Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
zs.c
Go to the documentation of this file.
1 /*
2  * zs.c: Serial port driver for IOASIC DECstations.
3  *
4  * Derived from drivers/sbus/char/sunserial.c by Paul Mackerras.
5  * Derived from drivers/macintosh/macserial.c by Harald Koerfgen.
6  *
7  * DECstation changes
8  * Copyright (C) 1998-2000 Harald Koerfgen
9  * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
10  *
11  * For the rest of the code the original Copyright applies:
12  * Copyright (C) 1996 Paul Mackerras ([email protected])
13  * Copyright (C) 1995 David S. Miller ([email protected])
14  *
15  *
16  * Note: for IOASIC systems the wiring is as follows:
17  *
18  * mouse/keyboard:
19  * DIN-7 MJ-4 signal SCC
20  * 2 1 TxD <- A.TxD
21  * 3 4 RxD -> A.RxD
22  *
23  * EIA-232/EIA-423:
24  * DB-25 MMJ-6 signal SCC
25  * 2 2 TxD <- B.TxD
26  * 3 5 RxD -> B.RxD
27  * 4 RTS <- ~A.RTS
28  * 5 CTS -> ~B.CTS
29  * 6 6 DSR -> ~A.SYNC
30  * 8 CD -> ~B.DCD
31  * 12 DSRS(DCE) -> ~A.CTS (*)
32  * 15 TxC -> B.TxC
33  * 17 RxC -> B.RxC
34  * 20 1 DTR <- ~A.DTR
35  * 22 RI -> ~A.DCD
36  * 23 DSRS(DTE) <- ~B.RTS
37  *
38  * (*) EIA-232 defines the signal at this pin to be SCD, while DSRS(DCE)
39  * is shared with DSRS(DTE) at pin 23.
40  *
41  * As you can immediately notice the wiring of the RTS, DTR and DSR signals
42  * is a bit odd. This makes the handling of port B unnecessarily
43  * complicated and prevents the use of some automatic modes of operation.
44  */
45 
46 #if defined(CONFIG_SERIAL_ZS_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
47 #define SUPPORT_SYSRQ
48 #endif
49 
50 #include <linux/bug.h>
51 #include <linux/console.h>
52 #include <linux/delay.h>
53 #include <linux/errno.h>
54 #include <linux/init.h>
55 #include <linux/interrupt.h>
56 #include <linux/io.h>
57 #include <linux/ioport.h>
58 #include <linux/irqflags.h>
59 #include <linux/kernel.h>
60 #include <linux/module.h>
61 #include <linux/major.h>
62 #include <linux/serial.h>
63 #include <linux/serial_core.h>
64 #include <linux/spinlock.h>
65 #include <linux/sysrq.h>
66 #include <linux/tty.h>
67 #include <linux/tty_flip.h>
68 #include <linux/types.h>
69 
70 #include <linux/atomic.h>
71 
72 #include <asm/dec/interrupts.h>
73 #include <asm/dec/ioasic_addrs.h>
74 #include <asm/dec/system.h>
75 
76 #include "zs.h"
77 
78 
79 MODULE_AUTHOR("Maciej W. Rozycki <[email protected]>");
80 MODULE_DESCRIPTION("DECstation Z85C30 serial driver");
81 MODULE_LICENSE("GPL");
82 
83 
84 static char zs_name[] __initdata = "DECstation Z85C30 serial driver version ";
85 static char zs_version[] __initdata = "0.10";
86 
87 /*
88  * It would be nice to dynamically allocate everything that
89  * depends on ZS_NUM_SCCS, so we could support any number of
90  * Z85C30s, but for now...
91  */
92 #define ZS_NUM_SCCS 2 /* Max # of ZS chips supported. */
93 #define ZS_NUM_CHAN 2 /* 2 channels per chip. */
94 #define ZS_CHAN_A 0 /* Index of the channel A. */
95 #define ZS_CHAN_B 1 /* Index of the channel B. */
96 #define ZS_CHAN_IO_SIZE 8 /* IOMEM space size. */
97 #define ZS_CHAN_IO_STRIDE 4 /* Register alignment. */
98 #define ZS_CHAN_IO_OFFSET 1 /* The SCC resides on the high byte
99  of the 16-bit IOBUS. */
100 #define ZS_CLOCK 7372800 /* Z85C30 PCLK input clock rate. */
102 #define to_zport(uport) container_of(uport, struct zs_port, port)
104 struct zs_parms {
106  int irq[ZS_NUM_SCCS];
107 };
108 
109 static struct zs_scc zs_sccs[ZS_NUM_SCCS];
110 
111 static u8 zs_init_regs[ZS_NUM_REGS] __initdata = {
112  0, /* write 0 */
113  PAR_SPEC, /* write 1 */
114  0, /* write 2 */
115  0, /* write 3 */
116  X16CLK | SB1, /* write 4 */
117  0, /* write 5 */
118  0, 0, 0, /* write 6, 7, 8 */
119  MIE | DLC | NV, /* write 9 */
120  NRZ, /* write 10 */
121  TCBR | RCBR, /* write 11 */
122  0, 0, /* BRG time constant, write 12 + 13 */
123  BRSRC | BRENABL, /* write 14 */
124  0, /* write 15 */
125 };
126 
127 /*
128  * Debugging.
129  */
130 #undef ZS_DEBUG_REGS
131 
132 
133 /*
134  * Reading and writing Z85C30 registers.
