LLVM API Documentation

ARMAsmParser.cpp
Go to the documentation of this file.
00001 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 
00010 #include "ARMFPUName.h"
00011 #include "ARMFeatures.h"
00012 #include "MCTargetDesc/ARMAddressingModes.h"
00013 #include "MCTargetDesc/ARMArchName.h"
00014 #include "MCTargetDesc/ARMBaseInfo.h"
00015 #include "MCTargetDesc/ARMMCExpr.h"
00016 #include "llvm/ADT/STLExtras.h"
00017 #include "llvm/ADT/SmallVector.h"
00018 #include "llvm/ADT/StringExtras.h"
00019 #include "llvm/ADT/StringSwitch.h"
00020 #include "llvm/ADT/Twine.h"
00021 #include "llvm/MC/MCAsmInfo.h"
00022 #include "llvm/MC/MCAssembler.h"
00023 #include "llvm/MC/MCContext.h"
00024 #include "llvm/MC/MCDisassembler.h"
00025 #include "llvm/MC/MCELFStreamer.h"
00026 #include "llvm/MC/MCExpr.h"
00027 #include "llvm/MC/MCInst.h"
00028 #include "llvm/MC/MCInstrDesc.h"
00029 #include "llvm/MC/MCInstrInfo.h"
00030 #include "llvm/MC/MCObjectFileInfo.h"
00031 #include "llvm/MC/MCParser/MCAsmLexer.h"
00032 #include "llvm/MC/MCParser/MCAsmParser.h"
00033 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
00034 #include "llvm/MC/MCRegisterInfo.h"
00035 #include "llvm/MC/MCSection.h"
00036 #include "llvm/MC/MCStreamer.h"
00037 #include "llvm/MC/MCSubtargetInfo.h"
00038 #include "llvm/MC/MCSymbol.h"
00039 #include "llvm/MC/MCTargetAsmParser.h"
00040 #include "llvm/Support/ARMBuildAttributes.h"
00041 #include "llvm/Support/ARMEHABI.h"
00042 #include "llvm/Support/COFF.h"
00043 #include "llvm/Support/Debug.h"
00044 #include "llvm/Support/ELF.h"
00045 #include "llvm/Support/MathExtras.h"
00046 #include "llvm/Support/SourceMgr.h"
00047 #include "llvm/Support/TargetRegistry.h"
00048 #include "llvm/Support/raw_ostream.h"
00049 
00050 using namespace llvm;
00051 
00052 namespace {
00053 
00054 class ARMOperand;
00055 
00056 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
00057 
00058 class UnwindContext {
00059   MCAsmParser &Parser;
00060 
00061   typedef SmallVector<SMLoc, 4> Locs;
00062 
00063   Locs FnStartLocs;
00064   Locs CantUnwindLocs;
00065   Locs PersonalityLocs;
00066   Locs PersonalityIndexLocs;
00067   Locs HandlerDataLocs;
00068   int FPReg;
00069 
00070 public:
00071   UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
00072 
00073   bool hasFnStart() const { return !FnStartLocs.empty(); }
00074   bool cantUnwind() const { return !CantUnwindLocs.empty(); }
00075   bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
00076   bool hasPersonality() const {
00077     return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
00078   }
00079 
00080   void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
00081   void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
00082   void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
00083   void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
00084   void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
00085 
00086   void saveFPReg(int Reg) { FPReg = Reg; }
00087   int getFPReg() const { return FPReg; }
00088 
00089   void emitFnStartLocNotes() const {
00090     for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
00091          FI != FE; ++FI)
00092       Parser.Note(*FI, ".fnstart was specified here");
00093   }
00094   void emitCantUnwindLocNotes() const {
00095     for (Locs::const_iterator UI = CantUnwindLocs.begin(),
00096                               UE = CantUnwindLocs.end(); UI != UE; ++UI)
00097       Parser.Note(*UI, ".cantunwind was specified here");
00098   }
00099   void emitHandlerDataLocNotes() const {
00100     for (Locs::const_iterator HI = HandlerDataLocs.begin(),
00101                               HE = HandlerDataLocs.end(); HI != HE; ++HI)
00102       Parser.Note(*HI, ".handlerdata was specified here");
00103   }
00104   void emitPersonalityLocNotes() const {
00105     for (Locs::const_iterator PI = PersonalityLocs.begin(),
00106                               PE = PersonalityLocs.end(),
00107                               PII = PersonalityIndexLocs.begin(),
00108                               PIE = PersonalityIndexLocs.end();
00109          PI != PE || PII != PIE;) {
00110       if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
00111         Parser.Note(*PI++, ".personality was specified here");
00112       else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
00113         Parser.Note(*PII++, ".personalityindex was specified here");
00114       else
00115         llvm_unreachable(".personality and .personalityindex cannot be "
00116                          "at the same location");
00117     }
00118   }
00119 
00120   void reset() {
00121     FnStartLocs = Locs();
00122     CantUnwindLocs = Locs();
00123     PersonalityLocs = Locs();
00124     HandlerDataLocs = Locs();
00125     PersonalityIndexLocs = Locs();
00126     FPReg = ARM::SP;
00127   }
00128 };
00129 
00130 class ARMAsmParser : public MCTargetAsmParser {
00131   MCSubtargetInfo &STI;
00132   MCAsmParser &Parser;
00133   const MCInstrInfo &MII;
00134   const MCRegisterInfo *MRI;
00135   UnwindContext UC;
00136 
00137   ARMTargetStreamer &getTargetStreamer() {
00138     assert(getParser().getStreamer().getTargetStreamer() &&
00139            "do not have a target streamer");
00140     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
00141     return static_cast<ARMTargetStreamer &>(TS);
00142   }
00143 
00144   // Map of register aliases registers via the .req directive.
00145   StringMap<unsigned> RegisterReqs;
00146 
00147   bool NextSymbolIsThumb;
00148 
00149   struct {
00150     ARMCC::CondCodes Cond;    // Condition for IT block.
00151     unsigned Mask:4;          // Condition mask for instructions.
00152                               // Starting at first 1 (from lsb).
00153                               //   '1'  condition as indicated in IT.
00154                               //   '0'  inverse of condition (else).
00155                               // Count of instructions in IT block is
00156                               // 4 - trailingzeroes(mask)
00157 
00158     bool FirstCond;           // Explicit flag for when we're parsing the
00159                               // First instruction in the IT block. It's
00160                               // implied in the mask, so needs special
00161                               // handling.
00162 
00163     unsigned CurPosition;     // Current position in parsing of IT
00164                               // block. In range [0,3]. Initialized
00165                               // according to count of instructions in block.
00166                               // ~0U if no active IT block.
00167   } ITState;
00168   bool inITBlock() { return ITState.CurPosition != ~0U;}
00169   void forwardITPosition() {
00170     if (!inITBlock()) return;
00171     // Move to the next instruction in the IT block, if there is one. If not,
00172     // mark the block as done.
00173     unsigned TZ = countTrailingZeros(ITState.Mask);
00174     if (++ITState.CurPosition == 5 - TZ)
00175       ITState.CurPosition = ~0U; // Done with the IT block after this.
00176   }
00177 
00178 
00179   MCAsmParser &getParser() const { return Parser; }
00180   MCAsmLexer &getLexer() const { return Parser.getLexer(); }
00181 
00182   void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) {
00183     return Parser.Note(L, Msg, Ranges);
00184   }
00185   bool Warning(SMLoc L, const Twine &Msg,
00186                ArrayRef<SMRange> Ranges = None) {
00187     return Parser.Warning(L, Msg, Ranges);
00188   }
00189   bool Error(SMLoc L, const Twine &Msg,
00190              ArrayRef<SMRange> Ranges = None) {
00191     return Parser.Error(L, Msg, Ranges);
00192   }
00193 
00194   int tryParseRegister();
00195   bool tryParseRegisterWithWriteBack(OperandVector &);
00196   int tryParseShiftRegister(OperandVector &);
00197   bool parseRegisterList(OperandVector &);
00198   bool parseMemory(OperandVector &);
00199   bool parseOperand(OperandVector &, StringRef Mnemonic);
00200   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
00201   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
00202                               unsigned &ShiftAmount);
00203   bool parseLiteralValues(unsigned Size, SMLoc L);
00204   bool parseDirectiveThumb(SMLoc L);
00205   bool parseDirectiveARM(SMLoc L);
00206   bool parseDirectiveThumbFunc(SMLoc L);
00207   bool parseDirectiveCode(SMLoc L);
00208   bool parseDirectiveSyntax(SMLoc L);
00209   bool parseDirectiveReq(StringRef Name, SMLoc L);
00210   bool parseDirectiveUnreq(SMLoc L);
00211   bool parseDirectiveArch(SMLoc L);
00212   bool parseDirectiveEabiAttr(SMLoc L);
00213   bool parseDirectiveCPU(SMLoc L);
00214   bool parseDirectiveFPU(SMLoc L);
00215   bool parseDirectiveFnStart(SMLoc L);
00216   bool parseDirectiveFnEnd(SMLoc L);
00217   bool parseDirectiveCantUnwind(SMLoc L);
00218   bool parseDirectivePersonality(SMLoc L);
00219   bool parseDirectiveHandlerData(SMLoc L);
00220   bool parseDirectiveSetFP(SMLoc L);
00221   bool parseDirectivePad(SMLoc L);
00222   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
00223   bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
00224   bool parseDirectiveLtorg(SMLoc L);
00225   bool parseDirectiveEven(SMLoc L);
00226   bool parseDirectivePersonalityIndex(SMLoc L);
00227   bool parseDirectiveUnwindRaw(SMLoc L);
00228   bool parseDirectiveTLSDescSeq(SMLoc L);
00229   bool parseDirectiveMovSP(SMLoc L);
00230   bool parseDirectiveObjectArch(SMLoc L);
00231   bool parseDirectiveArchExtension(SMLoc L);
00232   bool parseDirectiveAlign(SMLoc L);
00233   bool parseDirectiveThumbSet(SMLoc L);
00234 
00235   StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
00236                           bool &CarrySetting, unsigned &ProcessorIMod,
00237                           StringRef &ITMask);
00238   void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
00239                              bool &CanAcceptCarrySet,
00240                              bool &CanAcceptPredicationCode);
00241 
00242   bool isThumb() const {
00243     // FIXME: Can tablegen auto-generate this?
00244     return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
00245   }
00246   bool isThumbOne() const {
00247     return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
00248   }
00249   bool isThumbTwo() const {
00250     return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
00251   }
00252   bool hasThumb() const {
00253     return STI.getFeatureBits() & ARM::HasV4TOps;
00254   }
00255   bool hasV6Ops() const {
00256     return STI.getFeatureBits() & ARM::HasV6Ops;
00257   }
00258   bool hasV6MOps() const {
00259     return STI.getFeatureBits() & ARM::HasV6MOps;
00260   }
00261   bool hasV7Ops() const {
00262     return STI.getFeatureBits() & ARM::HasV7Ops;
00263   }
00264   bool hasV8Ops() const {
00265     return STI.getFeatureBits() & ARM::HasV8Ops;
00266   }
00267   bool hasARM() const {
00268     return !(STI.getFeatureBits() & ARM::FeatureNoARM);
00269   }
00270   bool hasThumb2DSP() const {
00271     return STI.getFeatureBits() & ARM::FeatureDSPThumb2;
00272   }
00273 
00274   void SwitchMode() {
00275     uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
00276     setAvailableFeatures(FB);
00277   }
00278   bool isMClass() const {
00279     return STI.getFeatureBits() & ARM::FeatureMClass;
00280   }
00281 
00282   /// @name Auto-generated Match Functions
00283   /// {
00284 
00285 #define GET_ASSEMBLER_HEADER
00286 #include "ARMGenAsmMatcher.inc"
00287 
00288   /// }
00289 
00290   OperandMatchResultTy parseITCondCode(OperandVector &);
00291   OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
00292   OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
00293   OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
00294   OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
00295   OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
00296   OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
00297   OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
00298   OperandMatchResultTy parseBankedRegOperand(OperandVector &);
00299   OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
00300                                    int High);
00301   OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
00302     return parsePKHImm(O, "lsl", 0, 31);
00303   }
00304   OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
00305     return parsePKHImm(O, "asr", 1, 32);
00306   }
00307   OperandMatchResultTy parseSetEndImm(OperandVector &);
00308   OperandMatchResultTy parseShifterImm(OperandVector &);
00309   OperandMatchResultTy parseRotImm(OperandVector &);
00310   OperandMatchResultTy parseBitfield(OperandVector &);
00311   OperandMatchResultTy parsePostIdxReg(OperandVector &);
00312   OperandMatchResultTy parseAM3Offset(OperandVector &);
00313   OperandMatchResultTy parseFPImm(OperandVector &);
00314   OperandMatchResultTy parseVectorList(OperandVector &);
00315   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
00316                                        SMLoc &EndLoc);
00317 
00318   // Asm Match Converter Methods
00319   void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
00320   void cvtThumbBranches(MCInst &Inst, const OperandVector &);
00321 
00322   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
00323   bool processInstruction(MCInst &Inst, const OperandVector &Ops);
00324   bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
00325   bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
00326 
00327 public:
00328   enum ARMMatchResultTy {
00329     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
00330     Match_RequiresNotITBlock,
00331     Match_RequiresV6,
00332     Match_RequiresThumb2,
00333 #define GET_OPERAND_DIAGNOSTIC_TYPES
00334 #include "ARMGenAsmMatcher.inc"
00335 
00336   };
00337 
00338   ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser,
00339                const MCInstrInfo &MII,
00340                const MCTargetOptions &Options)
00341       : MCTargetAsmParser(), STI(_STI), Parser(_Parser), MII(MII), UC(_Parser) {
00342     MCAsmParserExtension::Initialize(_Parser);
00343 
00344     // Cache the MCRegisterInfo.
00345     MRI = getContext().getRegisterInfo();
00346 
00347     // Initialize the set of available features.
00348     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
00349 
00350     // Not in an ITBlock to start with.
00351     ITState.CurPosition = ~0U;
00352 
00353     NextSymbolIsThumb = false;
00354   }
00355 
00356   // Implementation of the MCTargetAsmParser interface:
00357   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
00358   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
00359                         SMLoc NameLoc, OperandVector &Operands) override;
00360   bool ParseDirective(AsmToken DirectiveID) override;
00361 
00362   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
00363                                       unsigned Kind) override;
00364   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
00365 
00366   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
00367                                OperandVector &Operands, MCStreamer &Out,
00368                                uint64_t &ErrorInfo,
00369                                bool MatchingInlineAsm) override;
00370   void onLabelParsed(MCSymbol *Symbol) override;
00371 };
00372 } // end anonymous namespace
00373 
00374 namespace {
00375 
00376 /// ARMOperand - Instances of this class represent a parsed ARM machine
00377 /// operand.
00378 class ARMOperand : public MCParsedAsmOperand {
00379   enum KindTy {
00380     k_CondCode,
00381     k_CCOut,
00382     k_ITCondMask,
00383     k_CoprocNum,
00384     k_CoprocReg,
00385     k_CoprocOption,
00386     k_Immediate,
00387     k_MemBarrierOpt,
00388     k_InstSyncBarrierOpt,
00389     k_Memory,
00390     k_PostIndexRegister,
00391     k_MSRMask,
00392     k_BankedReg,
00393     k_ProcIFlags,
00394     k_VectorIndex,
00395     k_Register,
00396     k_RegisterList,
00397     k_DPRRegisterList,
00398     k_SPRRegisterList,
00399     k_VectorList,
00400     k_VectorListAllLanes,
00401     k_VectorListIndexed,
00402     k_ShiftedRegister,
00403     k_ShiftedImmediate,
00404     k_ShifterImmediate,
00405     k_RotateImmediate,
00406     k_BitfieldDescriptor,
00407     k_Token
00408   } Kind;
00409 
00410   SMLoc StartLoc, EndLoc, AlignmentLoc;
00411   SmallVector<unsigned, 8> Registers;
00412 
00413   struct CCOp {
00414     ARMCC::CondCodes Val;
00415   };
00416 
00417   struct CopOp {
00418     unsigned Val;
00419   };
00420 
00421   struct CoprocOptionOp {
00422     unsigned Val;
00423   };
00424 
00425   struct ITMaskOp {
00426     unsigned Mask:4;
00427   };
00428 
00429   struct MBOptOp {
00430     ARM_MB::MemBOpt Val;
00431   };
00432 
00433   struct ISBOptOp {
00434     ARM_ISB::InstSyncBOpt Val;
00435   };
00436 
00437   struct IFlagsOp {
00438     ARM_PROC::IFlags Val;
00439   };
00440 
00441   struct MMaskOp {
00442     unsigned Val;
00443   };
00444 
00445   struct BankedRegOp {
00446     unsigned Val;
00447   };
00448 
00449   struct TokOp {
00450     const char *Data;
00451     unsigned Length;
00452   };
00453 
00454   struct RegOp {
00455     unsigned RegNum;
00456   };
00457 
00458   // A vector register list is a sequential list of 1 to 4 registers.
00459   struct VectorListOp {
00460     unsigned RegNum;
00461     unsigned Count;
00462     unsigned LaneIndex;
00463     bool isDoubleSpaced;
00464   };
00465 
00466   struct VectorIndexOp {
00467     unsigned Val;
00468   };
00469 
00470   struct ImmOp {
00471     const MCExpr *Val;
00472   };
00473 
00474   /// Combined record for all forms of ARM address expressions.
00475   struct MemoryOp {
00476     unsigned BaseRegNum;
00477     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
00478     // was specified.
00479     const MCConstantExpr *OffsetImm;  // Offset immediate value
00480     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
00481     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
00482     unsigned ShiftImm;        // shift for OffsetReg.
00483     unsigned Alignment;       // 0 = no alignment specified
00484     // n = alignment in bytes (2, 4, 8, 16, or 32)
00485     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
00486   };
00487 
00488   struct PostIdxRegOp {
00489     unsigned RegNum;
00490     bool isAdd;
00491     ARM_AM::ShiftOpc ShiftTy;
00492     unsigned ShiftImm;
00493   };
00494 
00495   struct ShifterImmOp {
00496     bool isASR;
00497     unsigned Imm;
00498   };
00499 
00500   struct RegShiftedRegOp {
00501     ARM_AM::ShiftOpc ShiftTy;
00502     unsigned SrcReg;
00503     unsigned ShiftReg;
00504     unsigned ShiftImm;
00505   };
00506 
00507   struct RegShiftedImmOp {
00508     ARM_AM::ShiftOpc ShiftTy;
00509     unsigned SrcReg;
00510     unsigned ShiftImm;
00511   };
00512 
00513   struct RotImmOp {
00514     unsigned Imm;
00515   };
00516 
00517   struct BitfieldOp {
00518     unsigned LSB;
00519     unsigned Width;
00520   };
00521 
00522   union {
00523     struct CCOp CC;
00524     struct CopOp Cop;
00525     struct CoprocOptionOp CoprocOption;
00526     struct MBOptOp MBOpt;
00527     struct ISBOptOp ISBOpt;
00528     struct ITMaskOp ITMask;
00529     struct IFlagsOp IFlags;
00530     struct MMaskOp MMask;
00531     struct BankedRegOp BankedReg;
00532     struct TokOp Tok;
00533     struct RegOp Reg;
00534     struct VectorListOp VectorList;
00535     struct VectorIndexOp VectorIndex;
00536     struct ImmOp Imm;
00537     struct MemoryOp Memory;
00538     struct PostIdxRegOp PostIdxReg;
00539     struct ShifterImmOp ShifterImm;
00540     struct RegShiftedRegOp RegShiftedReg;
00541     struct RegShiftedImmOp RegShiftedImm;
00542     struct RotImmOp RotImm;
00543     struct BitfieldOp Bitfield;
00544   };
00545 
00546 public:
00547   ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
00548   ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
00549     Kind = o.Kind;
00550     StartLoc = o.StartLoc;
00551     EndLoc = o.EndLoc;
00552     switch (Kind) {
00553     case k_CondCode:
00554       CC = o.CC;
00555       break;
00556     case k_ITCondMask:
00557       ITMask = o.ITMask;
00558       break;
00559     case k_Token:
00560       Tok = o.Tok;
00561       break;
00562     case k_CCOut:
00563     case k_Register:
00564       Reg = o.Reg;
00565       break;
00566     case k_RegisterList:
00567     case k_DPRRegisterList:
00568     case k_SPRRegisterList:
00569       Registers = o.Registers;
00570       break;
00571     case k_VectorList:
00572     case k_VectorListAllLanes:
00573     case k_VectorListIndexed:
00574       VectorList = o.VectorList;
00575       break;
00576     case k_CoprocNum:
00577     case k_CoprocReg:
00578       Cop = o.Cop;
00579       break;
00580     case k_CoprocOption:
00581       CoprocOption = o.CoprocOption;
00582       break;
00583     case k_Immediate:
00584       Imm = o.Imm;
00585       break;
00586     case k_MemBarrierOpt:
00587       MBOpt = o.MBOpt;
00588       break;
00589     case k_InstSyncBarrierOpt:
00590       ISBOpt = o.ISBOpt;
00591     case k_Memory:
00592       Memory = o.Memory;
00593       break;
00594     case k_PostIndexRegister:
00595       PostIdxReg = o.PostIdxReg;
00596       break;
00597     case k_MSRMask:
00598       MMask = o.MMask;
00599       break;
00600     case k_BankedReg:
00601       BankedReg = o.BankedReg;
00602       break;
00603     case k_ProcIFlags:
00604       IFlags = o.IFlags;
00605       break;
00606     case k_ShifterImmediate:
00607       ShifterImm = o.ShifterImm;
00608       break;
00609     case k_ShiftedRegister:
00610       RegShiftedReg = o.RegShiftedReg;
00611       break;
00612     case k_ShiftedImmediate:
00613       RegShiftedImm = o.RegShiftedImm;
00614       break;
00615     case k_RotateImmediate:
00616       RotImm = o.RotImm;
00617       break;
00618     case k_BitfieldDescriptor:
00619       Bitfield = o.Bitfield;
00620       break;
00621     case k_VectorIndex:
00622       VectorIndex = o.VectorIndex;
00623       break;
00624     }
00625   }
00626 
00627   /// getStartLoc - Get the location of the first token of this operand.
00628   SMLoc getStartLoc() const override { return StartLoc; }
00629   /// getEndLoc - Get the location of the last token of this operand.
00630   SMLoc getEndLoc() const override { return EndLoc; }
00631   /// getLocRange - Get the range between the first and last token of this
00632   /// operand.
00633   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
00634 
00635   /// getAlignmentLoc - Get the location of the Alignment token of this operand.
