPE_11B) {
798  uRateLen = WLAN_RATES_MAXLEN_11B;
799  }
800  pMgmt->abyCurrSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pSuppRates,
802  uRateLen);
803  pMgmt->abyCurrExtSuppRates[1] = RATEuSetIE((PWLAN_IE_SUPP_RATES)pExtSuppRates,
805  uRateLen);
806  RATEvParseMaxRate((void *) pDevice,
809  TRUE,
810  &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
811  &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
812  &(pMgmt->sNodeDBTable[0].wSuppRate),
813  &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
814  &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)
815  );
817  pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxSuppRate;
820  // Auto rate fallback function initiation.
821  // RATEbInit(pDevice);
822  DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"pMgmt->sNodeDBTable[0].wTxDataRate = %d \n", pMgmt->sNodeDBTable[0].wTxDataRate);
823 
824 };
825 
826 /*+
827  *
828  * Routine Description:
829  * Add Multicast Node content in Index 0 of KnownNodeDB
830  *
831  *
832  * Return Value:
833  * None
834  *
835 -*/
836 
837 void BSSvAddMulticastNode(void *hDeviceContext)
838 {
839  PSDevice pDevice = (PSDevice)hDeviceContext;
840  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
841 
842  if (!pDevice->bEnableHostWEP)
843  memset(&pMgmt->sNodeDBTable[0], 0, sizeof(KnownNodeDB));
844  memset(pMgmt->sNodeDBTable[0].abyMACAddr, 0xff, WLAN_ADDR_LEN);
845  pMgmt->sNodeDBTable[0].bActive = TRUE;
846  pMgmt->sNodeDBTable[0].bPSEnable = FALSE;
847  skb_queue_head_init(&pMgmt->sNodeDBTable[0].sTxPSQueue);
848  RATEvParseMaxRate((void *) pDevice,
851  TRUE,
852  &(pMgmt->sNodeDBTable[0].wMaxBasicRate),
853  &(pMgmt->sNodeDBTable[0].wMaxSuppRate),
854  &(pMgmt->sNodeDBTable[0].wSuppRate),
855  &(pMgmt->sNodeDBTable[0].byTopCCKBasicRate),
856  &(pMgmt->sNodeDBTable[0].byTopOFDMBasicRate)
857  );
858  pMgmt->sNodeDBTable[0].wTxDataRate = pMgmt->sNodeDBTable[0].wMaxBasicRate;
860 
861 };
862 
863 /*+
864  *
865  * Routine Description:
866  *
867  *
868  * Second call back function to update Node DB info & AP link status
869  *
870  *
871  * Return Value:
872  * none.
873  *
874 -*/
875 
876 void BSSvSecondCallBack(void *hDeviceContext)
877 {
878  PSDevice pDevice = (PSDevice)hDeviceContext;
879  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
880  unsigned int ii;
881  PWLAN_IE_SSID pItemSSID, pCurrSSID;
882  unsigned int uSleepySTACnt = 0;
883  unsigned int uNonShortSlotSTACnt = 0;
884  unsigned int uLongPreambleSTACnt = 0;
885  viawget_wpa_header *wpahdr;
886 
887  spin_lock_irq(&pDevice->lock);
888 
889  pDevice->uAssocCount = 0;
890 
891  //Power Saving Mode Tx Burst
892  if ( pDevice->bEnablePSMode == TRUE ) {
893  pDevice->ulPSModeWaitTx++;
894  if ( pDevice->ulPSModeWaitTx >= 2 ) {
895  pDevice->ulPSModeWaitTx = 0;
896  pDevice->bPSModeTxBurst = FALSE;
897  }
898  }
899 
900  pDevice->byERPFlag &=
902 
903  if (pDevice->wUseProtectCntDown > 0) {
904  pDevice->wUseProtectCntDown --;
905  }
906  else {
907  // disable protect mode
908  pDevice->byERPFlag &= ~(WLAN_SET_ERP_USE_PROTECTION(1));
909  }
910 
911 if(pDevice->byReAssocCount > 0) {
912  pDevice->byReAssocCount++;