135  */
136 static void recovery_delay(void)
137 {
138  udelay(2);
139 }
140 
141 static u8 read_zsreg(struct zs_port *zport, int reg)
142 {
143  void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
144  u8 retval;
145 
146  if (reg != 0) {
147  writeb(reg & 0xf, control);
148  fast_iob();
149  recovery_delay();
150  }
151  retval = readb(control);
152  recovery_delay();
153  return retval;
154 }
155 
156 static void write_zsreg(struct zs_port *zport, int reg, u8 value)
157 {
158  void __iomem *control = zport->port.membase + ZS_CHAN_IO_OFFSET;
159 
160  if (reg != 0) {
161  writeb(reg & 0xf, control);
162  fast_iob(); recovery_delay();
163  }
164  writeb(value, control);
165  fast_iob();
166  recovery_delay();
167  return;
168 }
169 
170 static u8 read_zsdata(struct zs_port *zport)
171 {
172  void __iomem *data = zport->port.membase +
174  u8 retval;
175 
176  retval = readb(data);
177  recovery_delay();
178  return retval;
179 }
180 
181 static void write_zsdata(struct zs_port *zport, u8 value)
182 {
183  void __iomem *data = zport->port.membase +
185 
186  writeb(value, data);
187  fast_iob();
188  recovery_delay();
189  return;
190 }
191 
192 #ifdef ZS_DEBUG_REGS
193 void zs_dump(void)
194 {
195  struct zs_port *zport;
196  int i, j;
197 
198  for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
199  zport = &zs_sccs[i / ZS_NUM_CHAN].zport[i % ZS_NUM_CHAN];
200 
201  if (!zport->scc)
202  continue;
203 
204  for (j = 0; j < 16; j++)
205  printk("W%-2d = 0x%02x\t", j, zport->regs[j]);
206  printk("\n");
207  for (j = 0; j < 16; j++)
208  printk("R%-2d = 0x%02x\t", j, read_zsreg(zport, j));
209  printk("\n\n");
210  }
211 }
212 #endif
213 
214 
215 static void zs_spin_lock_cond_irq(spinlock_t *lock, int irq)
216 {
217  if (irq)
218  spin_lock_irq(lock);
219  else
220  spin_lock(lock);
221 }
222 
223 static void zs_spin_unlock_cond_irq(spinlock_t *lock, int irq)
224 {
225  if (irq)
226  spin_unlock_irq(lock);
227  else
228  spin_unlock(lock);
229 }
230 
231 static int zs_receive_drain(struct zs_port *zport)
232 {
233  int loops = 10000;
234 
235  while ((read_zsreg(zport, R0) & Rx_CH_AV) && --loops)
236  read_zsdata(zport);
237  return loops;
238 }
239 
240 static int zs_transmit_drain(struct zs_port *zport, int irq)
241 {
242  struct zs_scc *scc = zport->scc;
243  int loops = 10000;
244 
245  while (!(read_zsreg(zport, R0) & Tx_BUF_EMP) && --loops) {
246  zs_spin_unlock_cond_irq(&scc->zlock, irq);
247  udelay(2);
248  zs_spin_lock_cond_irq(&scc->zlock, irq);
249  }
250  return loops;
251 }
252 
253 static int zs_line_drain(struct zs_port *zport, int irq)
254 {
255  struct zs_scc *scc = zport->scc;
256  int loops = 10000;
257 
258  while (!(read_zsreg(zport, R1) & ALL_SNT) && --loops) {
259  zs_spin_unlock_cond_irq(&scc->zlock, irq);
260  udelay(2);
261  zs_spin_lock_cond_irq(&scc->zlock, irq);
262  }
263  return loops;
264 }
265 
266 
267 static void load_zsregs(struct zs_port *zport, u8 *regs, int irq)
268 {
269  /* Let the current transmission finish. */
270  zs_line_drain(zport, irq);
271  /* Load 'em up. */
272  write_zsreg(zport, R3, regs[3] & ~RxENABLE);
273  write_zsreg(zport, R5, regs[5] & ~TxENAB);
274  write_zsreg(zport, R4, regs[4]);
275  write_zsreg(zport, R9, regs[9]);
276  write_zsreg(zport, R1, regs[1]);
277  write_zsreg(zport, R2, regs[2]);
278  write_zsreg(zport, R10, regs[10]);
279  write_zsreg(zport, R14, regs[14] & ~BRENABL);
280  write_zsreg(zport, R11, regs[11]);
281  write_zsreg(zport, R12, regs[12]);
282  write_zsreg(zport, R13, regs[13]);
283  write_zsreg(zport, R14, regs[14]);
284  write_zsreg(zport, R15, regs[15]);
285  if (regs[3] & RxENABLE)
286  write_zsreg(zport, R3, regs[3]);
287  if (regs[5] & TxENAB)
288  write_zsreg(zport, R5, regs[5]);
289  return;
290 }
291 
292 
293 /*
294  * Status handling routines.
295  */
296 
297 /*
298  * zs_tx_empty() -- get the transmitter empty status
299  *
300  * Purpose: Let user call ioctl() to get info when the UART physically
301  * is emptied. On bus types like RS485, the transmitter must
302  * release the bus after transmitting. This must be done when
303  * the transmit shift register is empty, not be done when the
304  * transmit holding register is empty. This functionality
305  * allows an RS485 driver to be written in user space.