00636   SMLoc getAlignmentLoc() const {
00637     assert(Kind == k_Memory && "Invalid access!");
00638     return AlignmentLoc;
00639   }
00640 
00641   ARMCC::CondCodes getCondCode() const {
00642     assert(Kind == k_CondCode && "Invalid access!");
00643     return CC.Val;
00644   }
00645 
00646   unsigned getCoproc() const {
00647     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
00648     return Cop.Val;
00649   }
00650 
00651   StringRef getToken() const {
00652     assert(Kind == k_Token && "Invalid access!");
00653     return StringRef(Tok.Data, Tok.Length);
00654   }
00655 
00656   unsigned getReg() const override {
00657     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
00658     return Reg.RegNum;
00659   }
00660 
00661   const SmallVectorImpl<unsigned> &getRegList() const {
00662     assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
00663             Kind == k_SPRRegisterList) && "Invalid access!");
00664     return Registers;
00665   }
00666 
00667   const MCExpr *getImm() const {
00668     assert(isImm() && "Invalid access!");
00669     return Imm.Val;
00670   }
00671 
00672   unsigned getVectorIndex() const {
00673     assert(Kind == k_VectorIndex && "Invalid access!");
00674     return VectorIndex.Val;
00675   }
00676 
00677   ARM_MB::MemBOpt getMemBarrierOpt() const {
00678     assert(Kind == k_MemBarrierOpt && "Invalid access!");
00679     return MBOpt.Val;
00680   }
00681 
00682   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
00683     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
00684     return ISBOpt.Val;
00685   }
00686 
00687   ARM_PROC::IFlags getProcIFlags() const {
00688     assert(Kind == k_ProcIFlags && "Invalid access!");
00689     return IFlags.Val;
00690   }
00691 
00692   unsigned getMSRMask() const {
00693     assert(Kind == k_MSRMask && "Invalid access!");
00694     return MMask.Val;
00695   }
00696 
00697   unsigned getBankedReg() const {
00698     assert(Kind == k_BankedReg && "Invalid access!");
00699     return BankedReg.Val;
00700   }
00701 
00702   bool isCoprocNum() const { return Kind == k_CoprocNum; }
00703   bool isCoprocReg() const { return Kind == k_CoprocReg; }
00704   bool isCoprocOption() const { return Kind == k_CoprocOption; }
00705   bool isCondCode() const { return Kind == k_CondCode; }
00706   bool isCCOut() const { return Kind == k_CCOut; }
00707   bool isITMask() const { return Kind == k_ITCondMask; }
00708   bool isITCondCode() const { return Kind == k_CondCode; }
00709   bool isImm() const override { return Kind == k_Immediate; }
00710   // checks whether this operand is an unsigned offset which fits is a field
00711   // of specified width and scaled by a specific number of bits
00712   template<unsigned width, unsigned scale>
00713   bool isUnsignedOffset() const {
00714     if (!isImm()) return false;
00715     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
00716     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
00717       int64_t Val = CE->getValue();
00718       int64_t Align = 1LL << scale;
00719       int64_t Max = Align * ((1LL << width) - 1);
00720       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
00721     }
00722     return false;
00723   }
00724   // checks whether this operand is an signed offset which fits is a field
00725   // of specified width and scaled by a specific number of bits
00726   template<unsigned width, unsigned scale>
00727   bool isSignedOffset() const {
00728     if (!isImm()) return false;
00729     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
00730     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
00731       int64_t Val = CE->getValue();
00732       int64_t Align = 1LL << scale;
00733       int64_t Max = Align * ((1LL << (width-1)) - 1);
00734       int64_t Min = -Align * (1LL << (width-1));
00735       return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
00736     }
00737     return false;
00738   }
00739 
00740   // checks whether this operand is a memory operand computed as an offset
00741   // applied to PC. the offset may have 8 bits of magnitude and is represented
00742   // with two bits of shift. textually it may be either [pc, #imm], #imm or 
00743   // relocable expression...
00744   bool isThumbMemPC() const {
00745     int64_t Val = 0;
00746     if (isImm()) {
00747       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
00748       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
00749       if (!CE) return false;
00750       Val = CE->getValue();
00751     }
00752     else if (isMem()) {
00753       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
00754       if(Memory.BaseRegNum != ARM::PC) return false;
00755       Val = Memory.OffsetImm->getValue();
00756     }
00757     else return false;
00758     return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
00759   }
00760   bool isFPImm() const {
00761     if (!isImm()) return false;
00762     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00763     if (!CE) return false;
00764     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
00765     return Val != -1;
00766   }
00767   bool isFBits16() const {
00768     if (!isImm()) return false;
00769     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00770     if (!CE) return false;
00771     int64_t Value = CE->getValue();
00772     return Value >= 0 && Value <= 16;
00773   }
00774   bool isFBits32() const {
00775     if (!isImm()) return false;
00776     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00777     if (!CE) return false;
00778     int64_t Value = CE->getValue();
00779     return Value >= 1 && Value <= 32;
00780   }
00781   bool isImm8s4() const {
00782     if (!isImm()) return false;
00783     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00784     if (!CE) return false;
00785     int64_t Value = CE->getValue();
00786     return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
00787   }
00788   bool isImm0_1020s4() const {
00789     if (!isImm()) return false;
00790     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00791     if (!CE) return false;
00792     int64_t Value = CE->getValue();
00793     return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
00794   }
00795   bool isImm0_508s4() const {
00796     if (!isImm()) return false;
00797     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00798     if (!CE) return false;
00799     int64_t Value = CE->getValue();
00800     return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
00801   }
00802   bool isImm0_508s4Neg() const {
00803     if (!isImm()) return false;
00804     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00805     if (!CE) return false;
00806     int64_t Value = -CE->getValue();
00807     // explicitly exclude zero. we want that to use the normal 0_508 version.
00808     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
00809   }
00810   bool isImm0_239() const {
00811     if (!isImm()) return false;
00812     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00813     if (!CE) return false;
00814     int64_t Value = CE->getValue();
00815     return Value >= 0 && Value < 240;
00816   }
00817   bool isImm0_255() const {
00818     if (!isImm()) return false;
00819     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00820     if (!CE) return false;
00821     int64_t Value = CE->getValue();
00822     return Value >= 0 && Value < 256;
00823   }
00824   bool isImm0_4095() const {
00825     if (!isImm()) return false;
00826     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00827     if (!CE) return false;
00828     int64_t Value = CE->getValue();
00829     return Value >= 0 && Value < 4096;
00830   }
00831   bool isImm0_4095Neg() const {
00832     if (!isImm()) return false;
00833     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00834     if (!CE) return false;
00835     int64_t Value = -CE->getValue();
00836     return Value > 0 && Value < 4096;
00837   }
00838   bool isImm0_1() const {
00839     if (!isImm()) return false;
00840     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00841     if (!CE) return false;
00842     int64_t Value = CE->getValue();
00843     return Value >= 0 && Value < 2;
00844   }
00845   bool isImm0_3() const {
00846     if (!isImm()) return false;
00847     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00848     if (!CE) return false;
00849     int64_t Value = CE->getValue();
00850     return Value >= 0 && Value < 4;
00851   }
00852   bool isImm0_7() const {
00853     if (!isImm()) return false;
00854     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00855     if (!CE) return false;
00856     int64_t Value = CE->getValue();
00857     return Value >= 0 && Value < 8;
00858   }
00859   bool isImm0_15() const {
00860     if (!isImm()) return false;
00861     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00862     if (!CE) return false;
00863     int64_t Value = CE->getValue();
00864     return Value >= 0 && Value < 16;
00865   }
00866   bool isImm0_31() const {
00867     if (!isImm()) return false;
00868     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00869     if (!CE) return false;
00870     int64_t Value = CE->getValue();
00871     return Value >= 0 && Value < 32;
00872   }
00873   bool isImm0_63() const {
00874     if (!isImm()) return false;
00875     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00876     if (!CE) return false;
00877     int64_t Value = CE->getValue();
00878     return Value >= 0 && Value < 64;
00879   }
00880   bool isImm8() const {
00881     if (!isImm()) return false;
00882     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00883     if (!CE) return false;
00884     int64_t Value = CE->getValue();
00885     return Value == 8;
00886   }
00887   bool isImm16() const {
00888     if (!isImm()) return false;
00889     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00890     if (!CE) return false;
00891     int64_t Value = CE->getValue();
00892     return Value == 16;
00893   }
00894   bool isImm32() const {
00895     if (!isImm()) return false;
00896     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00897     if (!CE) return false;
00898     int64_t Value = CE->getValue();
00899     return Value == 32;
00900   }
00901   bool isShrImm8() const {
00902     if (!isImm()) return false;
00903     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00904     if (!CE) return false;
00905     int64_t Value = CE->getValue();
00906     return Value > 0 && Value <= 8;
00907   }
00908   bool isShrImm16() const {
00909     if (!isImm()) return false;
00910     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00911     if (!CE) return false;
00912     int64_t Value = CE->getValue();
00913     return Value > 0 && Value <= 16;
00914   }
00915   bool isShrImm32() const {
00916     if (!isImm()) return false;
00917     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00918     if (!CE) return false;
00919     int64_t Value = CE->getValue();
00920     return Value > 0 && Value <= 32;
00921   }
00922   bool isShrImm64() const {
00923     if (!isImm()) return false;
00924     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00925     if (!CE) return false;
00926     int64_t Value = CE->getValue();
00927     return Value > 0 && Value <= 64;
00928   }
00929   bool isImm1_7() const {
00930     if (!isImm()) return false;
00931     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00932     if (!CE) return false;
00933     int64_t Value = CE->getValue();
00934     return Value > 0 && Value < 8;
00935   }
00936   bool isImm1_15() const {
00937     if (!isImm()) return false;
00938     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00939     if (!CE) return false;
00940     int64_t Value = CE->getValue();
00941     return Value > 0 && Value < 16;
00942   }
00943   bool isImm1_31() const {
00944     if (!isImm()) return false;
00945     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00946     if (!CE) return false;
00947     int64_t Value = CE->getValue();
00948     return Value > 0 && Value < 32;
00949   }
00950   bool isImm1_16() const {
00951     if (!isImm()) return false;
00952     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00953     if (!CE) return false;
00954     int64_t Value = CE->getValue();
00955     return Value > 0 && Value < 17;
00956   }
00957   bool isImm1_32() const {
00958     if (!isImm()) return false;
00959     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00960     if (!CE) return false;
00961     int64_t Value = CE->getValue();
00962     return Value > 0 && Value < 33;
00963   }
00964   bool isImm0_32() const {
00965     if (!isImm()) return false;
00966     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00967     if (!CE) return false;
00968     int64_t Value = CE->getValue();
00969     return Value >= 0 && Value < 33;
00970   }
00971   bool isImm0_65535() const {
00972     if (!isImm()) return false;
00973     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00974     if (!CE) return false;
00975     int64_t Value = CE->getValue();
00976     return Value >= 0 && Value < 65536;
00977   }
00978   bool isImm256_65535Expr() const {
00979     if (!isImm()) return false;
00980     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00981     // If it's not a constant expression, it'll generate a fixup and be
00982     // handled later.
00983     if (!CE) return true;
00984     int64_t Value = CE->getValue();
00985     return Value >= 256 && Value < 65536;
00986   }
00987   bool isImm0_65535Expr() const {
00988     if (!isImm()) return false;
00989     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00990     // If it's not a constant expression, it'll generate a fixup and be
00991     // handled later.
00992     if (!CE) return true;
00993     int64_t Value = CE->getValue();
00994     return Value >= 0 && Value < 65536;
00995   }
00996   bool isImm24bit() const {
00997     if (!isImm()) return false;
00998     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
00999     if (!CE) return false;
01000     int64_t Value = CE->getValue();
01001     return Value >= 0 && Value <= 0xffffff;
01002   }
01003   bool isImmThumbSR() const {
01004     if (!isImm()) return false;
01005     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01006     if (!CE) return false;
01007     int64_t Value = CE->getValue();
01008     return Value > 0 && Value < 33;
01009   }
01010   bool isPKHLSLImm() const {
01011     if (!isImm()) return false;
01012     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01013     if (!CE) return false;
01014     int64_t Value = CE->getValue();
01015     return Value >= 0 && Value < 32;
01016   }
01017   bool isPKHASRImm() const {
01018     if (!isImm()) return false;
01019     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01020     if (!CE) return false;
01021     int64_t Value = CE->getValue();
01022     return Value > 0 && Value <= 32;
01023   }
01024   bool isAdrLabel() const {
01025     // If we have an immediate that's not a constant, treat it as a label
01026     // reference needing a fixup. If it is a constant, but it can't fit 
01027     // into shift immediate encoding, we reject it.
01028     if (isImm() && !isa<MCConstantExpr>(getImm())) return true;
01029     else return (isARMSOImm() || isARMSOImmNeg());
01030   }
01031   bool isARMSOImm() const {
01032     if (!isImm()) return false;
01033     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01034     if (!CE) return false;
01035     int64_t Value = CE->getValue();
01036     return ARM_AM::getSOImmVal(Value) != -1;
01037   }
01038   bool isARMSOImmNot() const {
01039     if (!isImm()) return false;
01040     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01041     if (!CE) return false;
01042     int64_t Value = CE->getValue();
01043     return ARM_AM::getSOImmVal(~Value) != -1;
01044   }
01045   bool isARMSOImmNeg() const {
01046     if (!isImm()) return false;
01047     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01048     if (!CE) return false;
01049     int64_t Value = CE->getValue();
01050     // Only use this when not representable as a plain so_imm.
01051     return ARM_AM::getSOImmVal(Value) == -1 &&
01052       ARM_AM::getSOImmVal(-Value) != -1;
01053   }
01054   bool isT2SOImm() const {
01055     if (!isImm()) return false;
01056     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01057     if (!CE) return false;
01058     int64_t Value = CE->getValue();
01059     return ARM_AM::getT2SOImmVal(Value) != -1;
01060   }
01061   bool isT2SOImmNot() const {
01062     if (!isImm()) return false;
01063     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01064     if (!CE) return false;
01065     int64_t Value = CE->getValue();
01066     return ARM_AM::getT2SOImmVal(Value) == -1 &&
01067       ARM_AM::getT2SOImmVal(~Value) != -1;
01068   }
01069   bool isT2SOImmNeg() const {
01070     if (!isImm()) return false;
01071     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01072     if (!CE) return false;
01073     int64_t Value = CE->getValue();
01074     // Only use this when not representable as a plain so_imm.
01075     return ARM_AM::getT2SOImmVal(Value) == -1 &&
01076       ARM_AM::getT2SOImmVal(-Value) != -1;
01077   }
01078   bool isSetEndImm() const {
01079     if (!isImm()) return false;
01080     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01081     if (!CE) return false;
01082     int64_t Value = CE->getValue();
01083     return Value == 1 || Value == 0;
01084   }
01085   bool isReg() const override { return Kind == k_Register; }
01086   bool isRegList() const { return Kind == k_RegisterList; }
01087   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
01088   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
01089   bool isToken() const override { return Kind == k_Token; }
01090   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
01091   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
01092   bool isMem() const override { return Kind == k_Memory; }
01093   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
01094   bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
01095   bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
01096   bool isRotImm() const { return Kind == k_RotateImmediate; }
01097   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
01098   bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
01099   bool isPostIdxReg() const {
01100     return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
01101   }
01102   bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
01103     if (!isMem())
01104       return false;
01105     // No offset of any kind.
01106     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
01107      (alignOK || Memory.Alignment == Alignment);
01108   }
01109   bool isMemPCRelImm12() const {
01110     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
01111       return false;
01112     // Base register must be PC.
01113     if (Memory.BaseRegNum != ARM::PC)
01114       return false;
01115     // Immediate offset in range [-4095, 4095].
01116     if (!Memory.OffsetImm) return true;
01117     int64_t Val = Memory.OffsetImm->getValue();
01118     return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
01119   }
01120   bool isAlignedMemory() const {
01121     return isMemNoOffset(true);
01122   }
01123   bool isAlignedMemoryNone() const {
01124     return isMemNoOffset(false, 0);
01125   }
01126   bool isDupAlignedMemoryNone() const {
01127     return isMemNoOffset(false, 0);
01128   }
01129   bool isAlignedMemory16() const {
01130     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
01131       return true;
01132     return isMemNoOffset(false, 0);
01133   }
01134   bool isDupAlignedMemory16() const {
01135     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
01136       return true;
01137     return isMemNoOffset(false, 0);
01138   }
01139   bool isAlignedMemory32() const {
01140     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
01141       return true;
01142     return isMemNoOffset(false, 0);
01143   }
01144   bool isDupAlignedMemory32() const {
01145     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
01146       return true;
01147     return isMemNoOffset(false, 0);
01148   }
01149   bool isAlignedMemory64() const {
01150     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
01151       return true;
01152     return isMemNoOffset(false, 0);
01153   }
01154   bool isDupAlignedMemory64() const {
01155     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
01156       return true;
01157     return isMemNoOffset(false, 0);
01158   }
01159   bool isAlignedMemory64or128() const {
01160     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
01161       return true;
01162     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
01163       return true;
01164     return isMemNoOffset(false, 0);
01165   }
01166   bool isDupAlignedMemory64or128() const {
01167     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
01168       return true;
01169     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
01170       return true;
01171     return isMemNoOffset(false, 0);
01172   }
01173   bool isAlignedMemory64or128or256() const {
01174     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
01175       return true;
01176     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
01177       return true;
01178     if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
01179       return true;
01180     return isMemNoOffset(false, 0);
01181   }
01182   bool isAddrMode2() const {
01183     if (!isMem() || Memory.Alignment != 0) return false;
01184     // Check for register offset.
01185     if (Memory.OffsetRegNum) return true;
01186     // Immediate offset in range [-4095, 4095].
01187     if (!Memory.OffsetImm) return true;
01188     int64_t Val = Memory.OffsetImm->getValue();
01189     return Val > -4096 && Val < 4096;
01190   }
01191   bool isAM2OffsetImm() const {
01192     if (!isImm()) return false;
01193     // Immediate offset in range [-4095, 4095].
01194     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01195     if (!CE) return false;
01196     int64_t Val = CE->getValue();
01197     return (Val == INT32_MIN) || (Val > -4096 && Val < 4096);
01198   }
01199   bool isAddrMode3() const {
01200     // If we have an immediate that's not a constant, treat it as a label
01201     // reference needing a fixup. If it is a constant, it's something else
01202     // and we reject it.
01203     if (isImm() && !isa<MCConstantExpr>(getImm()))
01204       return true;
01205     if (!isMem() || Memory.Alignment != 0) return false;
01206     // No shifts are legal for AM3.
01207     if (Memory.ShiftType != ARM_AM::no_shift) return false;
01208     // Check for register offset.
01209     if (Memory.OffsetRegNum) return true;
01210     // Immediate offset in range [-255, 255].
01211     if (!Memory.OffsetImm) return true;
01212     int64_t Val = Memory.OffsetImm->getValue();
01213     // The #-0 offset is encoded as INT32_MIN, and we have to check 
01214     // for this too.
01215     return (Val > -256 && Val < 256) || Val == INT32_MIN;
01216   }
01217   bool isAM3Offset() const {
01218     if (Kind != k_Immediate && Kind != k_PostIndexRegister)
01219       return false;
01220     if (Kind == k_PostIndexRegister)
01221       return PostIdxReg.ShiftTy == ARM_AM::no_shift;
01222     // Immediate offset in range [-255, 255].
01223     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01224     if (!CE) return false;
01225     int64_t Val = CE->getValue();
01226     // Special case, #-0 is INT32_MIN.
01227     return (Val > -256 && Val < 256) || Val == INT32_MIN;
01228   }
01229   bool isAddrMode5() const {
01230     // If we have an immediate that's not a constant, treat it as a label
01231     // reference needing a fixup. If it is a constant, it's something else
01232     // and we reject it.
01233     if (isImm() && !isa<MCConstantExpr>(getImm()))
01234       return true;
01235     if (!isMem() || Memory.Alignment != 0) return false;
01236     // Check for register offset.
01237     if (Memory.OffsetRegNum) return false;
01238     // Immediate offset in range [-1020, 1020] and a multiple of 4.
01239     if (!Memory.OffsetImm) return true;
01240     int64_t Val = Memory.OffsetImm->getValue();
01241     return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
01242       Val == INT32_MIN;
01243   }
01244   bool isMemTBB() const {
01245     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
01246         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
01247       return false;
01248     return true;
01249   }
01250   bool isMemTBH() const {
01251     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
01252         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
01253         Memory.Alignment != 0 )
01254       return false;
01255     return true;
01256   }
01257   bool isMemRegOffset() const {
01258     if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
01259       return false;
01260     return true;
01261   }
01262   bool isT2MemRegOffset() const {
01263     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
01264         Memory.Alignment != 0)
01265       return false;
01266     // Only lsl #{0, 1, 2, 3} allowed.
01267     if (Memory.ShiftType == ARM_AM::no_shift)
01268       return true;
01269     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
01270       return false;
01271     return true;
01272   }
01273   bool isMemThumbRR() const {
01274     // Thumb reg+reg addressing is simple. Just two registers, a base and
01275     // an offset. No shifts, negations or any other complicating factors.
01276     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
01277         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
01278       return false;
01279     return isARMLowRegister(Memory.BaseRegNum) &&
01280       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
01281   }
01282   bool isMemThumbRIs4() const {
01283     if (!isMem() || Memory.OffsetRegNum != 0 ||
01284         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
01285       return false;
01286     // Immediate offset, multiple of 4 in range [0, 124].
01287     if (!Memory.OffsetImm) return true;
01288     int64_t Val = Memory.OffsetImm->getValue();
01289     return Val >= 0 && Val <= 124 && (Val % 4) == 0;
01290   }
01291   bool isMemThumbRIs2() const {
01292     if (!isMem() || Memory.OffsetRegNum != 0 ||
01293         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
01294       return false;
01295     // Immediate offset, multiple of 4 in range [0, 62].
01296     if (!Memory.OffsetImm) return true;
01297     int64_t Val = Memory.OffsetImm->getValue();
01298     return Val >= 0 && Val <= 62 && (Val % 2) == 0;
01299   }
01300   bool isMemThumbRIs1() const {
01301     if (!isMem() || Memory.OffsetRegNum != 0 ||
01302         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
01303       return false;
01304     // Immediate offset in range [0, 31].
01305     if (!Memory.OffsetImm) return true;
01306     int64_t Val = Memory.OffsetImm->getValue();
01307     return Val >= 0 && Val <= 31;
01308   }
01309   bool isMemThumbSPI() const {
01310     if (!isMem() || Memory.OffsetRegNum != 0 ||
01311         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
01312       return false;
01313     // Immediate offset, multiple of 4 in range [0, 1020].
01314     if (!Memory.OffsetImm) return true;
01315     int64_t Val = Memory.OffsetImm->getValue();
01316     return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
01317   }
01318   bool isMemImm8s4Offset() const {
01319     // If we have an immediate that's not a constant, treat it as a label
01320     // reference needing a fixup. If it is a constant, it's something else
01321     // and we reject it.
01322     if (isImm() && !isa<MCConstantExpr>(getImm()))
01323       return true;
01324     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
01325       return false;
01326     // Immediate offset a multiple of 4 in range [-1020, 1020].
01327     if (!Memory.OffsetImm) return true;
01328     int64_t Val = Memory.OffsetImm->getValue();
01329     // Special case, #-0 is INT32_MIN.
01330     return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
01331   }
01332   bool isMemImm0_1020s4Offset() const {
01333     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
01334       return false;
01335     // Immediate offset a multiple of 4 in range [0, 1020].
01336     if (!Memory.OffsetImm) return true;
01337     int64_t Val = Memory.OffsetImm->getValue();
01338     return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
01339   }
01340   bool isMemImm8Offset() const {
01341     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
01342       return false;
01343     // Base reg of PC isn't allowed for these encodings.