913  if((pDevice->byReAssocCount > 10) && (pDevice->bLinkPass != TRUE)) { //10 sec timeout
914  printk("Re-association timeout!!!\n");
915  pDevice->byReAssocCount = 0;
916  #ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
917  // if(pDevice->bWPASuppWextEnabled == TRUE)
918  {
919  union iwreq_data wrqu;
920  memset(&wrqu, 0, sizeof (wrqu));
921  wrqu.ap_addr.sa_family = ARPHRD_ETHER;
922  PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
923  wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
924  }
925  #endif
926  }
927  else if(pDevice->bLinkPass == TRUE)
928  pDevice->byReAssocCount = 0;
929 }
930 
931 if((pMgmt->eCurrState!=WMAC_STATE_ASSOC) &&
932  (pMgmt->eLastState==WMAC_STATE_ASSOC))
933 {
934  union iwreq_data wrqu;
935  memset(&wrqu, 0, sizeof(wrqu));
936  wrqu.data.flags = RT_DISCONNECTED_EVENT_FLAG;
937  wireless_send_event(pDevice->dev, IWEVCUSTOM, &wrqu, NULL);
938 }
939  pMgmt->eLastState = pMgmt->eCurrState ;
940 
941  s_uCalculateLinkQual((void *)pDevice);
942 
943  for (ii = 0; ii < (MAX_NODE_NUM + 1); ii++) {
944 
945  if (pMgmt->sNodeDBTable[ii].bActive) {
946  // Increase in-activity counter
947  pMgmt->sNodeDBTable[ii].uInActiveCount++;
948 
949  if (ii > 0) {
951  BSSvRemoveOneNode(pDevice, ii);
953  "Inactive timeout [%d] sec, STA index = [%d] remove\n", MAX_INACTIVE_COUNT, ii);
954  continue;
955  }
956 
957  if (pMgmt->sNodeDBTable[ii].eNodeState >= NODE_ASSOC) {
958 
959  pDevice->uAssocCount++;
960 
961  // check if Non ERP exist
962  if (pMgmt->sNodeDBTable[ii].uInActiveCount < ERP_RECOVER_COUNT) {
963  if (!pMgmt->sNodeDBTable[ii].bShortPreamble) {
964  pDevice->byERPFlag |= WLAN_SET_ERP_BARKER_MODE(1);
965  uLongPreambleSTACnt ++;
966  }
967  if (!pMgmt->sNodeDBTable[ii].bERPExist) {
968  pDevice->byERPFlag |= WLAN_SET_ERP_NONERP_PRESENT(1);
969  pDevice->byERPFlag |= WLAN_SET_ERP_USE_PROTECTION(1);
970  }
971  if (!pMgmt->sNodeDBTable[ii].bShortSlotTime)
972  uNonShortSlotSTACnt++;
973  }
974  }
975 
976  // check if any STA in PS mode
977  if (pMgmt->sNodeDBTable[ii].bPSEnable)
978  uSleepySTACnt++;
979 
980 
981  }
982 
983  // Rate fallback check
984  if (!pDevice->bFixRate) {
985  if (ii > 0) {
986  // ii = 0 for multicast node (AP & Adhoc)
987  RATEvTxRateFallBack((void *)pDevice,
988  &(pMgmt->sNodeDBTable[ii]));
989  }
990  else {
991  // ii = 0 reserved for unicast AP node (Infra STA)
992  if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)
993  RATEvTxRateFallBack((void *)pDevice,
994  &(pMgmt->sNodeDBTable[ii]));
995  }
996 
997  }
998 
999  // check if pending PS queue
1000  if (pMgmt->sNodeDBTable[ii].wEnQueueCnt != 0) {
1001  DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Index= %d, Queue = %d pending \n",
1002  ii, pMgmt->sNodeDBTable[ii].wEnQueueCnt);
1003  if ((ii >0) && (pMgmt->sNodeDBTable[ii].wEnQueueCnt > 15)) {
1004  BSSvRemoveOneNode(pDevice, ii);
1005  DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Pending many queues PS STA Index = %d remove \n", ii);
1006  continue;
1007  }
1008  }
1009  }
1010 
1011  }
1012 
1013 
1014  if ((pMgmt->eCurrMode == WMAC_MODE_ESS_AP) && (pDevice->byBBType == BB_TYPE_11G)) {