306  */
307 static unsigned int zs_tx_empty(struct uart_port *uport)
308 {
309  struct zs_port *zport = to_zport(uport);
310  struct zs_scc *scc = zport->scc;
311  unsigned long flags;
312  u8 status;
313 
314  spin_lock_irqsave(&scc->zlock, flags);
315  status = read_zsreg(zport, R1);
316  spin_unlock_irqrestore(&scc->zlock, flags);
317 
318  return status & ALL_SNT ? TIOCSER_TEMT : 0;
319 }
320 
321 static unsigned int zs_raw_get_ab_mctrl(struct zs_port *zport_a,
322  struct zs_port *zport_b)
323 {
324  u8 status_a, status_b;
325  unsigned int mctrl;
326 
327  status_a = read_zsreg(zport_a, R0);
328  status_b = read_zsreg(zport_b, R0);
329 
330  mctrl = ((status_b & CTS) ? TIOCM_CTS : 0) |
331  ((status_b & DCD) ? TIOCM_CAR : 0) |
332  ((status_a & DCD) ? TIOCM_RNG : 0) |
333  ((status_a & SYNC_HUNT) ? TIOCM_DSR : 0);
334 
335  return mctrl;
336 }
337 
338 static unsigned int zs_raw_get_mctrl(struct zs_port *zport)
339 {
340  struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
341 
342  return zport != zport_a ? zs_raw_get_ab_mctrl(zport_a, zport) : 0;
343 }
344 
345 static unsigned int zs_raw_xor_mctrl(struct zs_port *zport)
346 {
347  struct zs_port *zport_a = &zport->scc->zport[ZS_CHAN_A];
348  unsigned int mmask, mctrl, delta;
349  u8 mask_a, mask_b;
350 
351  if (zport == zport_a)
352  return 0;
353 
354  mask_a = zport_a->regs[15];
355  mask_b = zport->regs[15];
356 
357  mmask = ((mask_b & CTSIE) ? TIOCM_CTS : 0) |
358  ((mask_b & DCDIE) ? TIOCM_CAR : 0) |
359  ((mask_a & DCDIE) ? TIOCM_RNG : 0) |
360  ((mask_a & SYNCIE) ? TIOCM_DSR : 0);
361 
362  mctrl = zport->mctrl;
363  if (mmask) {
364  mctrl &= ~mmask;
365  mctrl |= zs_raw_get_ab_mctrl(zport_a, zport) & mmask;
366  }
367 
368  delta = mctrl ^ zport->mctrl;
369  if (delta)
370  zport->mctrl = mctrl;
371 
372  return delta;
373 }
374 
375 static unsigned int zs_get_mctrl(struct uart_port *uport)
376 {
377  struct zs_port *zport = to_zport(uport);
378  struct zs_scc *scc = zport->scc;
379  unsigned int mctrl;
380 
381  spin_lock(&scc->zlock);
382  mctrl = zs_raw_get_mctrl(zport);
383  spin_unlock(&scc->zlock);
384 
385  return mctrl;
386 }
387 
388 static void zs_set_mctrl(struct uart_port *uport, unsigned int mctrl)
389 {
390  struct zs_port *zport = to_zport(uport);
391  struct zs_scc *scc = zport->scc;
392  struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
393  u8 oldloop, newloop;
394 
395  spin_lock(&scc->zlock);
396  if (zport != zport_a) {
397  if (mctrl & TIOCM_DTR)
398  zport_a->regs[5] |= DTR;
399  else
400  zport_a->regs[5] &= ~DTR;
401  if (mctrl & TIOCM_RTS)
402  zport_a->regs[5] |= RTS;
403  else
404  zport_a->regs[5] &= ~RTS;
405  write_zsreg(zport_a, R5, zport_a->regs[5]);
406  }
407 
408  /* Rarely modified, so don't poke at hardware unless necessary. */
409  oldloop = zport->regs[14];
410  newloop = oldloop;
411  if (mctrl & TIOCM_LOOP)
412  newloop |= LOOPBAK;
413  else
414  newloop &= ~LOOPBAK;
415  if (newloop != oldloop) {
416  zport->regs[14] = newloop;
417  write_zsreg(zport, R14, zport->regs[14]);
418  }
419  spin_unlock(&scc->zlock);
420 }
421 
422 static void zs_raw_stop_tx(struct zs_port *zport)
423 {
424  write_zsreg(zport, R0, RES_Tx_P);
425  zport->tx_stopped = 1;
426 }
427 
428 static void zs_stop_tx(struct uart_port *uport)
429 {
430  struct zs_port *zport = to_zport(uport);
431  struct zs_scc *scc = zport->scc;
432 
433  spin_lock(&scc->zlock);
434  zs_raw_stop_tx(zport);
435  spin_unlock(&scc->zlock);
436 }
437 
438 static void zs_raw_transmit_chars(struct zs_port *);
439 
440 static void zs_start_tx(struct uart_port *uport)
441 {
442  struct zs_port *zport = to_zport(uport);
443  struct zs_scc *scc = zport->scc;
444 
445  spin_lock(&scc->zlock);
446  if (zport->tx_stopped) {
447  zs_transmit_drain(zport, 0);
448  zport->tx_stopped = 0;
449  zs_raw_transmit_chars(zport);
450  }
451  spin_unlock(&scc->zlock);
452 }
453 
454 static void zs_stop_rx(struct uart_port *uport)
455 {
456  struct zs_port *zport = to_zport(uport);
457  struct zs_scc *scc = zport->scc;
458  struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
459 
460  spin_lock(&scc->zlock);
461  zport->regs[15] &= ~BRKIE;
462  zport->regs[1] &= ~(RxINT_MASK | TxINT_ENAB);
463  zport->regs[1] |= RxINT_DISAB;
464 
465  if (zport != zport_a) {
466  /* A-side DCD tracks RI and SYNC tracks DSR. */
467  zport_a->regs[15] &= ~(DCDIE | SYNCIE);
468  write_zsreg(zport_a, R15, zport_a->regs[15]);
469  if (!(zport_a->regs[15] & BRKIE)) {
470  zport_a->regs[1] &= ~EXT_INT_ENAB;
471  write_zsreg(zport_a, R1, zport_a->regs[1]);
472  }
473 
474  /* This-side DCD tracks DCD and CTS tracks CTS. */
475  zport->regs[15] &= ~(DCDIE | CTSIE);
476  zport->regs[1] &= ~EXT_INT_ENAB;
477  } else {
478  /* DCD tracks RI and SYNC tracks DSR for the B side. */
479  if (!(zport->regs[15] & (DCDIE | SYNCIE)))
480  zport->regs[1] &= ~EXT_INT_ENAB;
481  }
482 
483  write_zsreg(zport, R15, zport->regs[15]);
484  write_zsreg(zport, R1, zport->regs[1]);
485  spin_unlock(&scc->zlock);
486 }
487 
488 static void zs_enable_ms(struct uart_port *uport)
489 {
490  struct zs_port *zport = to_zport(uport);
491  struct zs_scc *scc = zport->scc;
492  struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
493 
494  if (zport == zport_a)
495  return;
496 
497  spin_lock(&scc->zlock);
498 