01344     if (Memory.BaseRegNum == ARM::PC) return false;
01345     // Immediate offset in range [-255, 255].
01346     if (!Memory.OffsetImm) return true;
01347     int64_t Val = Memory.OffsetImm->getValue();
01348     return (Val == INT32_MIN) || (Val > -256 && Val < 256);
01349   }
01350   bool isMemPosImm8Offset() const {
01351     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
01352       return false;
01353     // Immediate offset in range [0, 255].
01354     if (!Memory.OffsetImm) return true;
01355     int64_t Val = Memory.OffsetImm->getValue();
01356     return Val >= 0 && Val < 256;
01357   }
01358   bool isMemNegImm8Offset() const {
01359     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
01360       return false;
01361     // Base reg of PC isn't allowed for these encodings.
01362     if (Memory.BaseRegNum == ARM::PC) return false;
01363     // Immediate offset in range [-255, -1].
01364     if (!Memory.OffsetImm) return false;
01365     int64_t Val = Memory.OffsetImm->getValue();
01366     return (Val == INT32_MIN) || (Val > -256 && Val < 0);
01367   }
01368   bool isMemUImm12Offset() const {
01369     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
01370       return false;
01371     // Immediate offset in range [0, 4095].
01372     if (!Memory.OffsetImm) return true;
01373     int64_t Val = Memory.OffsetImm->getValue();
01374     return (Val >= 0 && Val < 4096);
01375   }
01376   bool isMemImm12Offset() const {
01377     // If we have an immediate that's not a constant, treat it as a label
01378     // reference needing a fixup. If it is a constant, it's something else
01379     // and we reject it.
01380     if (isImm() && !isa<MCConstantExpr>(getImm()))
01381       return true;
01382 
01383     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
01384       return false;
01385     // Immediate offset in range [-4095, 4095].
01386     if (!Memory.OffsetImm) return true;
01387     int64_t Val = Memory.OffsetImm->getValue();
01388     return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
01389   }
01390   bool isPostIdxImm8() const {
01391     if (!isImm()) return false;
01392     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01393     if (!CE) return false;
01394     int64_t Val = CE->getValue();
01395     return (Val > -256 && Val < 256) || (Val == INT32_MIN);
01396   }
01397   bool isPostIdxImm8s4() const {
01398     if (!isImm()) return false;
01399     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01400     if (!CE) return false;
01401     int64_t Val = CE->getValue();
01402     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
01403       (Val == INT32_MIN);
01404   }
01405 
01406   bool isMSRMask() const { return Kind == k_MSRMask; }
01407   bool isBankedReg() const { return Kind == k_BankedReg; }
01408   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
01409 
01410   // NEON operands.
01411   bool isSingleSpacedVectorList() const {
01412     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
01413   }
01414   bool isDoubleSpacedVectorList() const {
01415     return Kind == k_VectorList && VectorList.isDoubleSpaced;
01416   }
01417   bool isVecListOneD() const {
01418     if (!isSingleSpacedVectorList()) return false;
01419     return VectorList.Count == 1;
01420   }
01421 
01422   bool isVecListDPair() const {
01423     if (!isSingleSpacedVectorList()) return false;
01424     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
01425               .contains(VectorList.RegNum));
01426   }
01427 
01428   bool isVecListThreeD() const {
01429     if (!isSingleSpacedVectorList()) return false;
01430     return VectorList.Count == 3;
01431   }
01432 
01433   bool isVecListFourD() const {
01434     if (!isSingleSpacedVectorList()) return false;
01435     return VectorList.Count == 4;
01436   }
01437 
01438   bool isVecListDPairSpaced() const {
01439     if (Kind != k_VectorList) return false;
01440     if (isSingleSpacedVectorList()) return false;
01441     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
01442               .contains(VectorList.RegNum));
01443   }
01444 
01445   bool isVecListThreeQ() const {
01446     if (!isDoubleSpacedVectorList()) return false;
01447     return VectorList.Count == 3;
01448   }
01449 
01450   bool isVecListFourQ() const {
01451     if (!isDoubleSpacedVectorList()) return false;
01452     return VectorList.Count == 4;
01453   }
01454 
01455   bool isSingleSpacedVectorAllLanes() const {
01456     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
01457   }
01458   bool isDoubleSpacedVectorAllLanes() const {
01459     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
01460   }
01461   bool isVecListOneDAllLanes() const {
01462     if (!isSingleSpacedVectorAllLanes()) return false;
01463     return VectorList.Count == 1;
01464   }
01465 
01466   bool isVecListDPairAllLanes() const {
01467     if (!isSingleSpacedVectorAllLanes()) return false;
01468     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
01469               .contains(VectorList.RegNum));
01470   }
01471 
01472   bool isVecListDPairSpacedAllLanes() const {
01473     if (!isDoubleSpacedVectorAllLanes()) return false;
01474     return VectorList.Count == 2;
01475   }
01476 
01477   bool isVecListThreeDAllLanes() const {
01478     if (!isSingleSpacedVectorAllLanes()) return false;
01479     return VectorList.Count == 3;
01480   }
01481 
01482   bool isVecListThreeQAllLanes() const {
01483     if (!isDoubleSpacedVectorAllLanes()) return false;
01484     return VectorList.Count == 3;
01485   }
01486 
01487   bool isVecListFourDAllLanes() const {
01488     if (!isSingleSpacedVectorAllLanes()) return false;
01489     return VectorList.Count == 4;
01490   }
01491 
01492   bool isVecListFourQAllLanes() const {
01493     if (!isDoubleSpacedVectorAllLanes()) return false;
01494     return VectorList.Count == 4;
01495   }
01496 
01497   bool isSingleSpacedVectorIndexed() const {
01498     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
01499   }
01500   bool isDoubleSpacedVectorIndexed() const {
01501     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
01502   }
01503   bool isVecListOneDByteIndexed() const {
01504     if (!isSingleSpacedVectorIndexed()) return false;
01505     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
01506   }
01507 
01508   bool isVecListOneDHWordIndexed() const {
01509     if (!isSingleSpacedVectorIndexed()) return false;
01510     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
01511   }
01512 
01513   bool isVecListOneDWordIndexed() const {
01514     if (!isSingleSpacedVectorIndexed()) return false;
01515     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
01516   }
01517 
01518   bool isVecListTwoDByteIndexed() const {
01519     if (!isSingleSpacedVectorIndexed()) return false;
01520     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
01521   }
01522 
01523   bool isVecListTwoDHWordIndexed() const {
01524     if (!isSingleSpacedVectorIndexed()) return false;
01525     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
01526   }
01527 
01528   bool isVecListTwoQWordIndexed() const {
01529     if (!isDoubleSpacedVectorIndexed()) return false;
01530     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
01531   }
01532 
01533   bool isVecListTwoQHWordIndexed() const {
01534     if (!isDoubleSpacedVectorIndexed()) return false;
01535     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
01536   }
01537 
01538   bool isVecListTwoDWordIndexed() const {
01539     if (!isSingleSpacedVectorIndexed()) return false;
01540     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
01541   }
01542 
01543   bool isVecListThreeDByteIndexed() const {
01544     if (!isSingleSpacedVectorIndexed()) return false;
01545     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
01546   }
01547 
01548   bool isVecListThreeDHWordIndexed() const {
01549     if (!isSingleSpacedVectorIndexed()) return false;
01550     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
01551   }
01552 
01553   bool isVecListThreeQWordIndexed() const {
01554     if (!isDoubleSpacedVectorIndexed()) return false;
01555     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
01556   }
01557 
01558   bool isVecListThreeQHWordIndexed() const {
01559     if (!isDoubleSpacedVectorIndexed()) return false;
01560     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
01561   }
01562 
01563   bool isVecListThreeDWordIndexed() const {
01564     if (!isSingleSpacedVectorIndexed()) return false;
01565     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
01566   }
01567 
01568   bool isVecListFourDByteIndexed() const {
01569     if (!isSingleSpacedVectorIndexed()) return false;
01570     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
01571   }
01572 
01573   bool isVecListFourDHWordIndexed() const {
01574     if (!isSingleSpacedVectorIndexed()) return false;
01575     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
01576   }
01577 
01578   bool isVecListFourQWordIndexed() const {
01579     if (!isDoubleSpacedVectorIndexed()) return false;
01580     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
01581   }
01582 
01583   bool isVecListFourQHWordIndexed() const {
01584     if (!isDoubleSpacedVectorIndexed()) return false;
01585     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
01586   }
01587 
01588   bool isVecListFourDWordIndexed() const {
01589     if (!isSingleSpacedVectorIndexed()) return false;
01590     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
01591   }
01592 
01593   bool isVectorIndex8() const {
01594     if (Kind != k_VectorIndex) return false;
01595     return VectorIndex.Val < 8;
01596   }
01597   bool isVectorIndex16() const {
01598     if (Kind != k_VectorIndex) return false;
01599     return VectorIndex.Val < 4;
01600   }
01601   bool isVectorIndex32() const {
01602     if (Kind != k_VectorIndex) return false;
01603     return VectorIndex.Val < 2;
01604   }
01605 
01606   bool isNEONi8splat() const {
01607     if (!isImm()) return false;
01608     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01609     // Must be a constant.
01610     if (!CE) return false;
01611     int64_t Value = CE->getValue();
01612     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
01613     // value.
01614     return Value >= 0 && Value < 256;
01615   }
01616 
01617   bool isNEONi16splat() const {
01618     if (isNEONByteReplicate(2))
01619       return false; // Leave that for bytes replication and forbid by default.
01620     if (!isImm())
01621       return false;
01622     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01623     // Must be a constant.
01624     if (!CE) return false;
01625     int64_t Value = CE->getValue();
01626     // i16 value in the range [0,255] or [0x0100, 0xff00]
01627     return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
01628   }
01629 
01630   bool isNEONi32splat() const {
01631     if (isNEONByteReplicate(4))
01632       return false; // Leave that for bytes replication and forbid by default.
01633     if (!isImm())
01634       return false;
01635     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01636     // Must be a constant.
01637     if (!CE) return false;
01638     int64_t Value = CE->getValue();
01639     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
01640     return (Value >= 0 && Value < 256) ||
01641       (Value >= 0x0100 && Value <= 0xff00) ||
01642       (Value >= 0x010000 && Value <= 0xff0000) ||
01643       (Value >= 0x01000000 && Value <= 0xff000000);
01644   }
01645 
01646   bool isNEONByteReplicate(unsigned NumBytes) const {
01647     if (!isImm())
01648       return false;
01649     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01650     // Must be a constant.
01651     if (!CE)
01652       return false;
01653     int64_t Value = CE->getValue();
01654     if (!Value)
01655       return false; // Don't bother with zero.
01656 
01657     unsigned char B = Value & 0xff;
01658     for (unsigned i = 1; i < NumBytes; ++i) {
01659       Value >>= 8;
01660       if ((Value & 0xff) != B)
01661         return false;
01662     }
01663     return true;
01664   }
01665   bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); }
01666   bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); }
01667   bool isNEONi32vmov() const {
01668     if (isNEONByteReplicate(4))
01669       return false; // Let it to be classified as byte-replicate case.
01670     if (!isImm())
01671       return false;
01672     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01673     // Must be a constant.
01674     if (!CE)
01675       return false;
01676     int64_t Value = CE->getValue();
01677     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
01678     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
01679     return (Value >= 0 && Value < 256) ||
01680       (Value >= 0x0100 && Value <= 0xff00) ||
01681       (Value >= 0x010000 && Value <= 0xff0000) ||
01682       (Value >= 0x01000000 && Value <= 0xff000000) ||
01683       (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
01684       (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
01685   }
01686   bool isNEONi32vmovNeg() const {
01687     if (!isImm()) return false;
01688     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01689     // Must be a constant.
01690     if (!CE) return false;
01691     int64_t Value = ~CE->getValue();
01692     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
01693     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
01694     return (Value >= 0 && Value < 256) ||
01695       (Value >= 0x0100 && Value <= 0xff00) ||
01696       (Value >= 0x010000 && Value <= 0xff0000) ||
01697       (Value >= 0x01000000 && Value <= 0xff000000) ||
01698       (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
01699       (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
01700   }
01701 
01702   bool isNEONi64splat() const {
01703     if (!isImm()) return false;
01704     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01705     // Must be a constant.
01706     if (!CE) return false;
01707     uint64_t Value = CE->getValue();
01708     // i64 value with each byte being either 0 or 0xff.
01709     for (unsigned i = 0; i < 8; ++i)
01710       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
01711     return true;
01712   }
01713 
01714   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
01715     // Add as immediates when possible.  Null MCExpr = 0.
01716     if (!Expr)
01717       Inst.addOperand(MCOperand::CreateImm(0));
01718     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
01719       Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
01720     else
01721       Inst.addOperand(MCOperand::CreateExpr(Expr));
01722   }
01723 
01724   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
01725     assert(N == 2 && "Invalid number of operands!");
01726     Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
01727     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
01728     Inst.addOperand(MCOperand::CreateReg(RegNum));
01729   }
01730 
01731   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
01732     assert(N == 1 && "Invalid number of operands!");
01733     Inst.addOperand(MCOperand::CreateImm(getCoproc()));
01734   }
01735 
01736   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
01737     assert(N == 1 && "Invalid number of operands!");
01738     Inst.addOperand(MCOperand::CreateImm(getCoproc()));
01739   }
01740 
01741   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
01742     assert(N == 1 && "Invalid number of operands!");
01743     Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
01744   }
01745 
01746   void addITMaskOperands(MCInst &Inst, unsigned N) const {
01747     assert(N == 1 && "Invalid number of operands!");
01748     Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
01749   }
01750 
01751   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
01752     assert(N == 1 && "Invalid number of operands!");
01753     Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
01754   }
01755 
01756   void addCCOutOperands(MCInst &Inst, unsigned N) const {
01757     assert(N == 1 && "Invalid number of operands!");
01758     Inst.addOperand(MCOperand::CreateReg(getReg()));
01759   }
01760 
01761   void addRegOperands(MCInst &Inst, unsigned N) const {
01762     assert(N == 1 && "Invalid number of operands!");
01763     Inst.addOperand(MCOperand::CreateReg(getReg()));
01764   }
01765 
01766   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
01767     assert(N == 3 && "Invalid number of operands!");
01768     assert(isRegShiftedReg() &&
01769            "addRegShiftedRegOperands() on non-RegShiftedReg!");
01770     Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
01771     Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
01772     Inst.addOperand(MCOperand::CreateImm(
01773       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
01774   }
01775 
01776   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
01777     assert(N == 2 && "Invalid number of operands!");
01778     assert(isRegShiftedImm() &&
01779            "addRegShiftedImmOperands() on non-RegShiftedImm!");
01780     Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
01781     // Shift of #32 is encoded as 0 where permitted
01782     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
01783     Inst.addOperand(MCOperand::CreateImm(
01784       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
01785   }
01786 
01787   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
01788     assert(N == 1 && "Invalid number of operands!");
01789     Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
01790                                          ShifterImm.Imm));
01791   }
01792 
01793   void addRegListOperands(MCInst &Inst, unsigned N) const {
01794     assert(N == 1 && "Invalid number of operands!");
01795     const SmallVectorImpl<unsigned> &RegList = getRegList();
01796     for (SmallVectorImpl<unsigned>::const_iterator
01797            I = RegList.begin(), E = RegList.end(); I != E; ++I)
01798       Inst.addOperand(MCOperand::CreateReg(*I));
01799   }
01800 
01801   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
01802     addRegListOperands(Inst, N);
01803   }
01804 
01805   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
01806     addRegListOperands(Inst, N);
01807   }
01808 
01809   void addRotImmOperands(MCInst &Inst, unsigned N) const {
01810     assert(N == 1 && "Invalid number of operands!");
01811     // Encoded as val>>3. The printer handles display as 8, 16, 24.
01812     Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
01813   }
01814 
01815   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
01816     assert(N == 1 && "Invalid number of operands!");
01817     // Munge the lsb/width into a bitfield mask.
01818     unsigned lsb = Bitfield.LSB;
01819     unsigned width = Bitfield.Width;
01820     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
01821     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
01822                       (32 - (lsb + width)));
01823     Inst.addOperand(MCOperand::CreateImm(Mask));
01824   }
01825 
01826   void addImmOperands(MCInst &Inst, unsigned N) const {
01827     assert(N == 1 && "Invalid number of operands!");
01828     addExpr(Inst, getImm());
01829   }
01830 
01831   void addFBits16Operands(MCInst &Inst, unsigned N) const {
01832     assert(N == 1 && "Invalid number of operands!");
01833     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01834     Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
01835   }
01836 
01837   void addFBits32Operands(MCInst &Inst, unsigned N) const {
01838     assert(N == 1 && "Invalid number of operands!");
01839     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01840     Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
01841   }
01842 
01843   void addFPImmOperands(MCInst &Inst, unsigned N) const {
01844     assert(N == 1 && "Invalid number of operands!");
01845     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01846     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
01847     Inst.addOperand(MCOperand::CreateImm(Val));
01848   }
01849 
01850   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
01851     assert(N == 1 && "Invalid number of operands!");
01852     // FIXME: We really want to scale the value here, but the LDRD/STRD
01853     // instruction don't encode operands that way yet.
01854     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01855     Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
01856   }
01857 
01858   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
01859     assert(N == 1 && "Invalid number of operands!");
01860     // The immediate is scaled by four in the encoding and is stored
01861     // in the MCInst as such. Lop off the low two bits here.
01862     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01863     Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
01864   }
01865 
01866   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
01867     assert(N == 1 && "Invalid number of operands!");
01868     // The immediate is scaled by four in the encoding and is stored
01869     // in the MCInst as such. Lop off the low two bits here.
01870     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01871     Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
01872   }
01873 
01874   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
01875     assert(N == 1 && "Invalid number of operands!");
01876     // The immediate is scaled by four in the encoding and is stored
01877     // in the MCInst as such. Lop off the low two bits here.
01878     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01879     Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
01880   }
01881 
01882   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
01883     assert(N == 1 && "Invalid number of operands!");
01884     // The constant encodes as the immediate-1, and we store in the instruction
01885     // the bits as encoded, so subtract off one here.
01886     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01887     Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
01888   }
01889 
01890   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
01891     assert(N == 1 && "Invalid number of operands!");
01892     // The constant encodes as the immediate-1, and we store in the instruction
01893     // the bits as encoded, so subtract off one here.
01894     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01895     Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
01896   }
01897 
01898   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
01899     assert(N == 1 && "Invalid number of operands!");
01900     // The constant encodes as the immediate, except for 32, which encodes as
01901     // zero.
01902     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01903     unsigned Imm = CE->getValue();
01904     Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
01905   }
01906 
01907   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
01908     assert(N == 1 && "Invalid number of operands!");
01909     // An ASR value of 32 encodes as 0, so that's how we want to add it to
01910     // the instruction as well.
01911     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01912     int Val = CE->getValue();
01913     Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
01914   }
01915 
01916   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
01917     assert(N == 1 && "Invalid number of operands!");
01918     // The operand is actually a t2_so_imm, but we have its bitwise
01919     // negation in the assembly source, so twiddle it here.
01920     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01921     Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
01922   }
01923 
01924   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
01925     assert(N == 1 && "Invalid number of operands!");
01926     // The operand is actually a t2_so_imm, but we have its
01927     // negation in the assembly source, so twiddle it here.
01928     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01929     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
01930   }
01931 
01932   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
01933     assert(N == 1 && "Invalid number of operands!");
01934     // The operand is actually an imm0_4095, but we have its
01935     // negation in the assembly source, so twiddle it here.
01936     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01937     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
01938   }
01939 
01940   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
01941     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
01942       Inst.addOperand(MCOperand::CreateImm(CE->getValue() >> 2));
01943       return;
01944     }
01945 
01946     const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
01947     assert(SR && "Unknown value type!");
01948     Inst.addOperand(MCOperand::CreateExpr(SR));
01949   }
01950 
01951   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
01952     assert(N == 1 && "Invalid number of operands!");
01953     if (isImm()) {
01954       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01955       if (CE) {
01956         Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
01957         return;
01958       }
01959 
01960       const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
01961       assert(SR && "Unknown value type!");
01962       Inst.addOperand(MCOperand::CreateExpr(SR));
01963       return;
01964     }
01965 
01966     assert(isMem()  && "Unknown value type!");
01967     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
01968     Inst.addOperand(MCOperand::CreateImm(Memory.OffsetImm->getValue()));
01969   }
01970 
01971   void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
01972     assert(N == 1 && "Invalid number of operands!");
01973     // The operand is actually a so_imm, but we have its bitwise
01974     // negation in the assembly source, so twiddle it here.
01975     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01976     Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
01977   }
01978 
01979   void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
01980     assert(N == 1 && "Invalid number of operands!");
01981     // The operand is actually a so_imm, but we have its
01982     // negation in the assembly source, so twiddle it here.
01983     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
01984     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
01985   }
01986 
01987   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
01988     assert(N == 1 && "Invalid number of operands!");
01989     Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
01990   }
01991 
01992   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
01993     assert(N == 1 && "Invalid number of operands!");
01994     Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt())));
01995   }
01996 
01997   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
01998     assert(N == 1 && "Invalid number of operands!");
01999     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02000   }
02001 
02002   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
02003     assert(N == 1 && "Invalid number of operands!");
02004     int32_t Imm = Memory.OffsetImm->getValue();
02005     Inst.addOperand(MCOperand::CreateImm(Imm));
02006   }
02007 
02008   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
02009     assert(N == 1 && "Invalid number of operands!");
02010     assert(isImm() && "Not an immediate!");
02011 
02012     // If we have an immediate that's not a constant, treat it as a label
02013     // reference needing a fixup. 
02014     if (!isa<MCConstantExpr>(getImm())) {
02015       Inst.addOperand(MCOperand::CreateExpr(getImm()));
02016       return;
02017     }
02018 
02019     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
02020     int Val = CE->getValue();
02021     Inst.addOperand(MCOperand::CreateImm(Val));
02022   }
02023 
02024   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
02025     assert(N == 2 && "Invalid number of operands!");
02026     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02027     Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
02028   }
02029 
02030   void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
02031     addAlignedMemoryOperands(Inst, N);
02032   }
02033 
02034   void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
02035     addAlignedMemoryOperands(Inst, N);
02036   }
02037 
02038   void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
02039     addAlignedMemoryOperands(Inst, N);
02040   }
02041 
02042   void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
02043     addAlignedMemoryOperands(Inst, N);
02044   }
02045 
02046   void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
02047     addAlignedMemoryOperands(Inst, N);
02048   }
02049 
02050   void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
02051     addAlignedMemoryOperands(Inst, N);
02052   }
02053 
02054   void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
02055     addAlignedMemoryOperands(Inst, N);
02056   }
02057 
02058   void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
02059     addAlignedMemoryOperands(Inst, N);
02060   }
02061 
02062   void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
02063     addAlignedMemoryOperands(Inst, N);
02064   }
02065 
02066   void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
02067     addAlignedMemoryOperands(Inst, N);
02068   }
02069 
02070   void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
02071     addAlignedMemoryOperands(Inst, N);
02072   }
02073 
02074   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
02075     assert(N == 3 && "Invalid number of operands!");
02076     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
02077     if (!Memory.OffsetRegNum) {
02078       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
02079       // Special case for #-0
02080       if (Val == INT32_MIN) Val = 0;
02081       if (Val < 0) Val = -Val;
02082       Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
02083     } else {
02084       // For register offset, we encode the shift type and negation flag
02085       // here.