1015 
1016  // on/off protect mode
1017  if (WLAN_GET_ERP_USE_PROTECTION(pDevice->byERPFlag)) {
1018  if (!pDevice->bProtectMode) {
1019  MACvEnableProtectMD(pDevice);
1020  pDevice->bProtectMode = TRUE;
1021  }
1022  }
1023  else {
1024  if (pDevice->bProtectMode) {
1025  MACvDisableProtectMD(pDevice);
1026  pDevice->bProtectMode = FALSE;
1027  }
1028  }
1029  // on/off short slot time
1030 
1031  if (uNonShortSlotSTACnt > 0) {
1032  if (pDevice->bShortSlotTime) {
1033  pDevice->bShortSlotTime = FALSE;
1034  BBvSetShortSlotTime(pDevice);
1035  vUpdateIFS((void *)pDevice);
1036  }
1037  }
1038  else {
1039  if (!pDevice->bShortSlotTime) {
1040  pDevice->bShortSlotTime = TRUE;
1041  BBvSetShortSlotTime(pDevice);
1042  vUpdateIFS((void *)pDevice);
1043  }
1044  }
1045 
1046  // on/off barker long preamble mode
1047 
1048  if (uLongPreambleSTACnt > 0) {
1049  if (!pDevice->bBarkerPreambleMd) {
1050  MACvEnableBarkerPreambleMd(pDevice);
1051  pDevice->bBarkerPreambleMd = TRUE;
1052  }
1053  }
1054  else {
1055  if (pDevice->bBarkerPreambleMd) {
1056  MACvDisableBarkerPreambleMd(pDevice);
1057  pDevice->bBarkerPreambleMd = FALSE;
1058  }
1059  }
1060 
1061  }
1062 
1063 
1064  // Check if any STA in PS mode, enable DTIM multicast deliver
1065  if (pMgmt->eCurrMode == WMAC_MODE_ESS_AP) {
1066  if (uSleepySTACnt > 0)
1067  pMgmt->sNodeDBTable[0].bPSEnable = TRUE;
1068  else
1069  pMgmt->sNodeDBTable[0].bPSEnable = FALSE;
1070  }
1071 
1072  pItemSSID = (PWLAN_IE_SSID)pMgmt->abyDesireSSID;
1073  pCurrSSID = (PWLAN_IE_SSID)pMgmt->abyCurrSSID;
1074 
1075  if ((pMgmt->eCurrMode == WMAC_MODE_STANDBY) ||
1076  (pMgmt->eCurrMode == WMAC_MODE_ESS_STA)) {
1077 
1078  if (pMgmt->sNodeDBTable[0].bActive) { // Assoc with BSS
1079 
1080  if (pDevice->bUpdateBBVGA) {
1081  /* s_vCheckSensitivity((void *) pDevice); */
1082  s_vCheckPreEDThreshold((void *) pDevice);
1083  }
1084 
1085  if ((pMgmt->sNodeDBTable[0].uInActiveCount >= (LOST_BEACON_COUNT/2)) &&
1086  (pDevice->byBBVGACurrent != pDevice->abyBBVGA[0]) ) {
1087  pDevice->byBBVGANew = pDevice->abyBBVGA[0];
1088  bScheduleCommand((void *) pDevice,
1090  NULL);
1091  }
1092 
1093  if (pMgmt->sNodeDBTable[0].uInActiveCount >= LOST_BEACON_COUNT) {
1094  pMgmt->sNodeDBTable[0].bActive = FALSE;
1095  pMgmt->eCurrMode = WMAC_MODE_STANDBY;
1096  pMgmt->eCurrState = WMAC_STATE_IDLE;
1097  netif_stop_queue(pDevice->dev);
1098  pDevice->bLinkPass = FALSE;
1100  pDevice->bRoaming = TRUE;
1101  pDevice->bIsRoaming = FALSE;
1102 
1103  DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost AP beacon [%d] sec, disconnected !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
1104  /* let wpa supplicant know AP may disconnect */
1105  if ((pDevice->bWPADEVUp) && (pDevice->skb != NULL)) {
1106  wpahdr = (viawget_wpa_header *)pDevice->skb->data;
1107  wpahdr->type = VIAWGET_DISASSOC_MSG;
1108  wpahdr->resp_ie_len = 0;
1109  wpahdr->req_ie_len = 0;
1110  skb_put(pDevice->skb, sizeof(viawget_wpa_header));
1111  pDevice->skb->dev = pDevice->wpadev;
1112  skb_reset_mac_header(pDevice->skb);
1113  pDevice->skb->pkt_type = PACKET_HOST;
1114  pDevice->skb->protocol = htons(ETH_P_802_2);