499  /* Clear Ext interrupts if not being handled already. */
500  if (!(zport_a->regs[1] & EXT_INT_ENAB))
501  write_zsreg(zport_a, R0, RES_EXT_INT);
502 
503  /* A-side DCD tracks RI and SYNC tracks DSR. */
504  zport_a->regs[1] |= EXT_INT_ENAB;
505  zport_a->regs[15] |= DCDIE | SYNCIE;
506 
507  /* This-side DCD tracks DCD and CTS tracks CTS. */
508  zport->regs[15] |= DCDIE | CTSIE;
509 
510  zs_raw_xor_mctrl(zport);
511 
512  write_zsreg(zport_a, R1, zport_a->regs[1]);
513  write_zsreg(zport_a, R15, zport_a->regs[15]);
514  write_zsreg(zport, R15, zport->regs[15]);
515  spin_unlock(&scc->zlock);
516 }
517 
518 static void zs_break_ctl(struct uart_port *uport, int break_state)
519 {
520  struct zs_port *zport = to_zport(uport);
521  struct zs_scc *scc = zport->scc;
522  unsigned long flags;
523 
524  spin_lock_irqsave(&scc->zlock, flags);
525  if (break_state == -1)
526  zport->regs[5] |= SND_BRK;
527  else
528  zport->regs[5] &= ~SND_BRK;
529  write_zsreg(zport, R5, zport->regs[5]);
530  spin_unlock_irqrestore(&scc->zlock, flags);
531 }
532 
533 
534 /*
535  * Interrupt handling routines.
536  */
537 #define Rx_BRK 0x0100 /* BREAK event software flag. */
538 #define Rx_SYS 0x0200 /* SysRq event software flag. */
539 
540 static void zs_receive_chars(struct zs_port *zport)
541 {
542  struct uart_port *uport = &zport->port;
543  struct zs_scc *scc = zport->scc;
544  struct uart_icount *icount;
545  unsigned int avail, status, ch, flag;
546  int count;
547 
548  for (count = 16; count; count--) {
549  spin_lock(&scc->zlock);
550  avail = read_zsreg(zport, R0) & Rx_CH_AV;
551  spin_unlock(&scc->zlock);
552  if (!avail)
553  break;
554 
555  spin_lock(&scc->zlock);
556  status = read_zsreg(zport, R1) & (Rx_OVR | FRM_ERR | PAR_ERR);
557  ch = read_zsdata(zport);
558  spin_unlock(&scc->zlock);
559 
560  flag = TTY_NORMAL;
561 
562  icount = &uport->icount;
563  icount->rx++;
564 
565  /* Handle the null char got when BREAK is removed. */
566  if (!ch)
567  status |= zport->tty_break;
568  if (unlikely(status &
569  (Rx_OVR | FRM_ERR | PAR_ERR | Rx_SYS | Rx_BRK))) {
570  zport->tty_break = 0;
571 
572  /* Reset the error indication. */
573  if (status & (Rx_OVR | FRM_ERR | PAR_ERR)) {
574  spin_lock(&scc->zlock);
575  write_zsreg(zport, R0, ERR_RES);
576  spin_unlock(&scc->zlock);
577  }
578 
579  if (status & (Rx_SYS | Rx_BRK)) {
580  icount->brk++;
581  /* SysRq discards the null char. */
582  if (status & Rx_SYS)
583  continue;
584  } else if (status & FRM_ERR)
585  icount->frame++;
586  else if (status & PAR_ERR)
587  icount->parity++;
588  if (status & Rx_OVR)
589  icount->overrun++;
590 
591  status &= uport->read_status_mask;
592  if (status & Rx_BRK)
593  flag = TTY_BREAK;
594  else if (status & FRM_ERR)
595  flag = TTY_FRAME;
596  else if (status & PAR_ERR)
597  flag = TTY_PARITY;
598  }
599 
600  if (uart_handle_sysrq_char(uport, ch))
601  continue;
602 
603  uart_insert_char(uport, status, Rx_OVR, ch, flag);
604  }
605 
606  tty_flip_buffer_push(uport->state->port.tty);
607 }
608 
609 static void zs_raw_transmit_chars(struct zs_port *zport)
610 {
611  struct circ_buf *xmit = &zport->port.state->xmit;
612 
613  /* XON/XOFF chars. */
614  if (zport->port.x_char) {
615  write_zsdata(zport, zport->port.x_char);
616  zport->port.icount.tx++;
617  zport->port.x_char = 0;
618  return;
619  }
620 
621  /* If nothing to do or stopped or hardware stopped. */
622  if (uart_circ_empty(xmit) || uart_tx_stopped(&zport->port)) {
623  zs_raw_stop_tx(zport);
624  return;
625  }
626 
627  /* Send char. */
628  write_zsdata(zport, xmit->buf[xmit->tail]);
629  xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
630  zport->port.icount.tx++;
631 
633  uart_write_wakeup(&zport->port);
634 
635  /* Are we are done? */
636  if (uart_circ_empty(xmit))
637  zs_raw_stop_tx(zport);
638 }
639 
640 static void zs_transmit_chars(struct zs_port *zport)
641 {
642  struct zs_scc *scc = zport->scc;
643 
644  spin_lock(&scc->zlock);
645  zs_raw_transmit_chars(zport);
646  spin_unlock(&scc->zlock);
647 }
648 
649 static void zs_status_handle(struct zs_port *zport, struct zs_port *zport_a)
650 {
651  struct uart_port *uport = &zport->port;
652  struct zs_scc *scc = zport->scc;
653  unsigned int delta;
654  u8 status, brk;
655 
656  spin_lock(&scc->zlock);
657 
658  /* Get status from Read Register 0. */
659  status = read_zsreg(zport, R0);
660 
661  if (zport->regs[15] & BRKIE) {
662  brk = status & BRK_ABRT;
663  if (brk && !zport->brk) {
664  spin_unlock(&scc->zlock);
665  if (uart_handle_break(uport))
666  zport->tty_break = Rx_SYS;
667  else
668  zport->tty_break = Rx_BRK;
669  spin_lock(&scc->zlock);
670  }
671  zport->brk = brk;
672  }
673 
674  if (zport != zport_a) {
675  delta = zs_raw_xor_mctrl(zport);
676  spin_unlock(&scc->zlock);
677 
678  if (delta & TIOCM_CTS)
680  zport->mctrl & TIOCM_CTS);
681  if (delta & TIOCM_CAR)
683  zport->mctrl & TIOCM_CAR);
684  if (delta & TIOCM_RNG)
685  uport->icount.dsr++;
686  if (delta & TIOCM_DSR)
687  uport->icount.rng++;
688 
689  if (delta)
690  wake_up_interruptible(&uport->state->port.delta_msr_wait);
691 
692  spin_lock(&scc->zlock);
693  }
694 
695  /* Clear the status condition... */
696  write_zsreg(zport, R0, RES_EXT_INT);
697 
698  spin_unlock(&scc->zlock);
699 }
700 
701 /*
702  * This is the Z85C30 driver's generic interrupt routine.