02086       Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
02087                               Memory.ShiftImm, Memory.ShiftType);
02088     }
02089     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02090     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
02091     Inst.addOperand(MCOperand::CreateImm(Val));
02092   }
02093 
02094   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
02095     assert(N == 2 && "Invalid number of operands!");
02096     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
02097     assert(CE && "non-constant AM2OffsetImm operand!");
02098     int32_t Val = CE->getValue();
02099     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
02100     // Special case for #-0
02101     if (Val == INT32_MIN) Val = 0;
02102     if (Val < 0) Val = -Val;
02103     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
02104     Inst.addOperand(MCOperand::CreateReg(0));
02105     Inst.addOperand(MCOperand::CreateImm(Val));
02106   }
02107 
02108   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
02109     assert(N == 3 && "Invalid number of operands!");
02110     // If we have an immediate that's not a constant, treat it as a label
02111     // reference needing a fixup. If it is a constant, it's something else
02112     // and we reject it.
02113     if (isImm()) {
02114       Inst.addOperand(MCOperand::CreateExpr(getImm()));
02115       Inst.addOperand(MCOperand::CreateReg(0));
02116       Inst.addOperand(MCOperand::CreateImm(0));
02117       return;
02118     }
02119 
02120     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
02121     if (!Memory.OffsetRegNum) {
02122       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
02123       // Special case for #-0
02124       if (Val == INT32_MIN) Val = 0;
02125       if (Val < 0) Val = -Val;
02126       Val = ARM_AM::getAM3Opc(AddSub, Val);
02127     } else {
02128       // For register offset, we encode the shift type and negation flag
02129       // here.
02130       Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
02131     }
02132     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02133     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
02134     Inst.addOperand(MCOperand::CreateImm(Val));
02135   }
02136 
02137   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
02138     assert(N == 2 && "Invalid number of operands!");
02139     if (Kind == k_PostIndexRegister) {
02140       int32_t Val =
02141         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
02142       Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
02143       Inst.addOperand(MCOperand::CreateImm(Val));
02144       return;
02145     }
02146 
02147     // Constant offset.
02148     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
02149     int32_t Val = CE->getValue();
02150     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
02151     // Special case for #-0
02152     if (Val == INT32_MIN) Val = 0;
02153     if (Val < 0) Val = -Val;
02154     Val = ARM_AM::getAM3Opc(AddSub, Val);
02155     Inst.addOperand(MCOperand::CreateReg(0));
02156     Inst.addOperand(MCOperand::CreateImm(Val));
02157   }
02158 
02159   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
02160     assert(N == 2 && "Invalid number of operands!");
02161     // If we have an immediate that's not a constant, treat it as a label
02162     // reference needing a fixup. If it is a constant, it's something else
02163     // and we reject it.
02164     if (isImm()) {
02165       Inst.addOperand(MCOperand::CreateExpr(getImm()));
02166       Inst.addOperand(MCOperand::CreateImm(0));
02167       return;
02168     }
02169 
02170     // The lower two bits are always zero and as such are not encoded.
02171     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
02172     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
02173     // Special case for #-0
02174     if (Val == INT32_MIN) Val = 0;
02175     if (Val < 0) Val = -Val;
02176     Val = ARM_AM::getAM5Opc(AddSub, Val);
02177     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02178     Inst.addOperand(MCOperand::CreateImm(Val));
02179   }
02180 
02181   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
02182     assert(N == 2 && "Invalid number of operands!");
02183     // If we have an immediate that's not a constant, treat it as a label
02184     // reference needing a fixup. If it is a constant, it's something else
02185     // and we reject it.
02186     if (isImm()) {
02187       Inst.addOperand(MCOperand::CreateExpr(getImm()));
02188       Inst.addOperand(MCOperand::CreateImm(0));
02189       return;
02190     }
02191 
02192     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
02193     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02194     Inst.addOperand(MCOperand::CreateImm(Val));
02195   }
02196 
02197   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
02198     assert(N == 2 && "Invalid number of operands!");
02199     // The lower two bits are always zero and as such are not encoded.
02200     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
02201     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02202     Inst.addOperand(MCOperand::CreateImm(Val));
02203   }
02204 
02205   void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
02206     assert(N == 2 && "Invalid number of operands!");
02207     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
02208     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02209     Inst.addOperand(MCOperand::CreateImm(Val));
02210   }
02211 
02212   void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
02213     addMemImm8OffsetOperands(Inst, N);
02214   }
02215 
02216   void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
02217     addMemImm8OffsetOperands(Inst, N);
02218   }
02219 
02220   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
02221     assert(N == 2 && "Invalid number of operands!");
02222     // If this is an immediate, it's a label reference.
02223     if (isImm()) {
02224       addExpr(Inst, getImm());
02225       Inst.addOperand(MCOperand::CreateImm(0));
02226       return;
02227     }
02228 
02229     // Otherwise, it's a normal memory reg+offset.
02230     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
02231     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02232     Inst.addOperand(MCOperand::CreateImm(Val));
02233   }
02234 
02235   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
02236     assert(N == 2 && "Invalid number of operands!");
02237     // If this is an immediate, it's a label reference.
02238     if (isImm()) {
02239       addExpr(Inst, getImm());
02240       Inst.addOperand(MCOperand::CreateImm(0));
02241       return;
02242     }
02243 
02244     // Otherwise, it's a normal memory reg+offset.
02245     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
02246     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02247     Inst.addOperand(MCOperand::CreateImm(Val));
02248   }
02249 
02250   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
02251     assert(N == 2 && "Invalid number of operands!");
02252     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02253     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
02254   }
02255 
02256   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
02257     assert(N == 2 && "Invalid number of operands!");
02258     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02259     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
02260   }
02261 
02262   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
02263     assert(N == 3 && "Invalid number of operands!");
02264     unsigned Val =
02265       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
02266                         Memory.ShiftImm, Memory.ShiftType);
02267     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02268     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
02269     Inst.addOperand(MCOperand::CreateImm(Val));
02270   }
02271 
02272   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
02273     assert(N == 3 && "Invalid number of operands!");
02274     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02275     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
02276     Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
02277   }
02278 
02279   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
02280     assert(N == 2 && "Invalid number of operands!");
02281     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02282     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
02283   }
02284 
02285   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
02286     assert(N == 2 && "Invalid number of operands!");
02287     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
02288     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02289     Inst.addOperand(MCOperand::CreateImm(Val));
02290   }
02291 
02292   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
02293     assert(N == 2 && "Invalid number of operands!");
02294     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
02295     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02296     Inst.addOperand(MCOperand::CreateImm(Val));
02297   }
02298 
02299   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
02300     assert(N == 2 && "Invalid number of operands!");
02301     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
02302     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02303     Inst.addOperand(MCOperand::CreateImm(Val));
02304   }
02305 
02306   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
02307     assert(N == 2 && "Invalid number of operands!");
02308     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
02309     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
02310     Inst.addOperand(MCOperand::CreateImm(Val));
02311   }
02312 
02313   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
02314     assert(N == 1 && "Invalid number of operands!");
02315     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
02316     assert(CE && "non-constant post-idx-imm8 operand!");
02317     int Imm = CE->getValue();
02318     bool isAdd = Imm >= 0;
02319     if (Imm == INT32_MIN) Imm = 0;
02320     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
02321     Inst.addOperand(MCOperand::CreateImm(Imm));
02322   }
02323 
02324   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
02325     assert(N == 1 && "Invalid number of operands!");
02326     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
02327     assert(CE && "non-constant post-idx-imm8s4 operand!");
02328     int Imm = CE->getValue();
02329     bool isAdd = Imm >= 0;
02330     if (Imm == INT32_MIN) Imm = 0;
02331     // Immediate is scaled by 4.
02332     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
02333     Inst.addOperand(MCOperand::CreateImm(Imm));
02334   }
02335 
02336   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
02337     assert(N == 2 && "Invalid number of operands!");
02338     Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
02339     Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
02340   }
02341 
02342   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
02343     assert(N == 2 && "Invalid number of operands!");
02344     Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
02345     // The sign, shift type, and shift amount are encoded in a single operand
02346     // using the AM2 encoding helpers.
02347     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
02348     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
02349                                      PostIdxReg.ShiftTy);
02350     Inst.addOperand(MCOperand::CreateImm(Imm));
02351   }
02352 
02353   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
02354     assert(N == 1 && "Invalid number of operands!");
02355     Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
02356   }
02357 
02358   void addBankedRegOperands(MCInst &Inst, unsigned N) const {
02359     assert(N == 1 && "Invalid number of operands!");
02360     Inst.addOperand(MCOperand::CreateImm(unsigned(getBankedReg())));
02361   }
02362 
02363   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
02364     assert(N == 1 && "Invalid number of operands!");
02365     Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
02366   }
02367 
02368   void addVecListOperands(MCInst &Inst, unsigned N) const {
02369     assert(N == 1 && "Invalid number of operands!");
02370     Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
02371   }
02372 
02373   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
02374     assert(N == 2 && "Invalid number of operands!");
02375     Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
02376     Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
02377   }
02378 
02379   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
02380     assert(N == 1 && "Invalid number of operands!");
02381     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
02382   }
02383 
02384   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
02385     assert(N == 1 && "Invalid number of operands!");
02386     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
02387   }
02388 
02389   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
02390     assert(N == 1 && "Invalid number of operands!");
02391     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
02392   }
02393 
02394   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
02395     assert(N == 1 && "Invalid number of operands!");
02396     // The immediate encodes the type of constant as well as the value.
02397     // Mask in that this is an i8 splat.
02398     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
02399     Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
02400   }
02401 
02402   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
02403     assert(N == 1 && "Invalid number of operands!");
02404     // The immediate encodes the type of constant as well as the value.
02405     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
02406     unsigned Value = CE->getValue();
02407     if (Value >= 256)
02408       Value = (Value >> 8) | 0xa00;
02409     else
02410       Value |= 0x800;
02411     Inst.addOperand(MCOperand::CreateImm(Value));
02412   }
02413 
02414   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
02415     assert(N == 1 && "Invalid number of operands!");
02416     // The immediate encodes the type of constant as well as the value.
02417     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
02418     unsigned Value = CE->getValue();
02419     if (Value >= 256 && Value <= 0xff00)
02420       Value = (Value >> 8) | 0x200;
02421     else if (Value > 0xffff && Value <= 0xff0000)
02422       Value = (Value >> 16) | 0x400;
02423     else if (Value > 0xffffff)
02424       Value = (Value >> 24) | 0x600;
02425     Inst.addOperand(MCOperand::CreateImm(Value));
02426   }
02427 
02428   void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const {
02429     assert(N == 1 && "Invalid number of operands!");
02430     // The immediate encodes the type of constant as well as the value.
02431     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
02432     unsigned Value = CE->getValue();
02433     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
02434             Inst.getOpcode() == ARM::VMOVv16i8) &&
02435            "All vmvn instructions that wants to replicate non-zero byte "
02436            "always must be replaced with VMOVv8i8 or VMOVv16i8.");
02437     unsigned B = ((~Value) & 0xff);
02438     B |= 0xe00; // cmode = 0b1110
02439     Inst.addOperand(MCOperand::CreateImm(B));
02440   }
02441   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
02442     assert(N == 1 && "Invalid number of operands!");
02443     // The immediate encodes the type of constant as well as the value.
02444     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
02445     unsigned Value = CE->getValue();
02446     if (Value >= 256 && Value <= 0xffff)
02447       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
02448     else if (Value > 0xffff && Value <= 0xffffff)
02449       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
02450     else if (Value > 0xffffff)
02451       Value = (Value >> 24) | 0x600;
02452     Inst.addOperand(MCOperand::CreateImm(Value));
02453   }
02454 
02455   void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const {
02456     assert(N == 1 && "Invalid number of operands!");
02457     // The immediate encodes the type of constant as well as the value.
02458     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
02459     unsigned Value = CE->getValue();
02460     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
02461             Inst.getOpcode() == ARM::VMOVv16i8) &&
02462            "All instructions that wants to replicate non-zero byte "
02463            "always must be replaced with VMOVv8i8 or VMOVv16i8.");
02464     unsigned B = Value & 0xff;
02465     B |= 0xe00; // cmode = 0b1110
02466     Inst.addOperand(MCOperand::CreateImm(B));
02467   }
02468   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
02469     assert(N == 1 && "Invalid number of operands!");
02470     // The immediate encodes the type of constant as well as the value.
02471     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
02472     unsigned Value = ~CE->getValue();
02473     if (Value >= 256 && Value <= 0xffff)
02474       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
02475     else if (Value > 0xffff && Value <= 0xffffff)
02476       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
02477     else if (Value > 0xffffff)
02478       Value = (Value >> 24) | 0x600;
02479     Inst.addOperand(MCOperand::CreateImm(Value));
02480   }
02481 
02482   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
02483     assert(N == 1 && "Invalid number of operands!");
02484     // The immediate encodes the type of constant as well as the value.
02485     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
02486     uint64_t Value = CE->getValue();
02487     unsigned Imm = 0;
02488     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
02489       Imm |= (Value & 1) << i;
02490     }
02491     Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
02492   }
02493 
02494   void print(raw_ostream &OS) const override;
02495 
02496   static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
02497     auto Op = make_unique<ARMOperand>(k_ITCondMask);
02498     Op->ITMask.Mask = Mask;
02499     Op->StartLoc = S;
02500     Op->EndLoc = S;
02501     return Op;
02502   }
02503 
02504   static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
02505                                                     SMLoc S) {
02506     auto Op = make_unique<ARMOperand>(k_CondCode);
02507     Op->CC.Val = CC;
02508     Op->StartLoc = S;
02509     Op->EndLoc = S;
02510     return Op;
02511   }
02512 
02513   static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
02514     auto Op = make_unique<ARMOperand>(k_CoprocNum);
02515     Op->Cop.Val = CopVal;
02516     Op->StartLoc = S;
02517     Op->EndLoc = S;
02518     return Op;
02519   }
02520 
02521   static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
02522     auto Op = make_unique<ARMOperand>(k_CoprocReg);
02523     Op->Cop.Val = CopVal;
02524     Op->StartLoc = S;
02525     Op->EndLoc = S;
02526     return Op;
02527   }
02528 
02529   static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
02530                                                         SMLoc E) {
02531     auto Op = make_unique<ARMOperand>(k_CoprocOption);
02532     Op->Cop.Val = Val;
02533     Op->StartLoc = S;
02534     Op->EndLoc = E;
02535     return Op;
02536   }
02537 
02538   static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
02539     auto Op = make_unique<ARMOperand>(k_CCOut);
02540     Op->Reg.RegNum = RegNum;
02541     Op->StartLoc = S;
02542     Op->EndLoc = S;
02543     return Op;
02544   }
02545 
02546   static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
02547     auto Op = make_unique<ARMOperand>(k_Token);
02548     Op->Tok.Data = Str.data();
02549     Op->Tok.Length = Str.size();
02550     Op->StartLoc = S;
02551     Op->EndLoc = S;
02552     return Op;
02553   }
02554 
02555   static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
02556                                                SMLoc E) {
02557     auto Op = make_unique<ARMOperand>(k_Register);
02558     Op->Reg.RegNum = RegNum;
02559     Op->StartLoc = S;
02560     Op->EndLoc = E;
02561     return Op;
02562   }
02563 
02564   static std::unique_ptr<ARMOperand>
02565   CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
02566                         unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
02567                         SMLoc E) {
02568     auto Op = make_unique<ARMOperand>(k_ShiftedRegister);
02569     Op->RegShiftedReg.ShiftTy = ShTy;
02570     Op->RegShiftedReg.SrcReg = SrcReg;
02571     Op->RegShiftedReg.ShiftReg = ShiftReg;
02572     Op->RegShiftedReg.ShiftImm = ShiftImm;
02573     Op->StartLoc = S;
02574     Op->EndLoc = E;
02575     return Op;
02576   }
02577 
02578   static std::unique_ptr<ARMOperand>
02579   CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
02580                          unsigned ShiftImm, SMLoc S, SMLoc E) {
02581     auto Op = make_unique<ARMOperand>(k_ShiftedImmediate);
02582     Op->RegShiftedImm.ShiftTy = ShTy;
02583     Op->RegShiftedImm.SrcReg = SrcReg;
02584     Op->RegShiftedImm.ShiftImm = ShiftImm;
02585     Op->StartLoc = S;
02586     Op->EndLoc = E;
02587     return Op;
02588   }
02589 
02590   static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
02591                                                       SMLoc S, SMLoc E) {
02592     auto Op = make_unique<ARMOperand>(k_ShifterImmediate);
02593     Op->ShifterImm.isASR = isASR;
02594     Op->ShifterImm.Imm = Imm;
02595     Op->StartLoc = S;
02596     Op->EndLoc = E;
02597     return Op;
02598   }
02599 
02600   static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
02601                                                   SMLoc E) {
02602     auto Op = make_unique<ARMOperand>(k_RotateImmediate);
02603     Op->RotImm.Imm = Imm;
02604     Op->StartLoc = S;
02605     Op->EndLoc = E;
02606     return Op;
02607   }
02608 
02609   static std::unique_ptr<ARMOperand>
02610   CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
02611     auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
02612     Op->Bitfield.LSB = LSB;
02613     Op->Bitfield.Width = Width;
02614     Op->StartLoc = S;
02615     Op->EndLoc = E;
02616     return Op;
02617   }
02618 
02619   static std::unique_ptr<ARMOperand>
02620   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
02621                 SMLoc StartLoc, SMLoc EndLoc) {
02622     assert (Regs.size() > 0 && "RegList contains no registers?");
02623     KindTy Kind = k_RegisterList;
02624 
02625     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
02626       Kind = k_DPRRegisterList;
02627     else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
02628              contains(Regs.front().second))
02629       Kind = k_SPRRegisterList;
02630 
02631     // Sort based on the register encoding values.
02632     array_pod_sort(Regs.begin(), Regs.end());
02633 
02634     auto Op = make_unique<ARMOperand>(Kind);
02635     for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator
02636            I = Regs.begin(), E = Regs.end(); I != E; ++I)
02637       Op->Registers.push_back(I->second);
02638     Op->StartLoc = StartLoc;
02639     Op->EndLoc = EndLoc;
02640     return Op;
02641   }
02642 
02643   static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
02644                                                       unsigned Count,
02645                                                       bool isDoubleSpaced,
02646                                                       SMLoc S, SMLoc E) {
02647     auto Op = make_unique<ARMOperand>(k_VectorList);
02648     Op->VectorList.RegNum = RegNum;
02649     Op->VectorList.Count = Count;
02650     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
02651     Op->StartLoc = S;
02652     Op->EndLoc = E;
02653     return Op;
02654   }
02655 
02656   static std::unique_ptr<ARMOperand>
02657   CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
02658                            SMLoc S, SMLoc E) {
02659     auto Op = make_unique<ARMOperand>(k_VectorListAllLanes);
02660     Op->VectorList.RegNum = RegNum;
02661     Op->VectorList.Count = Count;
02662     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
02663     Op->StartLoc = S;
02664     Op->EndLoc = E;
02665     return Op;
02666   }
02667 
02668   static std::unique_ptr<ARMOperand>
02669   CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
02670                           bool isDoubleSpaced, SMLoc S, SMLoc E) {
02671     auto Op = make_unique<ARMOperand>(k_VectorListIndexed);
02672     Op->VectorList.RegNum = RegNum;
02673     Op->VectorList.Count = Count;
02674     Op->VectorList.LaneIndex = Index;
02675     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
02676     Op->StartLoc = S;
02677     Op->EndLoc = E;
02678     return Op;
02679   }
02680 
02681   static std::unique_ptr<ARMOperand>
02682   CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
02683     auto Op = make_unique<ARMOperand>(k_VectorIndex);
02684     Op->VectorIndex.Val = Idx;
02685     Op->StartLoc = S;
02686     Op->EndLoc = E;
02687     return Op;
02688   }
02689 
02690   static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
02691                                                SMLoc E) {
02692     auto Op = make_unique<ARMOperand>(k_Immediate);
02693     Op->Imm.Val = Val;
02694     Op->StartLoc = S;
02695     Op->EndLoc = E;
02696     return Op;
02697   }
02698 
02699   static std::unique_ptr<ARMOperand>
02700   CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
02701             unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
02702             unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
02703             SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
02704     auto Op = make_unique<ARMOperand>(k_Memory);
02705     Op->Memory.BaseRegNum = BaseRegNum;
02706     Op->Memory.OffsetImm = OffsetImm;
02707     Op->Memory.OffsetRegNum = OffsetRegNum;
02708     Op->Memory.ShiftType = ShiftType;
02709     Op->Memory.ShiftImm = ShiftImm;
02710     Op->Memory.Alignment = Alignment;
02711     Op->Memory.isNegative = isNegative;
02712     Op->StartLoc = S;
02713     Op->EndLoc = E;
02714     Op->AlignmentLoc = AlignmentLoc;
02715     return Op;
02716   }
02717 
02718   static std::unique_ptr<ARMOperand>
02719   CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
02720                    unsigned ShiftImm, SMLoc S, SMLoc E) {
02721     auto Op = make_unique<ARMOperand>(k_PostIndexRegister);
02722     Op->PostIdxReg.RegNum = RegNum;
02723     Op->PostIdxReg.isAdd = isAdd;
02724     Op->PostIdxReg.ShiftTy = ShiftTy;
02725     Op->PostIdxReg.ShiftImm = ShiftImm;
02726     Op->StartLoc = S;
02727     Op->EndLoc = E;
02728     return Op;
02729   }
02730 
02731   static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
02732                                                          SMLoc S) {
02733     auto Op = make_unique<ARMOperand>(k_MemBarrierOpt);
02734     Op->MBOpt.Val = Opt;
02735     Op->StartLoc = S;
02736     Op->EndLoc = S;
02737     return Op;
02738   }
02739 
02740   static std::unique_ptr<ARMOperand>
02741   CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
02742     auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt);
02743     Op->ISBOpt.Val = Opt;
02744     Op->StartLoc = S;
02745     Op->EndLoc = S;
02746     return Op;
02747   }
02748 
02749   static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
02750                                                       SMLoc S) {
02751     auto Op = make_unique<ARMOperand>(k_ProcIFlags);
02752     Op->IFlags.Val = IFlags;
02753     Op->StartLoc = S;
02754     Op->EndLoc = S;
02755     return Op;
02756   }
02757 
02758   static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
02759     auto Op = make_unique<ARMOperand>(k_MSRMask);
02760     Op->MMask.Val = MMask;
02761     Op->StartLoc = S;
02762     Op->EndLoc = S;
02763     return Op;
02764   }
02765 
02766   static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
02767     auto Op = make_unique<ARMOperand>(k_BankedReg);
02768     Op->BankedReg.Val = Reg;
02769     Op->StartLoc = S;
02770     Op->EndLoc = S;
02771     return Op;
02772   }
02773 };
02774 
02775 } // end anonymous namespace.