1115  memset(pDevice->skb->cb, 0, sizeof(pDevice->skb->cb));
1116  netif_rx(pDevice->skb);
1117  pDevice->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
1118  }
1119  #ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
1120  {
1121  union iwreq_data wrqu;
1122  memset(&wrqu, 0, sizeof (wrqu));
1123  wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1124  PRINT_K("wireless_send_event--->SIOCGIWAP(disassociated)\n");
1125  wireless_send_event(pDevice->dev, SIOCGIWAP, &wrqu, NULL);
1126  }
1127  #endif
1128  }
1129  }
1130  else if (pItemSSID->len != 0) {
1131 //Davidwang
1132  if ((pDevice->bEnableRoaming == TRUE)&&(!(pMgmt->Cisco_cckm))) {
1133 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bRoaming %d, !\n", pDevice->bRoaming );
1134 DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "bIsRoaming %d, !\n", pDevice->bIsRoaming );
1135  if ((pDevice->bRoaming == TRUE)&&(pDevice->bIsRoaming == TRUE)){
1136  DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Fast Roaming ...\n");
1137  BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
1138  bScheduleCommand((void *) pDevice,
1140  pMgmt->abyDesireSSID);
1141  bScheduleCommand((void *) pDevice,
1142  WLAN_CMD_SSID,
1143  pMgmt->abyDesireSSID);
1144  pDevice->uAutoReConnectTime = 0;
1145  pDevice->uIsroamingTime = 0;
1146  pDevice->bRoaming = FALSE;
1147 
1148  wpahdr = (viawget_wpa_header *)pDevice->skb->data;
1149  wpahdr->type = VIAWGET_CCKM_ROAM_MSG;
1150  wpahdr->resp_ie_len = 0;
1151  wpahdr->req_ie_len = 0;
1152  skb_put(pDevice->skb, sizeof(viawget_wpa_header));
1153  pDevice->skb->dev = pDevice->wpadev;
1154  skb_reset_mac_header(pDevice->skb);
1155  pDevice->skb->pkt_type = PACKET_HOST;
1156  pDevice->skb->protocol = htons(ETH_P_802_2);
1157  memset(pDevice->skb->cb, 0, sizeof(pDevice->skb->cb));
1158  netif_rx(pDevice->skb);
1159  pDevice->skb = dev_alloc_skb((int)pDevice->rx_buf_sz);
1160 
1161  }
1162  else if ((pDevice->bRoaming == FALSE)&&(pDevice->bIsRoaming == TRUE)) {
1163  pDevice->uIsroamingTime++;
1164  if (pDevice->uIsroamingTime >= 20)
1165  pDevice->bIsRoaming = FALSE;
1166  }
1167 
1168  }
1169 else {
1170  if (pDevice->uAutoReConnectTime < 10) {
1171  pDevice->uAutoReConnectTime++;
1172  #ifdef WPA_SUPPLICANT_DRIVER_WEXT_SUPPORT
1173  //network manager support need not do Roaming scan???
1174  if(pDevice->bWPASuppWextEnabled ==TRUE)
1175  pDevice->uAutoReConnectTime = 0;
1176  #endif
1177  }
1178  else {
1179  //mike use old encryption status for wpa reauthen
1180  if(pDevice->bWPADEVUp)
1181  pDevice->eEncryptionStatus = pDevice->eOldEncryptionStatus;
1182 
1183  DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "Roaming ...\n");
1184  BSSvClearBSSList((void *) pDevice, pDevice->bLinkPass);
1185  pMgmt->eScanType = WMAC_SCAN_ACTIVE;
1186  bScheduleCommand((void *) pDevice,
1188  pMgmt->abyDesireSSID);
1189  bScheduleCommand((void *) pDevice,
1190  WLAN_CMD_SSID,
1191  pMgmt->abyDesireSSID);
1192  pDevice->uAutoReConnectTime = 0;
1193  }
1194  }
1195  }
1196  }
1197 
1198  if (pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) {
1199  // if adhoc started which essid is NULL string, rescanning.