703  */
704 static irqreturn_t zs_interrupt(int irq, void *dev_id)
705 {
706  struct zs_scc *scc = dev_id;
707  struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
708  struct zs_port *zport_b = &scc->zport[ZS_CHAN_B];
709  irqreturn_t status = IRQ_NONE;
710  u8 zs_intreg;
711  int count;
712 
713  /*
714  * NOTE: The read register 3, which holds the irq status,
715  * does so for both channels on each chip. Although
716  * the status value itself must be read from the A
717  * channel and is only valid when read from channel A.
718  * Yes... broken hardware...
719  */
720  for (count = 16; count; count--) {
721  spin_lock(&scc->zlock);
722  zs_intreg = read_zsreg(zport_a, R3);
723  spin_unlock(&scc->zlock);
724  if (!zs_intreg)
725  break;
726 
727  /*
728  * We do not like losing characters, so we prioritise
729  * interrupt sources a little bit differently than
730  * the SCC would, was it allowed to.
731  */
732  if (zs_intreg & CHBRxIP)
733  zs_receive_chars(zport_b);
734  if (zs_intreg & CHARxIP)
735  zs_receive_chars(zport_a);
736  if (zs_intreg & CHBEXT)
737  zs_status_handle(zport_b, zport_a);
738  if (zs_intreg & CHAEXT)
739  zs_status_handle(zport_a, zport_a);
740  if (zs_intreg & CHBTxIP)
741  zs_transmit_chars(zport_b);
742  if (zs_intreg & CHATxIP)
743  zs_transmit_chars(zport_a);
744 
745  status = IRQ_HANDLED;
746  }
747 
748  return status;
749 }
750 
751 
752 /*
753  * Finally, routines used to initialize the serial port.
754  */
755 static int zs_startup(struct uart_port *uport)
756 {
757  struct zs_port *zport = to_zport(uport);
758  struct zs_scc *scc = zport->scc;
759  unsigned long flags;
760  int irq_guard;
761  int ret;
762 
763  irq_guard = atomic_add_return(1, &scc->irq_guard);
764  if (irq_guard == 1) {
765  ret = request_irq(zport->port.irq, zs_interrupt,
766  IRQF_SHARED, "scc", scc);
767  if (ret) {
768  atomic_add(-1, &scc->irq_guard);
769  printk(KERN_ERR "zs: can't get irq %d\n",
770  zport->port.irq);
771  return ret;
772  }
773  }
774 
775  spin_lock_irqsave(&scc->zlock, flags);
776 
777  /* Clear the receive FIFO. */
778  zs_receive_drain(zport);
779 
780  /* Clear the interrupt registers. */
781  write_zsreg(zport, R0, ERR_RES);
782  write_zsreg(zport, R0, RES_Tx_P);
783  /* But Ext only if not being handled already. */
784  if (!(zport->regs[1] & EXT_INT_ENAB))
785  write_zsreg(zport, R0, RES_EXT_INT);
786 
787  /* Finally, enable sequencing and interrupts. */
788  zport->regs[1] &= ~RxINT_MASK;
789  zport->regs[1] |= RxINT_ALL | TxINT_ENAB | EXT_INT_ENAB;
790  zport->regs[3] |= RxENABLE;
791  zport->regs[15] |= BRKIE;
792  write_zsreg(zport, R1, zport->regs[1]);
793  write_zsreg(zport, R3, zport->regs[3]);
794  write_zsreg(zport, R5, zport->regs[5]);
795  write_zsreg(zport, R15, zport->regs[15]);
796 
797  /* Record the current state of RR0. */
798  zport->mctrl = zs_raw_get_mctrl(zport);
799  zport->brk = read_zsreg(zport, R0) & BRK_ABRT;
800 
801  zport->tx_stopped = 1;
802 
803  spin_unlock_irqrestore(&scc->zlock, flags);
804 
805  return 0;
806 }
807 
808 static void zs_shutdown(struct uart_port *uport)
809 {
810  struct zs_port *zport = to_zport(uport);
811  struct zs_scc *scc = zport->scc;
812  unsigned long flags;
813  int irq_guard;
814 
815  spin_lock_irqsave(&scc->zlock, flags);
816 
817  zport->regs[3] &= ~RxENABLE;
818  write_zsreg(zport, R5, zport->regs[5]);
819  write_zsreg(zport, R3, zport->regs[3]);
820 
821  spin_unlock_irqrestore(&scc->zlock, flags);
822 
823  irq_guard = atomic_add_return(-1, &scc->irq_guard);
824  if (!irq_guard)
825  free_irq(zport->port.irq, scc);
826 }
827 
828 
829 static void zs_reset(struct zs_port *zport)
830 {