02776 
02777 void ARMOperand::print(raw_ostream &OS) const {
02778   switch (Kind) {
02779   case k_CondCode:
02780     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
02781     break;
02782   case k_CCOut:
02783     OS << "<ccout " << getReg() << ">";
02784     break;
02785   case k_ITCondMask: {
02786     static const char *const MaskStr[] = {
02787       "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
02788       "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
02789     };
02790     assert((ITMask.Mask & 0xf) == ITMask.Mask);
02791     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
02792     break;
02793   }
02794   case k_CoprocNum:
02795     OS << "<coprocessor number: " << getCoproc() << ">";
02796     break;
02797   case k_CoprocReg:
02798     OS << "<coprocessor register: " << getCoproc() << ">";
02799     break;
02800   case k_CoprocOption:
02801     OS << "<coprocessor option: " << CoprocOption.Val << ">";
02802     break;
02803   case k_MSRMask:
02804     OS << "<mask: " << getMSRMask() << ">";
02805     break;
02806   case k_BankedReg:
02807     OS << "<banked reg: " << getBankedReg() << ">";
02808     break;
02809   case k_Immediate:
02810     getImm()->print(OS);
02811     break;
02812   case k_MemBarrierOpt:
02813     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
02814     break;
02815   case k_InstSyncBarrierOpt:
02816     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
02817     break;
02818   case k_Memory:
02819     OS << "<memory "
02820        << " base:" << Memory.BaseRegNum;
02821     OS << ">";
02822     break;
02823   case k_PostIndexRegister:
02824     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
02825        << PostIdxReg.RegNum;
02826     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
02827       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
02828          << PostIdxReg.ShiftImm;
02829     OS << ">";
02830     break;
02831   case k_ProcIFlags: {
02832     OS << "<ARM_PROC::";
02833     unsigned IFlags = getProcIFlags();
02834     for (int i=2; i >= 0; --i)
02835       if (IFlags & (1 << i))
02836         OS << ARM_PROC::IFlagsToString(1 << i);
02837     OS << ">";
02838     break;
02839   }
02840   case k_Register:
02841     OS << "<register " << getReg() << ">";
02842     break;
02843   case k_ShifterImmediate:
02844     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
02845        << " #" << ShifterImm.Imm << ">";
02846     break;
02847   case k_ShiftedRegister:
02848     OS << "<so_reg_reg "
02849        << RegShiftedReg.SrcReg << " "
02850        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
02851        << " " << RegShiftedReg.ShiftReg << ">";
02852     break;
02853   case k_ShiftedImmediate:
02854     OS << "<so_reg_imm "
02855        << RegShiftedImm.SrcReg << " "
02856        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
02857        << " #" << RegShiftedImm.ShiftImm << ">";
02858     break;
02859   case k_RotateImmediate:
02860     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
02861     break;
02862   case k_BitfieldDescriptor:
02863     OS << "<bitfield " << "lsb: " << Bitfield.LSB
02864        << ", width: " << Bitfield.Width << ">";
02865     break;
02866   case k_RegisterList:
02867   case k_DPRRegisterList:
02868   case k_SPRRegisterList: {
02869     OS << "<register_list ";
02870 
02871     const SmallVectorImpl<unsigned> &RegList = getRegList();
02872     for (SmallVectorImpl<unsigned>::const_iterator
02873            I = RegList.begin(), E = RegList.end(); I != E; ) {
02874       OS << *I;
02875       if (++I < E) OS << ", ";
02876     }
02877 
02878     OS << ">";
02879     break;
02880   }
02881   case k_VectorList:
02882     OS << "<vector_list " << VectorList.Count << " * "
02883        << VectorList.RegNum << ">";
02884     break;
02885   case k_VectorListAllLanes:
02886     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
02887        << VectorList.RegNum << ">";
02888     break;
02889   case k_VectorListIndexed:
02890     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
02891        << VectorList.Count << " * " << VectorList.RegNum << ">";
02892     break;
02893   case k_Token:
02894     OS << "'" << getToken() << "'";
02895     break;
02896   case k_VectorIndex:
02897     OS << "<vectorindex " << getVectorIndex() << ">";
02898     break;
02899   }
02900 }
02901 
02902 /// @name Auto-generated Match Functions
02903 /// {
02904 
02905 static unsigned MatchRegisterName(StringRef Name);
02906 
02907 /// }
02908 
02909 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
02910                                  SMLoc &StartLoc, SMLoc &EndLoc) {
02911   StartLoc = Parser.getTok().getLoc();
02912   EndLoc = Parser.getTok().getEndLoc();
02913   RegNo = tryParseRegister();
02914 
02915   return (RegNo == (unsigned)-1);
02916 }
02917 
02918 /// Try to parse a register name.  The token must be an Identifier when called,
02919 /// and if it is a register name the token is eaten and the register number is
02920 /// returned.  Otherwise return -1.
02921 ///
02922 int ARMAsmParser::tryParseRegister() {
02923   const AsmToken &Tok = Parser.getTok();
02924   if (Tok.isNot(AsmToken::Identifier)) return -1;
02925 
02926   std::string lowerCase = Tok.getString().lower();
02927   unsigned RegNum = MatchRegisterName(lowerCase);
02928   if (!RegNum) {
02929     RegNum = StringSwitch<unsigned>(lowerCase)
02930       .Case("r13", ARM::SP)
02931       .Case("r14", ARM::LR)
02932       .Case("r15", ARM::PC)
02933       .Case("ip", ARM::R12)
02934       // Additional register name aliases for 'gas' compatibility.
02935       .Case("a1", ARM::R0)
02936       .Case("a2", ARM::R1)
02937       .Case("a3", ARM::R2)
02938       .Case("a4", ARM::R3)
02939       .Case("v1", ARM::R4)
02940       .Case("v2", ARM::R5)
02941       .Case("v3", ARM::R6)
02942       .Case("v4", ARM::R7)
02943       .Case("v5", ARM::R8)
02944       .Case("v6", ARM::R9)
02945       .Case("v7", ARM::R10)
02946       .Case("v8", ARM::R11)
02947       .Case("sb", ARM::R9)
02948       .Case("sl", ARM::R10)
02949       .Case("fp", ARM::R11)
02950       .Default(0);
02951   }
02952   if (!RegNum) {
02953     // Check for aliases registered via .req. Canonicalize to lower case.
02954     // That's more consistent since register names are case insensitive, and
02955     // it's how the original entry was passed in from MC/MCParser/AsmParser.
02956     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
02957     // If no match, return failure.
02958     if (Entry == RegisterReqs.end())
02959       return -1;
02960     Parser.Lex(); // Eat identifier token.
02961     return Entry->getValue();
02962   }
02963 
02964   Parser.Lex(); // Eat identifier token.
02965 
02966   return RegNum;
02967 }
02968 
02969 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
02970 // If a recoverable error occurs, return 1. If an irrecoverable error
02971 // occurs, return -1. An irrecoverable error is one where tokens have been
02972 // consumed in the process of trying to parse the shifter (i.e., when it is
02973 // indeed a shifter operand, but malformed).
02974 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
02975   SMLoc S = Parser.getTok().getLoc();
02976   const AsmToken &Tok = Parser.getTok();
02977   if (Tok.isNot(AsmToken::Identifier))
02978     return -1; 
02979 
02980   std::string lowerCase = Tok.getString().lower();
02981   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
02982       .Case("asl", ARM_AM::lsl)
02983       .Case("lsl", ARM_AM::lsl)
02984       .Case("lsr", ARM_AM::lsr)
02985       .Case("asr", ARM_AM::asr)
02986       .Case("ror", ARM_AM::ror)
02987       .Case("rrx", ARM_AM::rrx)
02988       .Default(ARM_AM::no_shift);
02989 
02990   if (ShiftTy == ARM_AM::no_shift)
02991     return 1;
02992 
02993   Parser.Lex(); // Eat the operator.
02994 
02995   // The source register for the shift has already been added to the
02996   // operand list, so we need to pop it off and combine it into the shifted
02997   // register operand instead.
02998   std::unique_ptr<ARMOperand> PrevOp(
02999       (ARMOperand *)Operands.pop_back_val().release());
03000   if (!PrevOp->isReg())
03001     return Error(PrevOp->getStartLoc(), "shift must be of a register");
03002   int SrcReg = PrevOp->getReg();
03003 
03004   SMLoc EndLoc;
03005   int64_t Imm = 0;
03006   int ShiftReg = 0;
03007   if (ShiftTy == ARM_AM::rrx) {
03008     // RRX Doesn't have an explicit shift amount. The encoder expects
03009     // the shift register to be the same as the source register. Seems odd,
03010     // but OK.
03011     ShiftReg = SrcReg;
03012   } else {
03013     // Figure out if this is shifted by a constant or a register (for non-RRX).
03014     if (Parser.getTok().is(AsmToken::Hash) ||
03015         Parser.getTok().is(AsmToken::Dollar)) {
03016       Parser.Lex(); // Eat hash.
03017       SMLoc ImmLoc = Parser.getTok().getLoc();
03018       const MCExpr *ShiftExpr = nullptr;
03019       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
03020         Error(ImmLoc, "invalid immediate shift value");
03021         return -1;
03022       }
03023       // The expression must be evaluatable as an immediate.
03024       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
03025       if (!CE) {
03026         Error(ImmLoc, "invalid immediate shift value");
03027         return -1;
03028       }
03029       // Range check the immediate.
03030       // lsl, ror: 0 <= imm <= 31
03031       // lsr, asr: 0 <= imm <= 32
03032       Imm = CE->getValue();
03033       if (Imm < 0 ||
03034           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
03035           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
03036         Error(ImmLoc, "immediate shift value out of range");
03037         return -1;
03038       }
03039       // shift by zero is a nop. Always send it through as lsl.
03040       // ('as' compatibility)
03041       if (Imm == 0)
03042         ShiftTy = ARM_AM::lsl;
03043     } else if (Parser.getTok().is(AsmToken::Identifier)) {
03044       SMLoc L = Parser.getTok().getLoc();
03045       EndLoc = Parser.getTok().getEndLoc();
03046       ShiftReg = tryParseRegister();
03047       if (ShiftReg == -1) {
03048         Error(L, "expected immediate or register in shift operand");
03049         return -1;
03050       }
03051     } else {
03052       Error(Parser.getTok().getLoc(),
03053             "expected immediate or register in shift operand");
03054       return -1;
03055     }
03056   }
03057 
03058   if (ShiftReg && ShiftTy != ARM_AM::rrx)
03059     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
03060                                                          ShiftReg, Imm,
03061                                                          S, EndLoc));
03062   else
03063     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
03064                                                           S, EndLoc));
03065 
03066   return 0;
03067 }
03068 
03069 
03070 /// Try to parse a register name.  The token must be an Identifier when called.
03071 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
03072 /// if there is a "writeback". 'true' if it's not a register.
03073 ///
03074 /// TODO this is likely to change to allow different register types and or to
03075 /// parse for a specific register type.
03076 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
03077   const AsmToken &RegTok = Parser.getTok();
03078   int RegNo = tryParseRegister();
03079   if (RegNo == -1)
03080     return true;
03081 
03082   Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
03083                                            RegTok.getEndLoc()));
03084 
03085   const AsmToken &ExclaimTok = Parser.getTok();
03086   if (ExclaimTok.is(AsmToken::Exclaim)) {
03087     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
03088                                                ExclaimTok.getLoc()));
03089     Parser.Lex(); // Eat exclaim token
03090     return false;
03091   }
03092 
03093   // Also check for an index operand. This is only legal for vector registers,
03094   // but that'll get caught OK in operand matching, so we don't need to
03095   // explicitly filter everything else out here.
03096   if (Parser.getTok().is(AsmToken::LBrac)) {
03097     SMLoc SIdx = Parser.getTok().getLoc();
03098     Parser.Lex(); // Eat left bracket token.
03099 
03100     const MCExpr *ImmVal;
03101     if (getParser().parseExpression(ImmVal))
03102       return true;
03103     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
03104     if (!MCE)
03105       return TokError("immediate value expected for vector index");
03106 
03107     if (Parser.getTok().isNot(AsmToken::RBrac))
03108       return Error(Parser.getTok().getLoc(), "']' expected");
03109 
03110     SMLoc E = Parser.getTok().getEndLoc();
03111     Parser.Lex(); // Eat right bracket token.
03112 
03113     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
03114                                                      SIdx, E,
03115                                                      getContext()));
03116   }
03117 
03118   return false;
03119 }
03120 
03121 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
03122 /// instruction with a symbolic operand name.
03123 /// We accept "crN" syntax for GAS compatibility.
03124 /// <operand-name> ::= <prefix><number>
03125 /// If CoprocOp is 'c', then:
03126 ///   <prefix> ::= c | cr
03127 /// If CoprocOp is 'p', then :
03128 ///   <prefix> ::= p
03129 /// <number> ::= integer in range [0, 15]
03130 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
03131   // Use the same layout as the tablegen'erated register name matcher. Ugly,
03132   // but efficient.
03133   if (Name.size() < 2 || Name[0] != CoprocOp)
03134     return -1;
03135   Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
03136 
03137   switch (Name.size()) {
03138   default: return -1;
03139   case 1:
03140     switch (Name[0]) {
03141     default:  return -1;
03142     case '0': return 0;
03143     case '1': return 1;
03144     case '2': return 2;
03145     case '3': return 3;
03146     case '4': return 4;
03147     case '5': return 5;
03148     case '6': return 6;
03149     case '7': return 7;
03150     case '8': return 8;
03151     case '9': return 9;
03152     }
03153   case 2:
03154     if (Name[0] != '1')
03155       return -1;
03156     switch (Name[1]) {
03157     default:  return -1;
03158     // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
03159     // However, old cores (v5/v6) did use them in that way.
03160     case '0': return 10;
03161     case '1': return 11;
03162     case '2': return 12;
03163     case '3': return 13;
03164     case '4': return 14;
03165     case '5': return 15;
03166     }
03167   }
03168 }
03169 
03170 /// parseITCondCode - Try to parse a condition code for an IT instruction.
03171 ARMAsmParser::OperandMatchResultTy
03172 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
03173   SMLoc S = Parser.getTok().getLoc();
03174   const AsmToken &Tok = Parser.getTok();
03175   if (!Tok.is(AsmToken::Identifier))
03176     return MatchOperand_NoMatch;
03177   unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
03178     .Case("eq", ARMCC::EQ)
03179     .Case("ne", ARMCC::NE)
03180     .Case("hs", ARMCC::HS)
03181     .Case("cs", ARMCC::HS)
03182     .Case("lo", ARMCC::LO)
03183     .Case("cc", ARMCC::LO)
03184     .Case("mi", ARMCC::MI)
03185     .Case("pl", ARMCC::PL)
03186     .Case("vs", ARMCC::VS)
03187     .Case("vc", ARMCC::VC)
03188     .Case("hi", ARMCC::HI)
03189     .Case("ls", ARMCC::LS)
03190     .Case("ge", ARMCC::GE)
03191     .Case("lt", ARMCC::LT)
03192     .Case("gt", ARMCC::GT)
03193     .Case("le", ARMCC::LE)
03194     .Case("al", ARMCC::AL)
03195     .Default(~0U);
03196   if (CC == ~0U)
03197     return MatchOperand_NoMatch;
03198   Parser.Lex(); // Eat the token.
03199 
03200   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
03201 
03202   return MatchOperand_Success;
03203 }
03204 
03205 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
03206 /// token must be an Identifier when called, and if it is a coprocessor
03207 /// number, the token is eaten and the operand is added to the operand list.
03208 ARMAsmParser::OperandMatchResultTy
03209 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
03210   SMLoc S = Parser.getTok().getLoc();
03211   const AsmToken &Tok = Parser.getTok();
03212   if (Tok.isNot(AsmToken::Identifier))
03213     return MatchOperand_NoMatch;
03214 
03215   int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
03216   if (Num == -1)
03217     return MatchOperand_NoMatch;
03218   // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions
03219   if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11))
03220     return MatchOperand_NoMatch;
03221 
03222   Parser.Lex(); // Eat identifier token.
03223   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
03224   return MatchOperand_Success;
03225 }
03226 
03227 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
03228 /// token must be an Identifier when called, and if it is a coprocessor
03229 /// number, the token is eaten and the operand is added to the operand list.
03230 ARMAsmParser::OperandMatchResultTy
03231 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
03232   SMLoc S = Parser.getTok().getLoc();
03233   const AsmToken &Tok = Parser.getTok();
03234   if (Tok.isNot(AsmToken::Identifier))
03235     return MatchOperand_NoMatch;
03236 
03237   int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
03238   if (Reg == -1)
03239     return MatchOperand_NoMatch;
03240 
03241   Parser.Lex(); // Eat identifier token.
03242   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
03243   return MatchOperand_Success;
03244 }
03245 
03246 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
03247 /// coproc_option : '{' imm0_255 '}'
03248 ARMAsmParser::OperandMatchResultTy
03249 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
03250   SMLoc S = Parser.getTok().getLoc();
03251 
03252   // If this isn't a '{', this isn't a coprocessor immediate operand.
03253   if (Parser.getTok().isNot(AsmToken::LCurly))
03254     return MatchOperand_NoMatch;
03255   Parser.Lex(); // Eat the '{'
03256 
03257   const MCExpr *Expr;
03258   SMLoc Loc = Parser.getTok().getLoc();
03259   if (getParser().parseExpression(Expr)) {
03260     Error(Loc, "illegal expression");
03261     return MatchOperand_ParseFail;
03262   }
03263   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
03264   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
03265     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
03266     return MatchOperand_ParseFail;
03267   }
03268   int Val = CE->getValue();
03269 
03270   // Check for and consume the closing '}'
03271   if (Parser.getTok().isNot(AsmToken::RCurly))
03272     return MatchOperand_ParseFail;
03273   SMLoc E = Parser.getTok().getEndLoc();
03274   Parser.Lex(); // Eat the '}'
03275 
03276   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
03277   return MatchOperand_Success;
03278 }
03279 
03280 // For register list parsing, we need to map from raw GPR register numbering
03281 // to the enumeration values. The enumeration values aren't sorted by
03282 // register number due to our using "sp", "lr" and "pc" as canonical names.
03283 static unsigned getNextRegister(unsigned Reg) {
03284   // If this is a GPR, we need to do it manually, otherwise we can rely
03285   // on the sort ordering of the enumeration since the other reg-classes
03286   // are sane.
03287   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
03288     return Reg + 1;
03289   switch(Reg) {
03290   default: llvm_unreachable("Invalid GPR number!");
03291   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
03292   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
03293   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
03294   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
03295   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
03296   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
03297   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
03298   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
03299   }
03300 }
03301 
03302 // Return the low-subreg of a given Q register.
03303 static unsigned getDRegFromQReg(unsigned QReg) {
03304   switch (QReg) {
03305   default: llvm_unreachable("expected a Q register!");
03306   case ARM::Q0:  return ARM::D0;
03307   case ARM::Q1:  return ARM::D2;
03308   case ARM::Q2:  return ARM::D4;
03309   case ARM::Q3:  return ARM::D6;
03310   case ARM::Q4:  return ARM::D8;
03311   case ARM::Q5:  return ARM::D10;
03312   case ARM::Q6:  return ARM::D12;
03313   case ARM::Q7:  return ARM::D14;
03314   case ARM::Q8:  return ARM::D16;
03315   case ARM::Q9:  return ARM::D18;
03316   case ARM::Q10: return ARM::D20;
03317   case ARM::Q11: return ARM::D22;
03318   case ARM::Q12: return ARM::D24;
03319   case ARM::Q13: return ARM::D26;
03320   case ARM::Q14: return ARM::D28;
03321   case ARM::Q15: return ARM::D30;
03322   }
03323 }
03324 
03325 /// Parse a register list.
03326 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
03327   assert(Parser.getTok().is(AsmToken::LCurly) &&
03328          "Token is not a Left Curly Brace");
03329   SMLoc S = Parser.getTok().getLoc();
03330   Parser.Lex(); // Eat '{' token.
03331   SMLoc RegLoc = Parser.getTok().getLoc();
03332 
03333   // Check the first register in the list to see what register class
03334   // this is a list of.
03335   int Reg = tryParseRegister();
03336   if (Reg == -1)
03337     return Error(RegLoc, "register expected");
03338 
03339   // The reglist instructions have at most 16 registers, so reserve
03340   // space for that many.
03341   int EReg = 0;
03342   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
03343 
03344   // Allow Q regs and just interpret them as the two D sub-registers.
03345   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
03346     Reg = getDRegFromQReg(Reg);
03347     EReg = MRI->getEncodingValue(Reg);
03348     Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
03349     ++Reg;
03350   }
03351   const MCRegisterClass *RC;
03352   if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
03353     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
03354   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
03355     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
03356   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
03357     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
03358   else
03359     return Error(RegLoc, "invalid register in register list");
03360 
03361   // Store the register.
03362   EReg = MRI->getEncodingValue(Reg);
03363   Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
03364 
03365   // This starts immediately after the first register token in the list,
03366   // so we can see either a comma or a minus (range separator) as a legal
03367   // next token.
03368   while (Parser.getTok().is(AsmToken::Comma) ||
03369          Parser.getTok().is(AsmToken::Minus)) {
03370     if (Parser.getTok().is(AsmToken::Minus)) {
03371       Parser.Lex(); // Eat the minus.
03372       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
03373       int EndReg = tryParseRegister();
03374       if (EndReg == -1)
03375         return Error(AfterMinusLoc, "register expected");
03376       // Allow Q regs and just interpret them as the two D sub-registers.
03377       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
03378         EndReg = getDRegFromQReg(EndReg) + 1;
03379       // If the register is the same as the start reg, there's nothing
03380       // more to do.
03381       if (Reg == EndReg)
03382         continue;
03383       // The register must be in the same register class as the first.
03384       if (!RC->contains(EndReg))
03385         return Error(AfterMinusLoc, "invalid register in register list");
03386       // Ranges must go from low to high.
03387       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
03388         return Error(AfterMinusLoc, "bad range in register list");
03389 
03390       // Add all the registers in the range to the register list.
03391       while (Reg != EndReg) {
03392         Reg = getNextRegister(Reg);
03393         EReg = MRI->getEncodingValue(Reg);
03394         Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
03395       }
03396       continue;
03397     }
03398     Parser.Lex(); // Eat the comma.
03399     RegLoc = Parser.getTok().getLoc();
03400     int OldReg = Reg;
03401     const AsmToken RegTok = Parser.getTok();
03402     Reg = tryParseRegister();
03403     if (Reg == -1)
03404       return Error(RegLoc, "register expected");
03405     // Allow Q regs and just interpret them as the two D sub-registers.
03406     bool isQReg = false;
03407     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
03408       Reg = getDRegFromQReg(Reg);
03409       isQReg = true;
03410     }
03411     // The register must be in the same register class as the first.
03412     if (!RC->contains(Reg))
03413       return Error(RegLoc, "invalid register in register list");
03414     // List must be monotonically increasing.
03415     if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
03416       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
03417         Warning(RegLoc, "register list not in ascending order");
03418       else
03419         return Error(RegLoc, "register list not in ascending order");
03420     }
03421     if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
03422       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
03423               ") in register list");
03424       continue;
03425     }
03426     // VFP register lists must also be contiguous.