1200  if ((pMgmt->eCurrState == WMAC_STATE_STARTED) && (pCurrSSID->len == 0)) {
1201  if (pDevice->uAutoReConnectTime < 10) {
1202  pDevice->uAutoReConnectTime++;
1203  }
1204  else {
1205  DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Adhoc re-scanning ...\n");
1206  pMgmt->eScanType = WMAC_SCAN_ACTIVE;
1207  bScheduleCommand((void *) pDevice, WLAN_CMD_BSSID_SCAN, NULL);
1208  bScheduleCommand((void *) pDevice, WLAN_CMD_SSID, NULL);
1209  pDevice->uAutoReConnectTime = 0;
1210  };
1211  }
1212  if (pMgmt->eCurrState == WMAC_STATE_JOINTED) {
1213 
1214  if (pDevice->bUpdateBBVGA) {
1215  /* s_vCheckSensitivity((void *) pDevice); */
1216  s_vCheckPreEDThreshold((void *) pDevice);
1217  }
1219  DBG_PRT(MSG_LEVEL_NOTICE, KERN_INFO "Lost other STA beacon [%d] sec, started !\n", pMgmt->sNodeDBTable[0].uInActiveCount);
1220  pMgmt->sNodeDBTable[0].uInActiveCount = 0;
1221  pMgmt->eCurrState = WMAC_STATE_STARTED;
1222  netif_stop_queue(pDevice->dev);
1223  pDevice->bLinkPass = FALSE;
1225  }
1226  }
1227  }
1228 
1229  if (pDevice->bLinkPass == TRUE) {
1230  if (netif_queue_stopped(pDevice->dev))
1231  netif_wake_queue(pDevice->dev);
1232  }
1233 
1234  spin_unlock_irq(&pDevice->lock);
1235 
1236  pMgmt->sTimerSecondCallback.expires = RUN_AT(HZ);
1238 }
1239 
1240 /*+
1241  *
1242  * Routine Description:
1243  *
1244  *
1245  * Update Tx attemps, Tx failure counter in Node DB
1246  *
1247  *
1248  * Return Value:
1249  * none.
1250  *
1251 -*/
1252 
1253 void BSSvUpdateNodeTxCounter(void *hDeviceContext,
1254  PSStatCounter pStatistic,
1255  BYTE byTSR,
1256  BYTE byPktNO)
1257 {
1258  PSDevice pDevice = (PSDevice)hDeviceContext;
1259  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
1260  unsigned int uNodeIndex = 0;
1261  BYTE byTxRetry;
1262  WORD wRate;
1263  WORD wFallBackRate = RATE_1M;
1264  BYTE byFallBack;
1265  unsigned int ii;
1266  PBYTE pbyDestAddr;
1267  BYTE byPktNum;
1268  WORD wFIFOCtl;
1269 
1270  byPktNum = (byPktNO & 0x0F) >> 4;
1271  byTxRetry = (byTSR & 0xF0) >> 4;
1272  wRate = (WORD) (byPktNO & 0xF0) >> 4;
1273  wFIFOCtl = pStatistic->abyTxPktInfo[byPktNum].wFIFOCtl;
1274  pbyDestAddr = (PBYTE) &( pStatistic->abyTxPktInfo[byPktNum].abyDestAddr[0]);
1275 
1276  if (wFIFOCtl & FIFOCTL_AUTO_FB_0) {
1277  byFallBack = AUTO_FB_0;
1278  } else if (wFIFOCtl & FIFOCTL_AUTO_FB_1) {
1279  byFallBack = AUTO_FB_1;
1280  } else {
1281  byFallBack = AUTO_FB_NONE;
1282  }
1283 
1284  // Only Unicast using support rates
1285  if (wFIFOCtl & FIFOCTL_NEEDACK) {
1286  if (pMgmt->eCurrMode == WMAC_MODE_ESS_STA) {
1287  pMgmt->sNodeDBTable[0].uTxAttempts += 1;
1288  if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
1289  // transmit success, TxAttempts at least plus one
1290  pMgmt->sNodeDBTable[0].uTxOk[MAX_RATE]++;
1291  if ( (byFallBack == AUTO_FB_NONE) ||