831  struct zs_scc *scc = zport->scc;
832  int irq;
833  unsigned long flags;
834 
835  spin_lock_irqsave(&scc->zlock, flags);
836  irq = !irqs_disabled_flags(flags);
837  if (!scc->initialised) {
838  /* Reset the pointer first, just in case... */
839  read_zsreg(zport, R0);
840  /* And let the current transmission finish. */
841  zs_line_drain(zport, irq);
842  write_zsreg(zport, R9, FHWRES);
843  udelay(10);
844  write_zsreg(zport, R9, 0);
845  scc->initialised = 1;
846  }
847  load_zsregs(zport, zport->regs, irq);
848  spin_unlock_irqrestore(&scc->zlock, flags);
849 }
850 
851 static void zs_set_termios(struct uart_port *uport, struct ktermios *termios,
852  struct ktermios *old_termios)
853 {
854  struct zs_port *zport = to_zport(uport);
855  struct zs_scc *scc = zport->scc;
856  struct zs_port *zport_a = &scc->zport[ZS_CHAN_A];
857  int irq;
858  unsigned int baud, brg;
859  unsigned long flags;
860 
861  spin_lock_irqsave(&scc->zlock, flags);
862  irq = !irqs_disabled_flags(flags);
863 
864  /* Byte size. */
865  zport->regs[3] &= ~RxNBITS_MASK;
866  zport->regs[5] &= ~TxNBITS_MASK;
867  switch (termios->c_cflag & CSIZE) {
868  case CS5:
869  zport->regs[3] |= Rx5;
870  zport->regs[5] |= Tx5;
871  break;
872  case CS6:
873  zport->regs[3] |= Rx6;
874  zport->regs[5] |= Tx6;
875  break;
876  case CS7:
877  zport->regs[3] |= Rx7;
878  zport->regs[5] |= Tx7;
879  break;
880  case CS8:
881  default:
882  zport->regs[3] |= Rx8;
883  zport->regs[5] |= Tx8;
884  break;
885  }
886 
887  /* Parity and stop bits. */
888  zport->regs[4] &= ~(XCLK_MASK | SB_MASK | PAR_ENA | PAR_EVEN);
889  if (termios->c_cflag & CSTOPB)
890  zport->regs[4] |= SB2;
891  else
892  zport->regs[4] |= SB1;
893  if (termios->c_cflag & PARENB)
894  zport->regs[4] |= PAR_ENA;
895  if (!(termios->c_cflag & PARODD))
896  zport->regs[4] |= PAR_EVEN;
897  switch (zport->clk_mode) {
898  case 64:
899  zport->regs[4] |= X64CLK;
900  break;
901  case 32:
902  zport->regs[4] |= X32CLK;
903  break;
904  case 16:
905  zport->regs[4] |= X16CLK;
906  break;
907  case 1:
908  zport->regs[4] |= X1CLK;
909  break;
910  default:
911  BUG();
912  }
913 
914  baud = uart_get_baud_rate(uport, termios, old_termios, 0,
915  uport->uartclk / zport->clk_mode / 4);
916 
917  brg = ZS_BPS_TO_BRG(baud, uport->uartclk / zport->clk_mode);
918  zport->regs[12] = brg & 0xff;
919  zport->regs[13] = (brg >> 8) & 0xff;
920 
921  uart_update_timeout(uport, termios->c_cflag, baud);
922 
923  uport->read_status_mask = Rx_OVR;
924  if (termios->c_iflag & INPCK)
925  uport->read_status_mask |= FRM_ERR | PAR_ERR;
926  if (termios->c_iflag & (BRKINT | PARMRK))
927  uport->read_status_mask |= Rx_BRK;
928 
929  uport->ignore_status_mask = 0;
930  if (termios->c_iflag & IGNPAR)
931  uport->ignore_status_mask |= FRM_ERR | PAR_ERR;
932  if (termios->c_iflag & IGNBRK) {
933  uport->ignore_status_mask |= Rx_BRK;
934  if (termios->c_iflag & IGNPAR)
935  uport->ignore_status_mask |= Rx_OVR;
936  }
937 
938  if (termios->c_cflag & CREAD)
939  zport->regs[3] |= RxENABLE;
940  else
941  zport->regs[3] &= ~RxENABLE;
942 
943  if (zport != zport_a) {
944  if (!(termios->c_cflag & CLOCAL)) {
945  zport->regs[15] |= DCDIE;
946  } else
947  zport->regs[15] &= ~DCDIE;
948  if (termios->c_cflag & CRTSCTS) {
949  zport->regs[15] |= CTSIE;
950  } else
951  zport->regs[15] &= ~CTSIE;
952  zs_raw_xor_mctrl(zport);
953  }
954 
955  /* Load up the new values. */
956  load_zsregs(zport, zport->regs, irq);
957 
958  spin_unlock_irqrestore(&scc->zlock, flags);
959 }
960 
961 /*
962  * Hack alert!
963  * Required solely so that the initial PROM-based console
964  * works undisturbed in parallel with this one.