03427     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
03428         Reg != OldReg + 1)
03429       return Error(RegLoc, "non-contiguous register range");
03430     EReg = MRI->getEncodingValue(Reg);
03431     Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
03432     if (isQReg) {
03433       EReg = MRI->getEncodingValue(++Reg);
03434       Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
03435     }
03436   }
03437 
03438   if (Parser.getTok().isNot(AsmToken::RCurly))
03439     return Error(Parser.getTok().getLoc(), "'}' expected");
03440   SMLoc E = Parser.getTok().getEndLoc();
03441   Parser.Lex(); // Eat '}' token.
03442 
03443   // Push the register list operand.
03444   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
03445 
03446   // The ARM system instruction variants for LDM/STM have a '^' token here.
03447   if (Parser.getTok().is(AsmToken::Caret)) {
03448     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
03449     Parser.Lex(); // Eat '^' token.
03450   }
03451 
03452   return false;
03453 }
03454 
03455 // Helper function to parse the lane index for vector lists.
03456 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
03457 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
03458   Index = 0; // Always return a defined index value.
03459   if (Parser.getTok().is(AsmToken::LBrac)) {
03460     Parser.Lex(); // Eat the '['.
03461     if (Parser.getTok().is(AsmToken::RBrac)) {
03462       // "Dn[]" is the 'all lanes' syntax.
03463       LaneKind = AllLanes;
03464       EndLoc = Parser.getTok().getEndLoc();
03465       Parser.Lex(); // Eat the ']'.
03466       return MatchOperand_Success;
03467     }
03468 
03469     // There's an optional '#' token here. Normally there wouldn't be, but
03470     // inline assemble puts one in, and it's friendly to accept that.
03471     if (Parser.getTok().is(AsmToken::Hash))
03472       Parser.Lex(); // Eat '#' or '$'.
03473 
03474     const MCExpr *LaneIndex;
03475     SMLoc Loc = Parser.getTok().getLoc();
03476     if (getParser().parseExpression(LaneIndex)) {
03477       Error(Loc, "illegal expression");
03478       return MatchOperand_ParseFail;
03479     }
03480     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
03481     if (!CE) {
03482       Error(Loc, "lane index must be empty or an integer");
03483       return MatchOperand_ParseFail;
03484     }
03485     if (Parser.getTok().isNot(AsmToken::RBrac)) {
03486       Error(Parser.getTok().getLoc(), "']' expected");
03487       return MatchOperand_ParseFail;
03488     }
03489     EndLoc = Parser.getTok().getEndLoc();
03490     Parser.Lex(); // Eat the ']'.
03491     int64_t Val = CE->getValue();
03492 
03493     // FIXME: Make this range check context sensitive for .8, .16, .32.
03494     if (Val < 0 || Val > 7) {
03495       Error(Parser.getTok().getLoc(), "lane index out of range");
03496       return MatchOperand_ParseFail;
03497     }
03498     Index = Val;
03499     LaneKind = IndexedLane;
03500     return MatchOperand_Success;
03501   }
03502   LaneKind = NoLanes;
03503   return MatchOperand_Success;
03504 }
03505 
03506 // parse a vector register list
03507 ARMAsmParser::OperandMatchResultTy
03508 ARMAsmParser::parseVectorList(OperandVector &Operands) {
03509   VectorLaneTy LaneKind;
03510   unsigned LaneIndex;
03511   SMLoc S = Parser.getTok().getLoc();
03512   // As an extension (to match gas), support a plain D register or Q register
03513   // (without encosing curly braces) as a single or double entry list,
03514   // respectively.
03515   if (Parser.getTok().is(AsmToken::Identifier)) {
03516     SMLoc E = Parser.getTok().getEndLoc();
03517     int Reg = tryParseRegister();
03518     if (Reg == -1)
03519       return MatchOperand_NoMatch;
03520     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
03521       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
03522       if (Res != MatchOperand_Success)
03523         return Res;
03524       switch (LaneKind) {
03525       case NoLanes:
03526         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
03527         break;
03528       case AllLanes:
03529         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
03530                                                                 S, E));
03531         break;
03532       case IndexedLane:
03533         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
03534                                                                LaneIndex,
03535                                                                false, S, E));
03536         break;
03537       }
03538       return MatchOperand_Success;
03539     }
03540     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
03541       Reg = getDRegFromQReg(Reg);
03542       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
03543       if (Res != MatchOperand_Success)
03544         return Res;
03545       switch (LaneKind) {
03546       case NoLanes:
03547         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
03548                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
03549         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
03550         break;
03551       case AllLanes:
03552         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
03553                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
03554         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
03555                                                                 S, E));
03556         break;
03557       case IndexedLane:
03558         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
03559                                                                LaneIndex,
03560                                                                false, S, E));
03561         break;
03562       }
03563       return MatchOperand_Success;
03564     }
03565     Error(S, "vector register expected");
03566     return MatchOperand_ParseFail;
03567   }
03568 
03569   if (Parser.getTok().isNot(AsmToken::LCurly))
03570     return MatchOperand_NoMatch;
03571 
03572   Parser.Lex(); // Eat '{' token.
03573   SMLoc RegLoc = Parser.getTok().getLoc();
03574 
03575   int Reg = tryParseRegister();
03576   if (Reg == -1) {
03577     Error(RegLoc, "register expected");
03578     return MatchOperand_ParseFail;
03579   }
03580   unsigned Count = 1;
03581   int Spacing = 0;
03582   unsigned FirstReg = Reg;
03583   // The list is of D registers, but we also allow Q regs and just interpret
03584   // them as the two D sub-registers.
03585   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
03586     FirstReg = Reg = getDRegFromQReg(Reg);
03587     Spacing = 1; // double-spacing requires explicit D registers, otherwise
03588                  // it's ambiguous with four-register single spaced.
03589     ++Reg;
03590     ++Count;
03591   }
03592 
03593   SMLoc E;
03594   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
03595     return MatchOperand_ParseFail;
03596 
03597   while (Parser.getTok().is(AsmToken::Comma) ||
03598          Parser.getTok().is(AsmToken::Minus)) {
03599     if (Parser.getTok().is(AsmToken::Minus)) {
03600       if (!Spacing)
03601         Spacing = 1; // Register range implies a single spaced list.
03602       else if (Spacing == 2) {
03603         Error(Parser.getTok().getLoc(),
03604               "sequential registers in double spaced list");
03605         return MatchOperand_ParseFail;
03606       }
03607       Parser.Lex(); // Eat the minus.
03608       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
03609       int EndReg = tryParseRegister();
03610       if (EndReg == -1) {
03611         Error(AfterMinusLoc, "register expected");
03612         return MatchOperand_ParseFail;
03613       }
03614       // Allow Q regs and just interpret them as the two D sub-registers.
03615       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
03616         EndReg = getDRegFromQReg(EndReg) + 1;
03617       // If the register is the same as the start reg, there's nothing
03618       // more to do.
03619       if (Reg == EndReg)
03620         continue;
03621       // The register must be in the same register class as the first.
03622       if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
03623         Error(AfterMinusLoc, "invalid register in register list");
03624         return MatchOperand_ParseFail;
03625       }
03626       // Ranges must go from low to high.
03627       if (Reg > EndReg) {
03628         Error(AfterMinusLoc, "bad range in register list");
03629         return MatchOperand_ParseFail;
03630       }
03631       // Parse the lane specifier if present.
03632       VectorLaneTy NextLaneKind;
03633       unsigned NextLaneIndex;
03634       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
03635           MatchOperand_Success)
03636         return MatchOperand_ParseFail;
03637       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
03638         Error(AfterMinusLoc, "mismatched lane index in register list");
03639         return MatchOperand_ParseFail;
03640       }
03641 
03642       // Add all the registers in the range to the register list.
03643       Count += EndReg - Reg;
03644       Reg = EndReg;
03645       continue;
03646     }
03647     Parser.Lex(); // Eat the comma.
03648     RegLoc = Parser.getTok().getLoc();
03649     int OldReg = Reg;
03650     Reg = tryParseRegister();
03651     if (Reg == -1) {
03652       Error(RegLoc, "register expected");
03653       return MatchOperand_ParseFail;
03654     }
03655     // vector register lists must be contiguous.
03656     // It's OK to use the enumeration values directly here rather, as the
03657     // VFP register classes have the enum sorted properly.
03658     //
03659     // The list is of D registers, but we also allow Q regs and just interpret
03660     // them as the two D sub-registers.
03661     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
03662       if (!Spacing)
03663         Spacing = 1; // Register range implies a single spaced list.
03664       else if (Spacing == 2) {
03665         Error(RegLoc,
03666               "invalid register in double-spaced list (must be 'D' register')");
03667         return MatchOperand_ParseFail;
03668       }
03669       Reg = getDRegFromQReg(Reg);
03670       if (Reg != OldReg + 1) {
03671         Error(RegLoc, "non-contiguous register range");
03672         return MatchOperand_ParseFail;
03673       }
03674       ++Reg;
03675       Count += 2;
03676       // Parse the lane specifier if present.
03677       VectorLaneTy NextLaneKind;
03678       unsigned NextLaneIndex;
03679       SMLoc LaneLoc = Parser.getTok().getLoc();
03680       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
03681           MatchOperand_Success)
03682         return MatchOperand_ParseFail;
03683       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
03684         Error(LaneLoc, "mismatched lane index in register list");
03685         return MatchOperand_ParseFail;
03686       }
03687       continue;
03688     }
03689     // Normal D register.
03690     // Figure out the register spacing (single or double) of the list if
03691     // we don't know it already.
03692     if (!Spacing)
03693       Spacing = 1 + (Reg == OldReg + 2);
03694 
03695     // Just check that it's contiguous and keep going.
03696     if (Reg != OldReg + Spacing) {
03697       Error(RegLoc, "non-contiguous register range");
03698       return MatchOperand_ParseFail;
03699     }
03700     ++Count;
03701     // Parse the lane specifier if present.
03702     VectorLaneTy NextLaneKind;
03703     unsigned NextLaneIndex;
03704     SMLoc EndLoc = Parser.getTok().getLoc();
03705     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
03706       return MatchOperand_ParseFail;
03707     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
03708       Error(EndLoc, "mismatched lane index in register list");
03709       return MatchOperand_ParseFail;
03710     }
03711   }
03712 
03713   if (Parser.getTok().isNot(AsmToken::RCurly)) {
03714     Error(Parser.getTok().getLoc(), "'}' expected");
03715     return MatchOperand_ParseFail;
03716   }
03717   E = Parser.getTok().getEndLoc();
03718   Parser.Lex(); // Eat '}' token.
03719 
03720   switch (LaneKind) {
03721   case NoLanes:
03722     // Two-register operands have been converted to the
03723     // composite register classes.
03724     if (Count == 2) {
03725       const MCRegisterClass *RC = (Spacing == 1) ?
03726         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
03727         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
03728       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
03729     }
03730 
03731     Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
03732                                                     (Spacing == 2), S, E));
03733     break;
03734   case AllLanes:
03735     // Two-register operands have been converted to the
03736     // composite register classes.
03737     if (Count == 2) {
03738       const MCRegisterClass *RC = (Spacing == 1) ?
03739         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
03740         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
03741       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
03742     }
03743     Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
03744                                                             (Spacing == 2),
03745                                                             S, E));
03746     break;
03747   case IndexedLane:
03748     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
03749                                                            LaneIndex,
03750                                                            (Spacing == 2),
03751                                                            S, E));
03752     break;
03753   }
03754   return MatchOperand_Success;
03755 }
03756 
03757 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
03758 ARMAsmParser::OperandMatchResultTy
03759 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
03760   SMLoc S = Parser.getTok().getLoc();
03761   const AsmToken &Tok = Parser.getTok();
03762   unsigned Opt;
03763 
03764   if (Tok.is(AsmToken::Identifier)) {
03765     StringRef OptStr = Tok.getString();
03766 
03767     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
03768       .Case("sy",    ARM_MB::SY)
03769       .Case("st",    ARM_MB::ST)
03770       .Case("ld",    ARM_MB::LD)
03771       .Case("sh",    ARM_MB::ISH)
03772       .Case("ish",   ARM_MB::ISH)
03773       .Case("shst",  ARM_MB::ISHST)
03774       .Case("ishst", ARM_MB::ISHST)
03775       .Case("ishld", ARM_MB::ISHLD)
03776       .Case("nsh",   ARM_MB::NSH)
03777       .Case("un",    ARM_MB::NSH)
03778       .Case("nshst", ARM_MB::NSHST)
03779       .Case("nshld", ARM_MB::NSHLD)
03780       .Case("unst",  ARM_MB::NSHST)
03781       .Case("osh",   ARM_MB::OSH)
03782       .Case("oshst", ARM_MB::OSHST)
03783       .Case("oshld", ARM_MB::OSHLD)
03784       .Default(~0U);
03785 
03786     // ishld, oshld, nshld and ld are only available from ARMv8.
03787     if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
03788                         Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
03789       Opt = ~0U;
03790 
03791     if (Opt == ~0U)
03792       return MatchOperand_NoMatch;
03793 
03794     Parser.Lex(); // Eat identifier token.
03795   } else if (Tok.is(AsmToken::Hash) ||
03796              Tok.is(AsmToken::Dollar) ||
03797              Tok.is(AsmToken::Integer)) {
03798     if (Parser.getTok().isNot(AsmToken::Integer))
03799       Parser.Lex(); // Eat '#' or '$'.
03800     SMLoc Loc = Parser.getTok().getLoc();
03801 
03802     const MCExpr *MemBarrierID;
03803     if (getParser().parseExpression(MemBarrierID)) {
03804       Error(Loc, "illegal expression");
03805       return MatchOperand_ParseFail;
03806     }
03807 
03808     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
03809     if (!CE) {
03810       Error(Loc, "constant expression expected");
03811       return MatchOperand_ParseFail;
03812     }
03813 
03814     int Val = CE->getValue();
03815     if (Val & ~0xf) {
03816       Error(Loc, "immediate value out of range");
03817       return MatchOperand_ParseFail;
03818     }
03819 
03820     Opt = ARM_MB::RESERVED_0 + Val;
03821   } else
03822     return MatchOperand_ParseFail;
03823 
03824   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
03825   return MatchOperand_Success;
03826 }
03827 
03828 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
03829 ARMAsmParser::OperandMatchResultTy
03830 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
03831   SMLoc S = Parser.getTok().getLoc();
03832   const AsmToken &Tok = Parser.getTok();
03833   unsigned Opt;
03834 
03835   if (Tok.is(AsmToken::Identifier)) {
03836     StringRef OptStr = Tok.getString();
03837 
03838     if (OptStr.equals_lower("sy"))
03839       Opt = ARM_ISB::SY;
03840     else
03841       return MatchOperand_NoMatch;
03842 
03843     Parser.Lex(); // Eat identifier token.
03844   } else if (Tok.is(AsmToken::Hash) ||
03845              Tok.is(AsmToken::Dollar) ||
03846              Tok.is(AsmToken::Integer)) {
03847     if (Parser.getTok().isNot(AsmToken::Integer))
03848       Parser.Lex(); // Eat '#' or '$'.
03849     SMLoc Loc = Parser.getTok().getLoc();
03850 
03851     const MCExpr *ISBarrierID;
03852     if (getParser().parseExpression(ISBarrierID)) {
03853       Error(Loc, "illegal expression");
03854       return MatchOperand_ParseFail;
03855     }
03856 
03857     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
03858     if (!CE) {
03859       Error(Loc, "constant expression expected");
03860       return MatchOperand_ParseFail;
03861     }
03862 
03863     int Val = CE->getValue();
03864     if (Val & ~0xf) {
03865       Error(Loc, "immediate value out of range");
03866       return MatchOperand_ParseFail;
03867     }
03868 
03869     Opt = ARM_ISB::RESERVED_0 + Val;
03870   } else
03871     return MatchOperand_ParseFail;
03872 
03873   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
03874           (ARM_ISB::InstSyncBOpt)Opt, S));
03875   return MatchOperand_Success;
03876 }
03877 
03878 
03879 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
03880 ARMAsmParser::OperandMatchResultTy
03881 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
03882   SMLoc S = Parser.getTok().getLoc();
03883   const AsmToken &Tok = Parser.getTok();
03884   if (!Tok.is(AsmToken::Identifier)) 
03885     return MatchOperand_NoMatch;
03886   StringRef IFlagsStr = Tok.getString();
03887 
03888   // An iflags string of "none" is interpreted to mean that none of the AIF
03889   // bits are set.  Not a terribly useful instruction, but a valid encoding.
03890   unsigned IFlags = 0;
03891   if (IFlagsStr != "none") {
03892         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
03893       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
03894         .Case("a", ARM_PROC::A)
03895         .Case("i", ARM_PROC::I)
03896         .Case("f", ARM_PROC::F)
03897         .Default(~0U);
03898 
03899       // If some specific iflag is already set, it means that some letter is
03900       // present more than once, this is not acceptable.
03901       if (Flag == ~0U || (IFlags & Flag))
03902         return MatchOperand_NoMatch;
03903 
03904       IFlags |= Flag;
03905     }
03906   }
03907 
03908   Parser.Lex(); // Eat identifier token.
03909   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
03910   return MatchOperand_Success;
03911 }
03912 
03913 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
03914 ARMAsmParser::OperandMatchResultTy
03915 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
03916   SMLoc S = Parser.getTok().getLoc();
03917   const AsmToken &Tok = Parser.getTok();
03918   if (!Tok.is(AsmToken::Identifier))
03919     return MatchOperand_NoMatch;
03920   StringRef Mask = Tok.getString();
03921 
03922   if (isMClass()) {
03923     // See ARMv6-M 10.1.1
03924     std::string Name = Mask.lower();
03925     unsigned FlagsVal = StringSwitch<unsigned>(Name)
03926       // Note: in the documentation:
03927       //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
03928       //  for MSR APSR_nzcvq.
03929       // but we do make it an alias here.  This is so to get the "mask encoding"
03930       // bits correct on MSR APSR writes.
03931       //
03932       // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
03933       // should really only be allowed when writing a special register.  Note
03934       // they get dropped in the MRS instruction reading a special register as
03935       // the SYSm field is only 8 bits.
03936       .Case("apsr", 0x800)
03937       .Case("apsr_nzcvq", 0x800)
03938       .Case("apsr_g", 0x400)
03939       .Case("apsr_nzcvqg", 0xc00)
03940       .Case("iapsr", 0x801)
03941       .Case("iapsr_nzcvq", 0x801)
03942       .Case("iapsr_g", 0x401)
03943       .Case("iapsr_nzcvqg", 0xc01)
03944       .Case("eapsr", 0x802)
03945       .Case("eapsr_nzcvq", 0x802)
03946       .Case("eapsr_g", 0x402)
03947       .Case("eapsr_nzcvqg", 0xc02)
03948       .Case("xpsr", 0x803)
03949       .Case("xpsr_nzcvq", 0x803)
03950       .Case("xpsr_g", 0x403)
03951       .Case("xpsr_nzcvqg", 0xc03)
03952       .Case("ipsr", 0x805)
03953       .Case("epsr", 0x806)
03954       .Case("iepsr", 0x807)
03955       .Case("msp", 0x808)
03956       .Case("psp", 0x809)
03957       .Case("primask", 0x810)
03958       .Case("basepri", 0x811)
03959       .Case("basepri_max", 0x812)
03960       .Case("faultmask", 0x813)
03961       .Case("control", 0x814)
03962       .Default(~0U);
03963 
03964     if (FlagsVal == ~0U)
03965       return MatchOperand_NoMatch;
03966 
03967     if (!hasThumb2DSP() && (FlagsVal & 0x400))
03968       // The _g and _nzcvqg versions are only valid if the DSP extension is
03969       // available.
03970       return MatchOperand_NoMatch;
03971 
03972     if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
03973       // basepri, basepri_max and faultmask only valid for V7m.
03974       return MatchOperand_NoMatch;
03975 
03976     Parser.Lex(); // Eat identifier token.
03977     Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
03978     return MatchOperand_Success;
03979   }
03980 
03981   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
03982   size_t Start = 0, Next = Mask.find('_');
03983   StringRef Flags = "";
03984   std::string SpecReg = Mask.slice(Start, Next).lower();
03985   if (Next != StringRef::npos)
03986     Flags = Mask.slice(Next+1, Mask.size());
03987 
03988   // FlagsVal contains the complete mask:
03989   // 3-0: Mask
03990   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
03991   unsigned FlagsVal = 0;
03992 
03993   if (SpecReg == "apsr") {
03994     FlagsVal = StringSwitch<unsigned>(Flags)
03995     .Case("nzcvq",  0x8) // same as CPSR_f
03996     .Case("g",      0x4) // same as CPSR_s
03997     .Case("nzcvqg", 0xc) // same as CPSR_fs
03998     .Default(~0U);
03999 
04000     if (FlagsVal == ~0U) {
04001       if (!Flags.empty())
04002         return MatchOperand_NoMatch;
04003       else
04004         FlagsVal = 8; // No flag
04005     }
04006   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
04007     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
04008     if (Flags == "all" || Flags == "")
04009       Flags = "fc";
04010     for (int i = 0, e = Flags.size(); i != e; ++i) {
04011       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
04012       .Case("c", 1)
04013       .Case("x", 2)
04014       .Case("s", 4)
04015       .Case("f", 8)
04016       .Default(~0U);
04017 
04018       // If some specific flag is already set, it means that some letter is
04019       // present more than once, this is not acceptable.
04020       if (FlagsVal == ~0U || (FlagsVal & Flag))
04021         return MatchOperand_NoMatch;
04022       FlagsVal |= Flag;
04023     }
04024   } else // No match for special register.
04025     return MatchOperand_NoMatch;
04026 
04027   // Special register without flags is NOT equivalent to "fc" flags.
04028   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
04029   // two lines would enable gas compatibility at the expense of breaking
04030   // round-tripping.
04031   //
04032   // if (!FlagsVal)
04033   //  FlagsVal = 0x9;
04034 
04035   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
04036   if (SpecReg == "spsr")
04037     FlagsVal |= 16;
04038 
04039   Parser.Lex(); // Eat identifier token.
04040   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
04041   return MatchOperand_Success;
04042 }
04043 
04044 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
04045 /// use in the MRS/MSR instructions added to support virtualization.
04046 ARMAsmParser::OperandMatchResultTy
04047 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
04048   SMLoc S = Parser.getTok().getLoc();
04049   const AsmToken &Tok = Parser.getTok();
04050   if (!Tok.is(AsmToken::Identifier))
04051     return MatchOperand_NoMatch;
04052   StringRef RegName = Tok.getString();
04053 
04054   // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM
04055   // and bit 5 is R.