1292  (wRate < RATE_18M) ) {
1293  wFallBackRate = wRate;
1294  } else if (byFallBack == AUTO_FB_0) {
1295  if (byTxRetry < 5)
1296  wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
1297  else
1298  wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
1299  } else if (byFallBack == AUTO_FB_1) {
1300  if (byTxRetry < 5)
1301  wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
1302  else
1303  wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1304  }
1305  pMgmt->sNodeDBTable[0].uTxOk[wFallBackRate]++;
1306  } else {
1307  pMgmt->sNodeDBTable[0].uTxFailures ++;
1308  }
1309  pMgmt->sNodeDBTable[0].uTxRetry += byTxRetry;
1310  if (byTxRetry != 0) {
1311  pMgmt->sNodeDBTable[0].uTxFail[MAX_RATE]+=byTxRetry;
1312  if ( (byFallBack == AUTO_FB_NONE) ||
1313  (wRate < RATE_18M) ) {
1314  pMgmt->sNodeDBTable[0].uTxFail[wRate]+=byTxRetry;
1315  } else if (byFallBack == AUTO_FB_0) {
1316  for (ii = 0; ii < byTxRetry; ii++) {
1317  if (ii < 5)
1318  wFallBackRate =
1319  awHWRetry0[wRate-RATE_18M][ii];
1320  else
1321  wFallBackRate =
1322  awHWRetry0[wRate-RATE_18M][4];
1323  pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
1324  }
1325  } else if (byFallBack == AUTO_FB_1) {
1326  for (ii = 0; ii < byTxRetry; ii++) {
1327  if (ii < 5)
1328  wFallBackRate =
1329  awHWRetry1[wRate-RATE_18M][ii];
1330  else
1331  wFallBackRate =
1332  awHWRetry1[wRate-RATE_18M][4];
1333  pMgmt->sNodeDBTable[0].uTxFail[wFallBackRate]++;
1334  }
1335  }
1336  }
1337  }
1338 
1339  if ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) ||
1340  (pMgmt->eCurrMode == WMAC_MODE_ESS_AP)) {
1341 
1342  if (BSSbIsSTAInNodeDB((void *) pDevice,
1343  pbyDestAddr,
1344  &uNodeIndex)) {
1345  pMgmt->sNodeDBTable[uNodeIndex].uTxAttempts += 1;
1346  if ( !(byTSR & (TSR_TMO | TSR_RETRYTMO))) {
1347  // transmit success, TxAttempts at least plus one
1348  pMgmt->sNodeDBTable[uNodeIndex].uTxOk[MAX_RATE]++;
1349  if ( (byFallBack == AUTO_FB_NONE) ||
1350  (wRate < RATE_18M) ) {
1351  wFallBackRate = wRate;
1352  } else if (byFallBack == AUTO_FB_0) {
1353  if (byTxRetry < 5)
1354  wFallBackRate = awHWRetry0[wRate-RATE_18M][byTxRetry];
1355  else
1356  wFallBackRate = awHWRetry0[wRate-RATE_18M][4];
1357  } else if (byFallBack == AUTO_FB_1) {
1358  if (byTxRetry < 5)
1359  wFallBackRate = awHWRetry1[wRate-RATE_18M][byTxRetry];
1360  else
1361  wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1362  }
1363  pMgmt->sNodeDBTable[uNodeIndex].uTxOk[wFallBackRate]++;
1364  } else {
1365  pMgmt->sNodeDBTable[uNodeIndex].uTxFailures ++;
1366  }
1367  pMgmt->sNodeDBTable[uNodeIndex].uTxRetry += byTxRetry;
1368  if (byTxRetry != 0) {
1369  pMgmt->sNodeDBTable[uNodeIndex].uTxFail[MAX_RATE]+=byTxRetry;
1370  if ( (byFallBack == AUTO_FB_NONE) ||
1371  (wRate < RATE_18M) ) {