965  */
966 static void zs_pm(struct uart_port *uport, unsigned int state,
967  unsigned int oldstate)
968 {
969  struct zs_port *zport = to_zport(uport);
970 
971  if (state < 3)
972  zport->regs[5] |= TxENAB;
973  else
974  zport->regs[5] &= ~TxENAB;
975  write_zsreg(zport, R5, zport->regs[5]);
976 }
977 
978 
979 static const char *zs_type(struct uart_port *uport)
980 {
981  return "Z85C30 SCC";
982 }
983 
984 static void zs_release_port(struct uart_port *uport)
985 {
986  iounmap(uport->membase);
987  uport->membase = 0;
989 }
990 
991 static int zs_map_port(struct uart_port *uport)
992 {
993  if (!uport->membase)
994  uport->membase = ioremap_nocache(uport->mapbase,
996  if (!uport->membase) {
997  printk(KERN_ERR "zs: Cannot map MMIO\n");
998  return -ENOMEM;
999  }
1000  return 0;
1001 }
1002 
1003 static int zs_request_port(struct uart_port *uport)
1004 {
1005  int ret;
1006 
1007  if (!request_mem_region(uport->mapbase, ZS_CHAN_IO_SIZE, "scc")) {
1008  printk(KERN_ERR "zs: Unable to reserve MMIO resource\n");
1009  return -EBUSY;
1010  }
1011  ret = zs_map_port(uport);
1012  if (ret) {
1014  return ret;
1015  }
1016  return 0;
1017 }
1018 
1019 static void zs_config_port(struct uart_port *uport, int flags)
1020 {
1021  struct zs_port *zport = to_zport(uport);
1022 
1023  if (flags & UART_CONFIG_TYPE) {
1024  if (zs_request_port(uport))
1025  return;
1026 
1027  uport->type = PORT_ZS;
1028 
1029  zs_reset(zport);
1030  }
1031 }
1032 
1033 static int zs_verify_port(struct uart_port *uport, struct serial_struct *ser)
1034 {
1035  struct zs_port *zport = to_zport(uport);
1036  int ret = 0;
1037 
1038  if (ser->type != PORT_UNKNOWN && ser->type != PORT_ZS)
1039  ret = -EINVAL;
1040  if (ser->irq != uport->irq)
1041  ret = -EINVAL;
1042  if (ser->baud_base != uport->uartclk / zport->clk_mode / 4)
1043  ret = -EINVAL;
1044  return ret;
1045 }
1046 
1047 
1048 static struct uart_ops zs_ops = {
1049  .tx_empty = zs_tx_empty,
1050  .set_mctrl = zs_set_mctrl,
1051  .get_mctrl = zs_get_mctrl,
1052  .stop_tx = zs_stop_tx,
1053  .start_tx = zs_start_tx,
1054  .stop_rx = zs_stop_rx,
1055  .enable_ms = zs_enable_ms,
1056  .break_ctl = zs_break_ctl,
1057  .startup = zs_startup,
1058  .shutdown = zs_shutdown,
1059  .set_termios = zs_set_termios,
1060  .pm = zs_pm,
1061  .type = zs_type,
1062  .release_port = zs_release_port,
1063  .request_port = zs_request_port,
1064  .config_port = zs_config_port,
1065  .verify_port = zs_verify_port,
1066 };
1067 
1068 /*
1069  * Initialize Z85C30 port structures.
1070  */
1071 static int __init zs_probe_sccs(void)
1072 {
1073  static int probed;
1074  struct zs_parms zs_parms;
1075  int chip, side, irq;
1076  int n_chips = 0;
1077  int i;
1078 
1079  if (probed)
1080  return 0;
1081 
1082  irq = dec_interrupt[DEC_IRQ_SCC0];
1083  if (irq >= 0) {
1084  zs_parms.scc[n_chips] = IOASIC_SCC0;
1085  zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC0];
1086  n_chips++;
1087  }
1088  irq = dec_interrupt[DEC_IRQ_SCC1];
1089  if (irq >= 0) {
1090  zs_parms.scc[n_chips] = IOASIC_SCC1;
1091  zs_parms.irq[n_chips] = dec_interrupt[DEC_IRQ_SCC1];
1092  n_chips++;
1093  }
1094  if (!n_chips)
1095  return -ENXIO;
1096 
1097  probed = 1;
1098 
1099  for (chip = 0; chip < n_chips; chip++) {
1100  spin_lock_init(&zs_sccs[chip].zlock);
1101  for (side = 0; side < ZS_NUM_CHAN; side++) {
1102  struct zs_port *zport = &zs_sccs[chip].zport[side];
1103  struct uart_port *uport = &zport->port;
1104 
1105  zport->scc = &zs_sccs[chip];
1106  zport->clk_mode = 16;
1107 
1108  uport->irq = zs_parms.irq[chip];
1109  uport->uartclk = ZS_CLOCK;
1110  uport->fifosize = 1;
1111  uport->iotype = UPIO_MEM;
1112  uport->flags = UPF_BOOT_AUTOCONF;
1113  uport->ops = &zs_ops;
1114  uport->line = chip * ZS_NUM_CHAN + side;
1115  uport->mapbase = dec_kn_slot_base +
1116  zs_parms.scc[chip] +
1117  (side ^ ZS_CHAN_B) * ZS_CHAN_IO_SIZE;
1118 
1119  for (i = 0; i < ZS_NUM_REGS; i++)
1120  zport->regs[i] = zs_init_regs[i];
1121  }
1122  }
1123 
1124  return 0;
1125 }
1126 
1127 
1128 #ifdef CONFIG_SERIAL_ZS_CONSOLE
1129 static void zs_console_putchar(struct uart_port *uport, int ch)
1130 {
1131  struct zs_port *zport = to_zport(uport);
1132  struct zs_scc *scc = zport->scc;
1133  int irq;
1134  unsigned long flags;
1135 
1136  spin_lock_irqsave(&scc->zlock, flags);
1137  irq = !irqs_disabled_flags(flags);
1138  if (zs_transmit_drain(zport, irq))
1139  write_zsdata(zport, ch);
1140  spin_unlock_irqrestore(&scc->zlock, flags);
1141 }
1142 
1143 /*
1144  * Print a string to the serial port trying not to disturb
1145  * any possible real use of the port...