04056   unsigned Encoding = StringSwitch<unsigned>(RegName.lower())
04057                           .Case("r8_usr", 0x00)
04058                           .Case("r9_usr", 0x01)
04059                           .Case("r10_usr", 0x02)
04060                           .Case("r11_usr", 0x03)
04061                           .Case("r12_usr", 0x04)
04062                           .Case("sp_usr", 0x05)
04063                           .Case("lr_usr", 0x06)
04064                           .Case("r8_fiq", 0x08)
04065                           .Case("r9_fiq", 0x09)
04066                           .Case("r10_fiq", 0x0a)
04067                           .Case("r11_fiq", 0x0b)
04068                           .Case("r12_fiq", 0x0c)
04069                           .Case("sp_fiq", 0x0d)
04070                           .Case("lr_fiq", 0x0e)
04071                           .Case("lr_irq", 0x10)
04072                           .Case("sp_irq", 0x11)
04073                           .Case("lr_svc", 0x12)
04074                           .Case("sp_svc", 0x13)
04075                           .Case("lr_abt", 0x14)
04076                           .Case("sp_abt", 0x15)
04077                           .Case("lr_und", 0x16)
04078                           .Case("sp_und", 0x17)
04079                           .Case("lr_mon", 0x1c)
04080                           .Case("sp_mon", 0x1d)
04081                           .Case("elr_hyp", 0x1e)
04082                           .Case("sp_hyp", 0x1f)
04083                           .Case("spsr_fiq", 0x2e)
04084                           .Case("spsr_irq", 0x30)
04085                           .Case("spsr_svc", 0x32)
04086                           .Case("spsr_abt", 0x34)
04087                           .Case("spsr_und", 0x36)
04088                           .Case("spsr_mon", 0x3c)
04089                           .Case("spsr_hyp", 0x3e)
04090                           .Default(~0U);
04091 
04092   if (Encoding == ~0U)
04093     return MatchOperand_NoMatch;
04094 
04095   Parser.Lex(); // Eat identifier token.
04096   Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
04097   return MatchOperand_Success;
04098 }
04099 
04100 ARMAsmParser::OperandMatchResultTy
04101 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
04102                           int High) {
04103   const AsmToken &Tok = Parser.getTok();
04104   if (Tok.isNot(AsmToken::Identifier)) {
04105     Error(Parser.getTok().getLoc(), Op + " operand expected.");
04106     return MatchOperand_ParseFail;
04107   }
04108   StringRef ShiftName = Tok.getString();
04109   std::string LowerOp = Op.lower();
04110   std::string UpperOp = Op.upper();
04111   if (ShiftName != LowerOp && ShiftName != UpperOp) {
04112     Error(Parser.getTok().getLoc(), Op + " operand expected.");
04113     return MatchOperand_ParseFail;
04114   }
04115   Parser.Lex(); // Eat shift type token.
04116 
04117   // There must be a '#' and a shift amount.
04118   if (Parser.getTok().isNot(AsmToken::Hash) &&
04119       Parser.getTok().isNot(AsmToken::Dollar)) {
04120     Error(Parser.getTok().getLoc(), "'#' expected");
04121     return MatchOperand_ParseFail;
04122   }
04123   Parser.Lex(); // Eat hash token.
04124 
04125   const MCExpr *ShiftAmount;
04126   SMLoc Loc = Parser.getTok().getLoc();
04127   SMLoc EndLoc;
04128   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
04129     Error(Loc, "illegal expression");
04130     return MatchOperand_ParseFail;
04131   }
04132   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
04133   if (!CE) {
04134     Error(Loc, "constant expression expected");
04135     return MatchOperand_ParseFail;
04136   }
04137   int Val = CE->getValue();
04138   if (Val < Low || Val > High) {
04139     Error(Loc, "immediate value out of range");
04140     return MatchOperand_ParseFail;
04141   }
04142 
04143   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
04144 
04145   return MatchOperand_Success;
04146 }
04147 
04148 ARMAsmParser::OperandMatchResultTy
04149 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
04150   const AsmToken &Tok = Parser.getTok();
04151   SMLoc S = Tok.getLoc();
04152   if (Tok.isNot(AsmToken::Identifier)) {
04153     Error(S, "'be' or 'le' operand expected");
04154     return MatchOperand_ParseFail;
04155   }
04156   int Val = StringSwitch<int>(Tok.getString().lower())
04157     .Case("be", 1)
04158     .Case("le", 0)
04159     .Default(-1);
04160   Parser.Lex(); // Eat the token.
04161 
04162   if (Val == -1) {
04163     Error(S, "'be' or 'le' operand expected");
04164     return MatchOperand_ParseFail;
04165   }
04166   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
04167                                                                   getContext()),
04168                                            S, Tok.getEndLoc()));
04169   return MatchOperand_Success;
04170 }
04171 
04172 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
04173 /// instructions. Legal values are:
04174 ///     lsl #n  'n' in [0,31]
04175 ///     asr #n  'n' in [1,32]
04176 ///             n == 32 encoded as n == 0.
04177 ARMAsmParser::OperandMatchResultTy
04178 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
04179   const AsmToken &Tok = Parser.getTok();
04180   SMLoc S = Tok.getLoc();
04181   if (Tok.isNot(AsmToken::Identifier)) {
04182     Error(S, "shift operator 'asr' or 'lsl' expected");
04183     return MatchOperand_ParseFail;
04184   }
04185   StringRef ShiftName = Tok.getString();
04186   bool isASR;
04187   if (ShiftName == "lsl" || ShiftName == "LSL")
04188     isASR = false;
04189   else if (ShiftName == "asr" || ShiftName == "ASR")
04190     isASR = true;
04191   else {
04192     Error(S, "shift operator 'asr' or 'lsl' expected");
04193     return MatchOperand_ParseFail;
04194   }
04195   Parser.Lex(); // Eat the operator.
04196 
04197   // A '#' and a shift amount.
04198   if (Parser.getTok().isNot(AsmToken::Hash) &&
04199       Parser.getTok().isNot(AsmToken::Dollar)) {
04200     Error(Parser.getTok().getLoc(), "'#' expected");
04201     return MatchOperand_ParseFail;
04202   }
04203   Parser.Lex(); // Eat hash token.
04204   SMLoc ExLoc = Parser.getTok().getLoc();
04205 
04206   const MCExpr *ShiftAmount;
04207   SMLoc EndLoc;
04208   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
04209     Error(ExLoc, "malformed shift expression");
04210     return MatchOperand_ParseFail;
04211   }
04212   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
04213   if (!CE) {
04214     Error(ExLoc, "shift amount must be an immediate");
04215     return MatchOperand_ParseFail;
04216   }
04217 
04218   int64_t Val = CE->getValue();
04219   if (isASR) {
04220     // Shift amount must be in [1,32]
04221     if (Val < 1 || Val > 32) {
04222       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
04223       return MatchOperand_ParseFail;
04224     }
04225     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
04226     if (isThumb() && Val == 32) {
04227       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
04228       return MatchOperand_ParseFail;
04229     }
04230     if (Val == 32) Val = 0;
04231   } else {
04232     // Shift amount must be in [1,32]
04233     if (Val < 0 || Val > 31) {
04234       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
04235       return MatchOperand_ParseFail;
04236     }
04237   }
04238 
04239   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
04240 
04241   return MatchOperand_Success;
04242 }
04243 
04244 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
04245 /// of instructions. Legal values are:
04246 ///     ror #n  'n' in {0, 8, 16, 24}
04247 ARMAsmParser::OperandMatchResultTy
04248 ARMAsmParser::parseRotImm(OperandVector &Operands) {
04249   const AsmToken &Tok = Parser.getTok();
04250   SMLoc S = Tok.getLoc();
04251   if (Tok.isNot(AsmToken::Identifier))
04252     return MatchOperand_NoMatch;
04253   StringRef ShiftName = Tok.getString();
04254   if (ShiftName != "ror" && ShiftName != "ROR")
04255     return MatchOperand_NoMatch;
04256   Parser.Lex(); // Eat the operator.
04257 
04258   // A '#' and a rotate amount.
04259   if (Parser.getTok().isNot(AsmToken::Hash) &&
04260       Parser.getTok().isNot(AsmToken::Dollar)) {
04261     Error(Parser.getTok().getLoc(), "'#' expected");
04262     return MatchOperand_ParseFail;
04263   }
04264   Parser.Lex(); // Eat hash token.
04265   SMLoc ExLoc = Parser.getTok().getLoc();
04266 
04267   const MCExpr *ShiftAmount;
04268   SMLoc EndLoc;
04269   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
04270     Error(ExLoc, "malformed rotate expression");
04271     return MatchOperand_ParseFail;
04272   }
04273   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
04274   if (!CE) {
04275     Error(ExLoc, "rotate amount must be an immediate");
04276     return MatchOperand_ParseFail;
04277   }
04278 
04279   int64_t Val = CE->getValue();
04280   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
04281   // normally, zero is represented in asm by omitting the rotate operand
04282   // entirely.
04283   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
04284     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
04285     return MatchOperand_ParseFail;
04286   }
04287 
04288   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
04289 
04290   return MatchOperand_Success;
04291 }
04292 
04293 ARMAsmParser::OperandMatchResultTy
04294 ARMAsmParser::parseBitfield(OperandVector &Operands) {
04295   SMLoc S = Parser.getTok().getLoc();
04296   // The bitfield descriptor is really two operands, the LSB and the width.
04297   if (Parser.getTok().isNot(AsmToken::Hash) &&
04298       Parser.getTok().isNot(AsmToken::Dollar)) {
04299     Error(Parser.getTok().getLoc(), "'#' expected");
04300     return MatchOperand_ParseFail;
04301   }
04302   Parser.Lex(); // Eat hash token.
04303 
04304   const MCExpr *LSBExpr;
04305   SMLoc E = Parser.getTok().getLoc();
04306   if (getParser().parseExpression(LSBExpr)) {
04307     Error(E, "malformed immediate expression");
04308     return MatchOperand_ParseFail;
04309   }
04310   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
04311   if (!CE) {
04312     Error(E, "'lsb' operand must be an immediate");
04313     return MatchOperand_ParseFail;
04314   }
04315 
04316   int64_t LSB = CE->getValue();
04317   // The LSB must be in the range [0,31]
04318   if (LSB < 0 || LSB > 31) {
04319     Error(E, "'lsb' operand must be in the range [0,31]");
04320     return MatchOperand_ParseFail;
04321   }
04322   E = Parser.getTok().getLoc();
04323 
04324   // Expect another immediate operand.
04325   if (Parser.getTok().isNot(AsmToken::Comma)) {
04326     Error(Parser.getTok().getLoc(), "too few operands");
04327     return MatchOperand_ParseFail;
04328   }
04329   Parser.Lex(); // Eat hash token.
04330   if (Parser.getTok().isNot(AsmToken::Hash) &&
04331       Parser.getTok().isNot(AsmToken::Dollar)) {
04332     Error(Parser.getTok().getLoc(), "'#' expected");
04333     return MatchOperand_ParseFail;
04334   }
04335   Parser.Lex(); // Eat hash token.
04336 
04337   const MCExpr *WidthExpr;
04338   SMLoc EndLoc;
04339   if (getParser().parseExpression(WidthExpr, EndLoc)) {
04340     Error(E, "malformed immediate expression");
04341     return MatchOperand_ParseFail;
04342   }
04343   CE = dyn_cast<MCConstantExpr>(WidthExpr);
04344   if (!CE) {
04345     Error(E, "'width' operand must be an immediate");
04346     return MatchOperand_ParseFail;
04347   }
04348 
04349   int64_t Width = CE->getValue();
04350   // The LSB must be in the range [1,32-lsb]
04351   if (Width < 1 || Width > 32 - LSB) {
04352     Error(E, "'width' operand must be in the range [1,32-lsb]");
04353     return MatchOperand_ParseFail;
04354   }
04355 
04356   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
04357 
04358   return MatchOperand_Success;
04359 }
04360 
04361 ARMAsmParser::OperandMatchResultTy
04362 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
04363   // Check for a post-index addressing register operand. Specifically:
04364   // postidx_reg := '+' register {, shift}
04365   //              | '-' register {, shift}
04366   //              | register {, shift}
04367 
04368   // This method must return MatchOperand_NoMatch without consuming any tokens
04369   // in the case where there is no match, as other alternatives take other
04370   // parse methods.
04371   AsmToken Tok = Parser.getTok();
04372   SMLoc S = Tok.getLoc();
04373   bool haveEaten = false;
04374   bool isAdd = true;
04375   if (Tok.is(AsmToken::Plus)) {
04376     Parser.Lex(); // Eat the '+' token.
04377     haveEaten = true;
04378   } else if (Tok.is(AsmToken::Minus)) {
04379     Parser.Lex(); // Eat the '-' token.
04380     isAdd = false;
04381     haveEaten = true;
04382   }
04383 
04384   SMLoc E = Parser.getTok().getEndLoc();
04385   int Reg = tryParseRegister();
04386   if (Reg == -1) {
04387     if (!haveEaten)
04388       return MatchOperand_NoMatch;
04389     Error(Parser.getTok().getLoc(), "register expected");
04390     return MatchOperand_ParseFail;
04391   }
04392 
04393   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
04394   unsigned ShiftImm = 0;
04395   if (Parser.getTok().is(AsmToken::Comma)) {
04396     Parser.Lex(); // Eat the ','.
04397     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
04398       return MatchOperand_ParseFail;
04399 
04400     // FIXME: Only approximates end...may include intervening whitespace.
04401     E = Parser.getTok().getLoc();
04402   }
04403 
04404   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
04405                                                   ShiftImm, S, E));
04406 
04407   return MatchOperand_Success;
04408 }
04409 
04410 ARMAsmParser::OperandMatchResultTy
04411 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
04412   // Check for a post-index addressing register operand. Specifically:
04413   // am3offset := '+' register
04414   //              | '-' register
04415   //              | register
04416   //              | # imm
04417   //              | # + imm
04418   //              | # - imm
04419 
04420   // This method must return MatchOperand_NoMatch without consuming any tokens
04421   // in the case where there is no match, as other alternatives take other
04422   // parse methods.
04423   AsmToken Tok = Parser.getTok();
04424   SMLoc S = Tok.getLoc();
04425 
04426   // Do immediates first, as we always parse those if we have a '#'.
04427   if (Parser.getTok().is(AsmToken::Hash) ||
04428       Parser.getTok().is(AsmToken::Dollar)) {
04429     Parser.Lex(); // Eat '#' or '$'.
04430     // Explicitly look for a '-', as we need to encode negative zero
04431     // differently.
04432     bool isNegative = Parser.getTok().is(AsmToken::Minus);
04433     const MCExpr *Offset;
04434     SMLoc E;
04435     if (getParser().parseExpression(Offset, E))
04436       return MatchOperand_ParseFail;
04437     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
04438     if (!CE) {
04439       Error(S, "constant expression expected");
04440       return MatchOperand_ParseFail;
04441     }
04442     // Negative zero is encoded as the flag value INT32_MIN.
04443     int32_t Val = CE->getValue();
04444     if (isNegative && Val == 0)
04445       Val = INT32_MIN;
04446 
04447     Operands.push_back(
04448       ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
04449 
04450     return MatchOperand_Success;
04451   }
04452 
04453 
04454   bool haveEaten = false;
04455   bool isAdd = true;
04456   if (Tok.is(AsmToken::Plus)) {
04457     Parser.Lex(); // Eat the '+' token.
04458     haveEaten = true;
04459   } else if (Tok.is(AsmToken::Minus)) {
04460     Parser.Lex(); // Eat the '-' token.
04461     isAdd = false;
04462     haveEaten = true;
04463   }
04464 
04465   Tok = Parser.getTok();
04466   int Reg = tryParseRegister();
04467   if (Reg == -1) {
04468     if (!haveEaten)
04469       return MatchOperand_NoMatch;
04470     Error(Tok.getLoc(), "register expected");
04471     return MatchOperand_ParseFail;
04472   }
04473 
04474   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
04475                                                   0, S, Tok.getEndLoc()));
04476 
04477   return MatchOperand_Success;
04478 }
04479 
04480 /// Convert parsed operands to MCInst.  Needed here because this instruction
04481 /// only has two register operands, but multiplication is commutative so
04482 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
04483 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
04484                                     const OperandVector &Operands) {
04485   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
04486   ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
04487   // If we have a three-operand form, make sure to set Rn to be the operand
04488   // that isn't the same as Rd.
04489   unsigned RegOp = 4;
04490   if (Operands.size() == 6 &&
04491       ((ARMOperand &)*Operands[4]).getReg() ==
04492           ((ARMOperand &)*Operands[3]).getReg())
04493     RegOp = 5;
04494   ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
04495   Inst.addOperand(Inst.getOperand(0));
04496   ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
04497 }
04498 
04499 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
04500                                     const OperandVector &Operands) {
04501   int CondOp = -1, ImmOp = -1;
04502   switch(Inst.getOpcode()) {
04503     case ARM::tB:
04504     case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
04505 
04506     case ARM::t2B:
04507     case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
04508 
04509     default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
04510   }
04511   // first decide whether or not the branch should be conditional
04512   // by looking at it's location relative to an IT block
04513   if(inITBlock()) {
04514     // inside an IT block we cannot have any conditional branches. any 
04515     // such instructions needs to be converted to unconditional form
04516     switch(Inst.getOpcode()) {
04517       case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
04518       case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
04519     }
04520   } else {
04521     // outside IT blocks we can only have unconditional branches with AL
04522     // condition code or conditional branches with non-AL condition code
04523     unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
04524     switch(Inst.getOpcode()) {
04525       case ARM::tB:
04526       case ARM::tBcc: 
04527         Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc); 
04528         break;
04529       case ARM::t2B:
04530       case ARM::t2Bcc: 
04531         Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
04532         break;
04533     }
04534   }
04535 
04536   // now decide on encoding size based on branch target range
04537   switch(Inst.getOpcode()) {
04538     // classify tB as either t2B or t1B based on range of immediate operand
04539     case ARM::tB: {
04540       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
04541       if (!op.isSignedOffset<11, 1>() && isThumbTwo())
04542         Inst.setOpcode(ARM::t2B);
04543       break;
04544     }
04545     // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
04546     case ARM::tBcc: {
04547       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
04548       if (!op.isSignedOffset<8, 1>() && isThumbTwo())
04549         Inst.setOpcode(ARM::t2Bcc);
04550       break;
04551     }
04552   }
04553   ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
04554   ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
04555 }
04556 
04557 /// Parse an ARM memory expression, return false if successful else return true
04558 /// or an error.  The first token must be a '[' when called.
04559 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
04560   SMLoc S, E;
04561   assert(Parser.getTok().is(AsmToken::LBrac) &&
04562          "Token is not a Left Bracket");
04563   S = Parser.getTok().getLoc();
04564   Parser.Lex(); // Eat left bracket token.
04565 
04566   const AsmToken &BaseRegTok = Parser.getTok();
04567   int BaseRegNum = tryParseRegister();
04568   if (BaseRegNum == -1)
04569     return Error(BaseRegTok.getLoc(), "register expected");
04570 
04571   // The next token must either be a comma, a colon or a closing bracket.
04572   const AsmToken &Tok = Parser.getTok();
04573   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
04574       !Tok.is(AsmToken::RBrac))
04575     return Error(Tok.getLoc(), "malformed memory operand");
04576 
04577   if (Tok.is(AsmToken::RBrac)) {
04578     E = Tok.getEndLoc();
04579     Parser.Lex(); // Eat right bracket token.
04580 
04581     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
04582                                              ARM_AM::no_shift, 0, 0, false,
04583                                              S, E));
04584 
04585     // If there's a pre-indexing writeback marker, '!', just add it as a token
04586     // operand. It's rather odd, but syntactically valid.
04587     if (Parser.getTok().is(AsmToken::Exclaim)) {
04588       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
04589       Parser.Lex(); // Eat the '!'.
04590     }
04591 
04592     return false;
04593   }
04594 
04595   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
04596          "Lost colon or comma in memory operand?!");
04597   if (Tok.is(AsmToken::Comma)) {
04598     Parser.Lex(); // Eat the comma.
04599   }
04600 
04601   // If we have a ':', it's an alignment specifier.
04602   if (Parser.getTok().is(AsmToken::Colon)) {
04603     Parser.Lex(); // Eat the ':'.
04604     E = Parser.getTok().getLoc();
04605     SMLoc AlignmentLoc = Tok.getLoc();
04606 
04607     const MCExpr *Expr;
04608     if (getParser().parseExpression(Expr))
04609      return true;
04610 
04611     // The expression has to be a constant. Memory references with relocations
04612     // don't come through here, as they use the <label> forms of the relevant
04613     // instructions.
04614     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
04615     if (!CE)
04616       return Error (E, "constant expression expected");
04617 
04618     unsigned Align = 0;
04619     switch (CE->getValue()) {
04620     default:
04621       return Error(E,
04622                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
04623     case 16:  Align = 2; break;
04624     case 32:  Align = 4; break;
04625     case 64:  Align = 8; break;
04626     case 128: Align = 16; break;
04627     case 256: Align = 32; break;
04628     }
04629 
04630     // Now we should have the closing ']'
04631     if (Parser.getTok().isNot(AsmToken::RBrac))
04632       return Error(Parser.getTok().getLoc(), "']' expected");
04633     E = Parser.getTok().getEndLoc();
04634     Parser.Lex(); // Eat right bracket token.
04635 
04636     // Don't worry about range checking the value here. That's handled by
04637     // the is*() predicates.
04638     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
04639                                              ARM_AM::no_shift, 0, Align,
04640                                              false, S, E, AlignmentLoc));
04641 
04642     // If there's a pre-indexing writeback marker, '!', just add it as a token
04643     // operand.
04644     if (Parser.getTok().is(AsmToken::Exclaim)) {
04645       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
04646       Parser.Lex(); // Eat the '!'.
04647     }
04648 
04649     return false;
04650   }
04651 
04652   // If we have a '#', it's an immediate offset, else assume it's a register
04653   // offset. Be friendly and also accept a plain integer (without a leading
04654   // hash) for gas compatibility.
04655   if (Parser.getTok().is(AsmToken::Hash) ||
04656       Parser.getTok().is(AsmToken::Dollar) ||
04657       Parser.getTok().is(AsmToken::Integer)) {
04658     if (Parser.getTok().isNot(AsmToken::Integer))
04659       Parser.Lex(); // Eat '#' or '$'.
04660     E = Parser.getTok().getLoc();
04661 
04662     bool isNegative = getParser().getTok().is(AsmToken::Minus);
04663     const MCExpr *Offset;
04664     if (getParser().parseExpression(Offset))
04665      return true;
04666 
04667     // The expression has to be a constant. Memory references with relocations
04668     // don't come through here, as they use the <label> forms of the relevant
04669     // instructions.
04670     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
04671     if (!CE)
04672       return Error (E, "constant expression expected");
04673 
04674     // If the constant was #-0, represent it as INT32_MIN.
04675     int32_t Val = CE->getValue();
04676     if (isNegative && Val == 0)
04677       CE = MCConstantExpr::Create(INT32_MIN, getContext());
04678 
04679     // Now we should have the closing ']'
04680     if (Parser.getTok().isNot(AsmToken::RBrac))
04681       return Error(Parser.getTok().getLoc(), "']' expected");
04682     E = Parser.getTok().getEndLoc();
04683     Parser.Lex(); // Eat right bracket token.
04684 
04685     // Don't worry about range checking the value here. That's handled by
04686     // the is*() predicates.
04687     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
04688                                              ARM_AM::no_shift, 0, 0,
04689                                              false, S, E));
04690 
04691     // If there's a pre-indexing writeback marker, '!', just add it as a token
04692     // operand.
04693     if (Parser.getTok().is(AsmToken::Exclaim)) {
04694       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
04695       Parser.Lex(); // Eat the '!'.
04696     }
04697 
04698     return false;
04699   }
04700 
04701   // The register offset is optionally preceded by a '+' or '-'
04702   bool isNegative = false;
04703   if (Parser.getTok().is(AsmToken::Minus)) {
04704     isNegative = true;
04705     Parser.Lex(); // Eat the '-'.
04706   } else if (Parser.getTok().is(AsmToken::Plus)) {
04707     // Nothing to do.