1372  pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wRate]+=byTxRetry;
1373  } else if (byFallBack == AUTO_FB_0) {
1374  for (ii = 0; ii < byTxRetry; ii++) {
1375  if (ii < 5)
1376  wFallBackRate =
1377  awHWRetry0[wRate-RATE_18M][ii];
1378  else
1379  wFallBackRate =
1380  awHWRetry0[wRate-RATE_18M][4];
1381  pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
1382  }
1383  } else if (byFallBack == AUTO_FB_1) {
1384  for (ii = 0; ii < byTxRetry; ii++) {
1385  if (ii < 5)
1386  wFallBackRate = awHWRetry1[wRate-RATE_18M][ii];
1387  else
1388  wFallBackRate = awHWRetry1[wRate-RATE_18M][4];
1389  pMgmt->sNodeDBTable[uNodeIndex].uTxFail[wFallBackRate]++;
1390  }
1391  }
1392  }
1393  }
1394  }
1395  }
1396 }
1397 
1398 /*+
1399  *
1400  * Routine Description:
1401  * Clear Nodes & skb in DB Table
1402  *
1403  *
1404  * Parameters:
1405  * In:
1406  * hDeviceContext - The adapter context.
1407  * uStartIndex - starting index
1408  * Out:
1409  * none
1410  *
1411  * Return Value:
1412  * None.
1413  *
1414 -*/
1415 
1416 void BSSvClearNodeDBTable(void *hDeviceContext,
1417  unsigned int uStartIndex)
1418 {
1419  PSDevice pDevice = (PSDevice)hDeviceContext;
1420  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
1421  struct sk_buff *skb;
1422  unsigned int ii;
1423 
1424  for (ii = uStartIndex; ii < (MAX_NODE_NUM + 1); ii++) {
1425  if (pMgmt->sNodeDBTable[ii].bActive) {
1426  // check if sTxPSQueue has been initial
1427  if (pMgmt->sNodeDBTable[ii].sTxPSQueue.next != NULL) {
1428  while ((skb = skb_dequeue(&pMgmt->sNodeDBTable[ii].sTxPSQueue)) != NULL){
1429  DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO "PS skb != NULL %d\n", ii);
1430  dev_kfree_skb(skb);
1431  }
1432  }
1433  memset(&pMgmt->sNodeDBTable[ii], 0, sizeof(KnownNodeDB));
1434  }
1435  }
1436 };
1437 
1438 void s_vCheckSensitivity(void *hDeviceContext)
1439 {
1440  PSDevice pDevice = (PSDevice)hDeviceContext;
1441  PKnownBSS pBSSList = NULL;
1442  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
1443  int ii;
1444 
1445  if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
1446  ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
1447  pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
1448  if (pBSSList != NULL) {
1449  /* Update BB register if RSSI is too strong */
1450  signed long LocalldBmAverage = 0;
1451  signed long uNumofdBm = 0;
1452  for (ii = 0; ii < RSSI_STAT_COUNT; ii++) {
1453  if (pBSSList->ldBmAverage[ii] != 0) {
1454  uNumofdBm ++;
1455  LocalldBmAverage += pBSSList->ldBmAverage[ii];
1456  }
1457  }
1458  if (uNumofdBm > 0) {
1459  LocalldBmAverage = LocalldBmAverage/uNumofdBm;
1460  for (ii=0;ii<BB_VGA_LEVEL;ii++) {
1461  DBG_PRT(MSG_LEVEL_DEBUG, KERN_INFO"LocalldBmAverage:%ld, %ld %02x\n", LocalldBmAverage, pDevice->ldBmThreshold[ii], pDevice->abyBBVGA[ii]);