1146  */
1147 static void zs_console_write(struct console *co, const char *s,
1148  unsigned int count)
1149 {
1150  int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1151  struct zs_port *zport = &zs_sccs[chip].zport[side];
1152  struct zs_scc *scc = zport->scc;
1153  unsigned long flags;
1154  u8 txint, txenb;
1155  int irq;
1156 
1157  /* Disable transmit interrupts and enable the transmitter. */
1158  spin_lock_irqsave(&scc->zlock, flags);
1159  txint = zport->regs[1];
1160  txenb = zport->regs[5];
1161  if (txint & TxINT_ENAB) {
1162  zport->regs[1] = txint & ~TxINT_ENAB;
1163  write_zsreg(zport, R1, zport->regs[1]);
1164  }
1165  if (!(txenb & TxENAB)) {
1166  zport->regs[5] = txenb | TxENAB;
1167  write_zsreg(zport, R5, zport->regs[5]);
1168  }
1169  spin_unlock_irqrestore(&scc->zlock, flags);
1170 
1171  uart_console_write(&zport->port, s, count, zs_console_putchar);
1172 
1173  /* Restore transmit interrupts and the transmitter enable. */
1174  spin_lock_irqsave(&scc->zlock, flags);
1175  irq = !irqs_disabled_flags(flags);
1176  zs_line_drain(zport, irq);
1177  if (!(txenb & TxENAB)) {
1178  zport->regs[5] &= ~TxENAB;
1179  write_zsreg(zport, R5, zport->regs[5]);
1180  }
1181  if (txint & TxINT_ENAB) {
1182  zport->regs[1] |= TxINT_ENAB;
1183  write_zsreg(zport, R1, zport->regs[1]);
1184  }
1185  spin_unlock_irqrestore(&scc->zlock, flags);
1186 }
1187 
1188 /*
1189  * Setup serial console baud/bits/parity. We do two things here:
1190  * - construct a cflag setting for the first uart_open()
1191  * - initialise the serial port
1192  * Return non-zero if we didn't find a serial port.
1193  */
1194 static int __init zs_console_setup(struct console *co, char *options)
1195 {
1196  int chip = co->index / ZS_NUM_CHAN, side = co->index % ZS_NUM_CHAN;
1197  struct zs_port *zport = &zs_sccs[chip].zport[side];
1198  struct uart_port *uport = &zport->port;
1199  int baud = 9600;
1200  int bits = 8;
1201  int parity = 'n';
1202  int flow = 'n';
1203  int ret;
1204 
1205  ret = zs_map_port(uport);
1206  if (ret)
1207  return ret;
1208 
1209  zs_reset(zport);
1210  zs_pm(uport, 0, -1);
1211 
1212  if (options)
1213  uart_parse_options(options, &baud, &parity, &bits, &flow);
1214  return uart_set_options(uport, co, baud, parity, bits, flow);
1215 }
1216 
1217 static struct uart_driver zs_reg;
1218 static struct console zs_console = {
1219  .name = "ttyS",
1220  .write = zs_console_write,
1221  .device = uart_console_device,
1222  .setup = zs_console_setup,
1223  .flags = CON_PRINTBUFFER,
1224  .index = -1,
1225  .data = &zs_reg,
1226 };
1227 
1228 /*
1229  * Register console.
1230  */
1231 static int __init zs_serial_console_init(void)
1232 {
1233  int ret;
1234 
1235  ret = zs_probe_sccs();
1236  if (ret)
1237  return ret;
1238  register_console(&zs_console);
1239 
1240  return 0;
1241 }
1242 
1243 console_initcall(zs_serial_console_init);
1244 
1245 #define SERIAL_ZS_CONSOLE &zs_console
1246 #else
1247 #define SERIAL_ZS_CONSOLE NULL
1248 #endif /* CONFIG_SERIAL_ZS_CONSOLE */
1249 
1250 static struct uart_driver zs_reg = {
1251  .owner = THIS_MODULE,
1252  .driver_name = "serial",
1253  .dev_name = "ttyS",
1254  .major = TTY_MAJOR,
1255  .minor = 64,
1256  .nr = ZS_NUM_SCCS * ZS_NUM_CHAN,
1257  .cons = SERIAL_ZS_CONSOLE,
1258 };
1259 
1260 /* zs_init inits the driver. */
1261 static int __init zs_init(void)
1262 {
1263  int i, ret;
1264 
1265  pr_info("%s%s\n", zs_name, zs_version);
1266 
1267  /* Find out how many Z85C30 SCCs we have. */
1268  ret = zs_probe_sccs();
1269  if (ret)
1270  return ret;
1271 
1272  ret = uart_register_driver(&zs_reg);
1273  if (ret)
1274  return ret;
1275 
1276  for (i = 0; i < ZS_NUM_SCCS * ZS_NUM_CHAN; i++) {
1277  struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1278  struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1279  struct uart_port *uport = &zport->port;
1280 
1281  if (zport->scc)
1282  uart_add_one_port(&zs_reg, uport);
1283  }
1284 
1285  return 0;
1286 }
1287 
1288 static void __exit zs_exit(void)
1289 {
1290  int i;
1291 
1292  for (i = ZS_NUM_SCCS * ZS_NUM_CHAN - 1; i >= 0; i--) {
1293  struct zs_scc *scc = &zs_sccs[i / ZS_NUM_CHAN];
1294  struct zs_port *zport = &scc->zport[i % ZS_NUM_CHAN];
1295  struct uart_port *uport = &zport->port;
1296 
1297  if (zport->scc)
1298  uart_remove_one_port(&zs_reg, uport);
1299  }
1300 
1301  uart_unregister_driver(&zs_reg);
1302 }
1303 
1304 module_init(zs_init);
1305 module_exit(zs_exit);