1462  if (LocalldBmAverage < pDevice->ldBmThreshold[ii]) {
1463  pDevice->byBBVGANew = pDevice->abyBBVGA[ii];
1464  break;
1465  }
1466  }
1467  if (pDevice->byBBVGANew != pDevice->byBBVGACurrent) {
1468  pDevice->uBBVGADiffCount++;
1469  if (pDevice->uBBVGADiffCount >= BB_VGA_CHANGE_THRESHOLD)
1470  bScheduleCommand((void *) pDevice,
1472  NULL);
1473  } else {
1474  pDevice->uBBVGADiffCount = 0;
1475  }
1476  }
1477  }
1478  }
1479 }
1480 
1481 void s_uCalculateLinkQual(void *hDeviceContext)
1482 {
1483  PSDevice pDevice = (PSDevice)hDeviceContext;
1484  unsigned long TxOkRatio, TxCnt;
1485  unsigned long RxOkRatio, RxCnt;
1486  unsigned long RssiRatio;
1487  long ldBm;
1488 
1489 TxCnt = pDevice->scStatistic.TxNoRetryOkCount +
1490  pDevice->scStatistic.TxRetryOkCount +
1491  pDevice->scStatistic.TxFailCount;
1492 RxCnt = pDevice->scStatistic.RxFcsErrCnt +
1493  pDevice->scStatistic.RxOkCnt;
1494 TxOkRatio = (TxCnt < 6) ? 4000:((pDevice->scStatistic.TxNoRetryOkCount * 4000) / TxCnt);
1495 RxOkRatio = (RxCnt < 6) ? 2000:((pDevice->scStatistic.RxOkCnt * 2000) / RxCnt);
1496 //decide link quality
1497 if(pDevice->bLinkPass !=TRUE)
1498 {
1499  pDevice->scStatistic.LinkQuality = 0;
1500  pDevice->scStatistic.SignalStren = 0;
1501 }
1502 else
1503 {
1504  RFvRSSITodBm(pDevice, (BYTE)(pDevice->uCurrRSSI), &ldBm);
1505  if(-ldBm < 50) {
1506  RssiRatio = 4000;
1507  }
1508  else if(-ldBm > 90) {
1509  RssiRatio = 0;
1510  }
1511  else {
1512  RssiRatio = (40-(-ldBm-50))*4000/40;
1513  }
1514  pDevice->scStatistic.SignalStren = RssiRatio/40;
1515  pDevice->scStatistic.LinkQuality = (RssiRatio+TxOkRatio+RxOkRatio)/100;
1516 }
1517  pDevice->scStatistic.RxFcsErrCnt = 0;
1518  pDevice->scStatistic.RxOkCnt = 0;
1519  pDevice->scStatistic.TxFailCount = 0;
1520  pDevice->scStatistic.TxNoRetryOkCount = 0;
1521  pDevice->scStatistic.TxRetryOkCount = 0;
1522 }
1523 
1524 void BSSvClearAnyBSSJoinRecord(void *hDeviceContext)
1525 {
1526  PSDevice pDevice = (PSDevice)hDeviceContext;
1527  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
1528  unsigned int ii;
1529 
1530  for (ii = 0; ii < MAX_BSS_NUM; ii++)
1531  pMgmt->sBSSList[ii].bSelected = FALSE;
1532 }
1533 
1534 void s_vCheckPreEDThreshold(void *hDeviceContext)
1535 {
1536  PSDevice pDevice = (PSDevice)hDeviceContext;
1537  PKnownBSS pBSSList = NULL;
1538  PSMgmtObject pMgmt = &(pDevice->sMgmtObj);
1539 
1540  if ((pMgmt->eCurrState == WMAC_STATE_ASSOC) ||
1541  ((pMgmt->eCurrMode == WMAC_MODE_IBSS_STA) && (pMgmt->eCurrState == WMAC_STATE_JOINTED))) {
1542  pBSSList = BSSpAddrIsInBSSList(pDevice, pMgmt->abyCurrBSSID, (PWLAN_IE_SSID)pMgmt->abyCurrSSID);
1543  if (pBSSList != NULL) {
1544  pDevice->byBBPreEDRSSI = (BYTE) (~(pBSSList->ldBmAverRange) + 1);
1545  BBvUpdatePreEDThreshold(pDevice, FALSE);
1546  }
1547  }
1548 }
1549