04708     Parser.Lex(); // Eat the '+'.
04709   }
04710 
04711   E = Parser.getTok().getLoc();
04712   int OffsetRegNum = tryParseRegister();
04713   if (OffsetRegNum == -1)
04714     return Error(E, "register expected");
04715 
04716   // If there's a shift operator, handle it.
04717   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
04718   unsigned ShiftImm = 0;
04719   if (Parser.getTok().is(AsmToken::Comma)) {
04720     Parser.Lex(); // Eat the ','.
04721     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
04722       return true;
04723   }
04724 
04725   // Now we should have the closing ']'
04726   if (Parser.getTok().isNot(AsmToken::RBrac))
04727     return Error(Parser.getTok().getLoc(), "']' expected");
04728   E = Parser.getTok().getEndLoc();
04729   Parser.Lex(); // Eat right bracket token.
04730 
04731   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
04732                                            ShiftType, ShiftImm, 0, isNegative,
04733                                            S, E));
04734 
04735   // If there's a pre-indexing writeback marker, '!', just add it as a token
04736   // operand.
04737   if (Parser.getTok().is(AsmToken::Exclaim)) {
04738     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
04739     Parser.Lex(); // Eat the '!'.
04740   }
04741 
04742   return false;
04743 }
04744 
04745 /// parseMemRegOffsetShift - one of these two:
04746 ///   ( lsl | lsr | asr | ror ) , # shift_amount
04747 ///   rrx
04748 /// return true if it parses a shift otherwise it returns false.
04749 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
04750                                           unsigned &Amount) {
04751   SMLoc Loc = Parser.getTok().getLoc();
04752   const AsmToken &Tok = Parser.getTok();
04753   if (Tok.isNot(AsmToken::Identifier))
04754     return true;
04755   StringRef ShiftName = Tok.getString();
04756   if (ShiftName == "lsl" || ShiftName == "LSL" ||
04757       ShiftName == "asl" || ShiftName == "ASL")
04758     St = ARM_AM::lsl;
04759   else if (ShiftName == "lsr" || ShiftName == "LSR")
04760     St = ARM_AM::lsr;
04761   else if (ShiftName == "asr" || ShiftName == "ASR")
04762     St = ARM_AM::asr;
04763   else if (ShiftName == "ror" || ShiftName == "ROR")
04764     St = ARM_AM::ror;
04765   else if (ShiftName == "rrx" || ShiftName == "RRX")
04766     St = ARM_AM::rrx;
04767   else
04768     return Error(Loc, "illegal shift operator");
04769   Parser.Lex(); // Eat shift type token.
04770 
04771   // rrx stands alone.
04772   Amount = 0;
04773   if (St != ARM_AM::rrx) {
04774     Loc = Parser.getTok().getLoc();
04775     // A '#' and a shift amount.
04776     const AsmToken &HashTok = Parser.getTok();
04777     if (HashTok.isNot(AsmToken::Hash) &&
04778         HashTok.isNot(AsmToken::Dollar))
04779       return Error(HashTok.getLoc(), "'#' expected");
04780     Parser.Lex(); // Eat hash token.
04781 
04782     const MCExpr *Expr;
04783     if (getParser().parseExpression(Expr))
04784       return true;
04785     // Range check the immediate.
04786     // lsl, ror: 0 <= imm <= 31
04787     // lsr, asr: 0 <= imm <= 32
04788     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
04789     if (!CE)
04790       return Error(Loc, "shift amount must be an immediate");
04791     int64_t Imm = CE->getValue();
04792     if (Imm < 0 ||
04793         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
04794         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
04795       return Error(Loc, "immediate shift value out of range");
04796     // If <ShiftTy> #0, turn it into a no_shift.
04797     if (Imm == 0)
04798       St = ARM_AM::lsl;
04799     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
04800     if (Imm == 32)
04801       Imm = 0;
04802     Amount = Imm;
04803   }
04804 
04805   return false;
04806 }
04807 
04808 /// parseFPImm - A floating point immediate expression operand.
04809 ARMAsmParser::OperandMatchResultTy
04810 ARMAsmParser::parseFPImm(OperandVector &Operands) {
04811   // Anything that can accept a floating point constant as an operand
04812   // needs to go through here, as the regular parseExpression is
04813   // integer only.
04814   //
04815   // This routine still creates a generic Immediate operand, containing
04816   // a bitcast of the 64-bit floating point value. The various operands
04817   // that accept floats can check whether the value is valid for them
04818   // via the standard is*() predicates.
04819 
04820   SMLoc S = Parser.getTok().getLoc();
04821 
04822   if (Parser.getTok().isNot(AsmToken::Hash) &&
04823       Parser.getTok().isNot(AsmToken::Dollar))
04824     return MatchOperand_NoMatch;
04825 
04826   // Disambiguate the VMOV forms that can accept an FP immediate.
04827   // vmov.f32 <sreg>, #imm
04828   // vmov.f64 <dreg>, #imm
04829   // vmov.f32 <dreg>, #imm  @ vector f32x2
04830   // vmov.f32 <qreg>, #imm  @ vector f32x4
04831   //
04832   // There are also the NEON VMOV instructions which expect an
04833   // integer constant. Make sure we don't try to parse an FPImm
04834   // for these:
04835   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
04836   ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
04837   bool isVmovf = TyOp.isToken() &&
04838                  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64");
04839   ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
04840   bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
04841                                          Mnemonic.getToken() == "fconsts");
04842   if (!(isVmovf || isFconst))
04843     return MatchOperand_NoMatch;
04844 
04845   Parser.Lex(); // Eat '#' or '$'.
04846 
04847   // Handle negation, as that still comes through as a separate token.
04848   bool isNegative = false;
04849   if (Parser.getTok().is(AsmToken::Minus)) {
04850     isNegative = true;
04851     Parser.Lex();
04852   }
04853   const AsmToken &Tok = Parser.getTok();
04854   SMLoc Loc = Tok.getLoc();
04855   if (Tok.is(AsmToken::Real) && isVmovf) {
04856     APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
04857     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
04858     // If we had a '-' in front, toggle the sign bit.
04859     IntVal ^= (uint64_t)isNegative << 31;
04860     Parser.Lex(); // Eat the token.
04861     Operands.push_back(ARMOperand::CreateImm(
04862           MCConstantExpr::Create(IntVal, getContext()),
04863           S, Parser.getTok().getLoc()));
04864     return MatchOperand_Success;
04865   }
04866   // Also handle plain integers. Instructions which allow floating point
04867   // immediates also allow a raw encoded 8-bit value.
04868   if (Tok.is(AsmToken::Integer) && isFconst) {
04869     int64_t Val = Tok.getIntVal();
04870     Parser.Lex(); // Eat the token.
04871     if (Val > 255 || Val < 0) {
04872       Error(Loc, "encoded floating point value out of range");
04873       return MatchOperand_ParseFail;
04874     }
04875     float RealVal = ARM_AM::getFPImmFloat(Val);
04876     Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
04877 
04878     Operands.push_back(ARMOperand::CreateImm(
04879         MCConstantExpr::Create(Val, getContext()), S,
04880         Parser.getTok().getLoc()));
04881     return MatchOperand_Success;
04882   }
04883 
04884   Error(Loc, "invalid floating point immediate");
04885   return MatchOperand_ParseFail;
04886 }
04887 
04888 /// Parse a arm instruction operand.  For now this parses the operand regardless
04889 /// of the mnemonic.
04890 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
04891   SMLoc S, E;
04892 
04893   // Check if the current operand has a custom associated parser, if so, try to
04894   // custom parse the operand, or fallback to the general approach.
04895   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
04896   if (ResTy == MatchOperand_Success)
04897     return false;
04898   // If there wasn't a custom match, try the generic matcher below. Otherwise,
04899   // there was a match, but an error occurred, in which case, just return that
04900   // the operand parsing failed.
04901   if (ResTy == MatchOperand_ParseFail)
04902     return true;
04903 
04904   switch (getLexer().getKind()) {
04905   default:
04906     Error(Parser.getTok().getLoc(), "unexpected token in operand");
04907     return true;
04908   case AsmToken::Identifier: {
04909     // If we've seen a branch mnemonic, the next operand must be a label.  This
04910     // is true even if the label is a register name.  So "br r1" means branch to
04911     // label "r1".
04912     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
04913     if (!ExpectLabel) {
04914       if (!tryParseRegisterWithWriteBack(Operands))
04915         return false;
04916       int Res = tryParseShiftRegister(Operands);
04917       if (Res == 0) // success
04918         return false;
04919       else if (Res == -1) // irrecoverable error
04920         return true;
04921       // If this is VMRS, check for the apsr_nzcv operand.
04922       if (Mnemonic == "vmrs" &&
04923           Parser.getTok().getString().equals_lower("apsr_nzcv")) {
04924         S = Parser.getTok().getLoc();
04925         Parser.Lex();
04926         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
04927         return false;
04928       }
04929     }
04930 
04931     // Fall though for the Identifier case that is not a register or a
04932     // special name.
04933   }
04934   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
04935   case AsmToken::Integer: // things like 1f and 2b as a branch targets
04936   case AsmToken::String:  // quoted label names.
04937   case AsmToken::Dot: {   // . as a branch target
04938     // This was not a register so parse other operands that start with an
04939     // identifier (like labels) as expressions and create them as immediates.
04940     const MCExpr *IdVal;
04941     S = Parser.getTok().getLoc();
04942     if (getParser().parseExpression(IdVal))
04943       return true;
04944     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
04945     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
04946     return false;
04947   }
04948   case AsmToken::LBrac:
04949     return parseMemory(Operands);
04950   case AsmToken::LCurly:
04951     return parseRegisterList(Operands);
04952   case AsmToken::Dollar:
04953   case AsmToken::Hash: {
04954     // #42 -> immediate.
04955     S = Parser.getTok().getLoc();
04956     Parser.Lex();
04957 
04958     if (Parser.getTok().isNot(AsmToken::Colon)) {
04959       bool isNegative = Parser.getTok().is(AsmToken::Minus);
04960       const MCExpr *ImmVal;
04961       if (getParser().parseExpression(ImmVal))
04962         return true;
04963       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
04964       if (CE) {
04965         int32_t Val = CE->getValue();
04966         if (isNegative && Val == 0)
04967           ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
04968       }
04969       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
04970       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
04971 
04972       // There can be a trailing '!' on operands that we want as a separate
04973       // '!' Token operand. Handle that here. For example, the compatibility
04974       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
04975       if (Parser.getTok().is(AsmToken::Exclaim)) {
04976         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
04977                                                    Parser.getTok().getLoc()));
04978         Parser.Lex(); // Eat exclaim token
04979       }
04980       return false;
04981     }
04982     // w/ a ':' after the '#', it's just like a plain ':'.
04983     // FALLTHROUGH
04984   }
04985   case AsmToken::Colon: {
04986     // ":lower16:" and ":upper16:" expression prefixes
04987     // FIXME: Check it's an expression prefix,
04988     // e.g. (FOO - :lower16:BAR) isn't legal.
04989     ARMMCExpr::VariantKind RefKind;
04990     if (parsePrefix(RefKind))
04991       return true;
04992 
04993     const MCExpr *SubExprVal;
04994     if (getParser().parseExpression(SubExprVal))
04995       return true;
04996 
04997     const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
04998                                               getContext());
04999     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
05000     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
05001     return false;
05002   }
05003   case AsmToken::Equal: {
05004     if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
05005       return Error(Parser.getTok().getLoc(), "unexpected token in operand");
05006 
05007     Parser.Lex(); // Eat '='
05008     const MCExpr *SubExprVal;
05009     if (getParser().parseExpression(SubExprVal))
05010       return true;
05011     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
05012 
05013     const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal);
05014     Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E));
05015     return false;
05016   }
05017   }
05018 }
05019 
05020 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
05021 //  :lower16: and :upper16:.
05022 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
05023   RefKind = ARMMCExpr::VK_ARM_None;
05024 
05025   // consume an optional '#' (GNU compatibility)
05026   if (getLexer().is(AsmToken::Hash))
05027     Parser.Lex();
05028 
05029   // :lower16: and :upper16: modifiers
05030   assert(getLexer().is(AsmToken::Colon) && "expected a :");
05031   Parser.Lex(); // Eat ':'
05032 
05033   if (getLexer().isNot(AsmToken::Identifier)) {
05034     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
05035     return true;
05036   }
05037 
05038   StringRef IDVal = Parser.getTok().getIdentifier();
05039   if (IDVal == "lower16") {
05040     RefKind = ARMMCExpr::VK_ARM_LO16;
05041   } else if (IDVal == "upper16") {
05042     RefKind = ARMMCExpr::VK_ARM_HI16;
05043   } else {
05044     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
05045     return true;
05046   }
05047   Parser.Lex();
05048 
05049   if (getLexer().isNot(AsmToken::Colon)) {
05050     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
05051     return true;
05052   }
05053   Parser.Lex(); // Eat the last ':'
05054   return false;
05055 }
05056 
05057 /// \brief Given a mnemonic, split out possible predication code and carry
05058 /// setting letters to form a canonical mnemonic and flags.
05059 //
05060 // FIXME: Would be nice to autogen this.
05061 // FIXME: This is a bit of a maze of special cases.
05062 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
05063                                       unsigned &PredicationCode,
05064                                       bool &CarrySetting,
05065                                       unsigned &ProcessorIMod,
05066                                       StringRef &ITMask) {
05067   PredicationCode = ARMCC::AL;
05068   CarrySetting = false;
05069   ProcessorIMod = 0;
05070 
05071   // Ignore some mnemonics we know aren't predicated forms.
05072   //
05073   // FIXME: Would be nice to autogen this.
05074   if ((Mnemonic == "movs" && isThumb()) ||
05075       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
05076       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
05077       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
05078       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
05079       Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
05080       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
05081       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
05082       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
05083       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
05084       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
05085       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
05086       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic.startswith("vsel"))
05087     return Mnemonic;
05088 
05089   // First, split out any predication code. Ignore mnemonics we know aren't
05090   // predicated but do have a carry-set and so weren't caught above.
05091   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
05092       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
05093       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
05094       Mnemonic != "sbcs" && Mnemonic != "rscs") {
05095     unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
05096       .Case("eq", ARMCC::EQ)
05097       .Case("ne", ARMCC::NE)
05098       .Case("hs", ARMCC::HS)
05099       .Case("cs", ARMCC::HS)
05100       .Case("lo", ARMCC::LO)
05101       .Case("cc", ARMCC::LO)
05102       .Case("mi", ARMCC::MI)
05103       .Case("pl", ARMCC::PL)
05104       .Case("vs", ARMCC::VS)
05105       .Case("vc", ARMCC::VC)
05106       .Case("hi", ARMCC::HI)
05107       .Case("ls", ARMCC::LS)
05108       .Case("ge", ARMCC::GE)
05109       .Case("lt", ARMCC::LT)
05110       .Case("gt", ARMCC::GT)
05111       .Case("le", ARMCC::LE)
05112       .Case("al", ARMCC::AL)
05113       .Default(~0U);
05114     if (CC != ~0U) {
05115       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
05116       PredicationCode = CC;
05117     }
05118   }
05119 
05120   // Next, determine if we have a carry setting bit. We explicitly ignore all
05121   // the instructions we know end in 's'.
05122   if (Mnemonic.endswith("s") &&
05123       !(Mnemonic == "cps" || Mnemonic == "mls" ||
05124         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
05125         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
05126         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
05127         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
05128         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
05129         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
05130         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
05131         Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
05132         (Mnemonic == "movs" && isThumb()))) {
05133     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
05134     CarrySetting = true;
05135   }
05136 
05137   // The "cps" instruction can have a interrupt mode operand which is glued into
05138   // the mnemonic. Check if this is the case, split it and parse the imod op
05139   if (Mnemonic.startswith("cps")) {
05140     // Split out any imod code.
05141     unsigned IMod =
05142       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
05143       .Case("ie", ARM_PROC::IE)
05144       .Case("id", ARM_PROC::ID)
05145       .Default(~0U);
05146     if (IMod != ~0U) {
05147       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
05148       ProcessorIMod = IMod;
05149     }
05150   }
05151 
05152   // The "it" instruction has the condition mask on the end of the mnemonic.
05153   if (Mnemonic.startswith("it")) {
05154     ITMask = Mnemonic.slice(2, Mnemonic.size());
05155     Mnemonic = Mnemonic.slice(0, 2);
05156   }
05157 
05158   return Mnemonic;
05159 }
05160 
05161 /// \brief Given a canonical mnemonic, determine if the instruction ever allows
05162 /// inclusion of carry set or predication code operands.
05163 //
05164 // FIXME: It would be nice to autogen this.
05165 void ARMAsmParser::
05166 getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
05167                      bool &CanAcceptCarrySet, bool &CanAcceptPredicationCode) {
05168   if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
05169       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
05170       Mnemonic == "add" || Mnemonic == "adc" ||
05171       Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
05172       Mnemonic == "orr" || Mnemonic == "mvn" ||
05173       Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
05174       Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
05175       Mnemonic == "vfm" || Mnemonic == "vfnm" ||
05176       (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
05177                       Mnemonic == "mla" || Mnemonic == "smlal" ||
05178                       Mnemonic == "umlal" || Mnemonic == "umull"))) {
05179     CanAcceptCarrySet = true;
05180   } else
05181     CanAcceptCarrySet = false;
05182 
05183   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
05184       Mnemonic == "cps" ||  Mnemonic == "it" ||  Mnemonic == "cbz" ||
05185       Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
05186       Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
05187       Mnemonic.startswith("vsel") ||
05188       Mnemonic == "vmaxnm" || Mnemonic == "vminnm" || Mnemonic == "vcvta" ||
05189       Mnemonic == "vcvtn" || Mnemonic == "vcvtp" || Mnemonic == "vcvtm" ||
05190       Mnemonic == "vrinta" || Mnemonic == "vrintn" || Mnemonic == "vrintp" ||
05191       Mnemonic == "vrintm" || Mnemonic.startswith("aes") ||
05192       Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
05193       (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) {
05194     // These mnemonics are never predicable
05195     CanAcceptPredicationCode = false;
05196   } else if (!isThumb()) {
05197     // Some instructions are only predicable in Thumb mode
05198     CanAcceptPredicationCode
05199       = Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
05200         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
05201         Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" &&
05202         Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" &&
05203         Mnemonic != "ldc2" && Mnemonic != "ldc2l" &&
05204         Mnemonic != "stc2" && Mnemonic != "stc2l" &&
05205         !Mnemonic.startswith("rfe") && !Mnemonic.startswith("srs");
05206   } else if (isThumbOne()) {
05207     if (hasV6MOps())
05208       CanAcceptPredicationCode = Mnemonic != "movs";
05209     else
05210       CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
05211   } else
05212     CanAcceptPredicationCode = true;
05213 }
05214 
05215 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
05216                                           OperandVector &Operands) {
05217   // FIXME: This is all horribly hacky. We really need a better way to deal
05218   // with optional operands like this in the matcher table.
05219 
05220   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
05221   // another does not. Specifically, the MOVW instruction does not. So we
05222   // special case it here and remove the defaulted (non-setting) cc_out
05223   // operand if that's the instruction we're trying to match.
05224   //
05225   // We do this as post-processing of the explicit operands rather than just
05226   // conditionally adding the cc_out in the first place because we need
05227   // to check the type of the parsed immediate operand.
05228   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
05229       !static_cast<ARMOperand &>(*Operands[4]).isARMSOImm() &&
05230       static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
05231       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
05232     return true;
05233 
05234   // Register-register 'add' for thumb does not have a cc_out operand
05235   // when there are only two register operands.
05236   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
05237       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
05238       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
05239       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
05240     return true;
05241   // Register-register 'add' for thumb does not have a cc_out operand
05242   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
05243   // have to check the immediate range here since Thumb2 has a variant
05244   // that can handle a different range and has a cc_out operand.
05245   if (((isThumb() && Mnemonic == "add") ||
05246        (isThumbTwo() && Mnemonic == "sub")) &&
05247       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
05248       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
05249       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
05250       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
05251       ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
05252        static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
05253     return true;
05254   // For Thumb2, add/sub immediate does not have a cc_out operand for the
05255   // imm0_4095 variant. That's the least-preferred variant when
05256   // selecting via the generic "add" mnemonic, so to know that we
05257   // should remove the cc_out operand, we have to explicitly check that
05258   // it's not one of the other variants. Ugh.
05259   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
05260       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
05261       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
05262       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
05263     // Nest conditions rather than one big 'if' statement for readability.
05264     //
05265     // If both registers are low, we're in an IT block, and the immediate is
05266     // in range, we should use encoding T1 instead, which has a cc_out.
05267     if (inITBlock() &&
05268         isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
05269         isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
05270         static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
05271       return false;
05272     // Check against T3. If the second register is the PC, this is an
05273     // alternate form of ADR, which uses encoding T4, so check for that too.
05274     if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
05275         static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
05276       return false;
05277 
05278     // Otherwise, we use encoding T4, which does not have a cc_out
05279     // operand.
05280     return true;
05281   }
05282 
05283   // The thumb2 multiply instruction doesn't have a CCOut register, so
05284   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
05285   // use the 16-bit encoding or not.
05286   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
05287       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
05288       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
05289       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
05290       static_cast<ARMOperand &>(*Operands[5]).isReg() &&
05291       // If the registers aren't low regs, the destination reg isn't the
05292       // same as one of the source regs, or the cc_out operand is zero
05293       // outside of an IT block, we have to use the 32-bit encoding, so
05294       // remove the cc_out operand.
05295       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
05296        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
05297        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
05298        !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
05299                             static_cast<ARMOperand &>(*Operands[5]).getReg() &&
05300                         static_cast<ARMOperand &>(*Operands[3]).getReg() !=
05301                             static_cast<ARMOperand &>(*Operands[4]).getReg())))
05302     return true;
05303 
05304   // Also check the 'mul' syntax variant that doesn't specify an explicit
05305   // destination register.
05306   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
05307       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
05308       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
05309       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
05310       // If the registers aren't low regs  or the cc_out operand is zero
05311       // outside of an IT block, we have to use the 32-bit encoding, so
05312       // remove the cc_out operand.
05313       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
05314        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
05315        !inITBlock()))
05316     return true;
05317 
05318 
05319 
05320   // Register-register 'add/sub' for thumb does not have a cc_out operand
05321   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
05322   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
05323   // right, this will result in better diagnostics (which operand is off)
05324   // anyway.
05325   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
05326       (Operands.size() == 5 || Operands.size() == 6) &&
05327       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
05328       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
05329       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
05330       (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
05331        (Operands.size() == 6 &&
05332         static_cast<ARMOperand &>(*Operands[5]).isImm())))
05333     return true;
05334 
05335   return false;
05336 }
05337 
05338 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
05339                                               OperandVector &Operands) {
05340   // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON
05341   unsigned RegIdx = 3;
05342   if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") &&
05343       static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32") {
05344     if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
05345         static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32")
05346       RegIdx = 4;
05347 
05348     if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
05349         (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
05350              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
05351          ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
05352              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
05353       return true;
05354   }
05355   return false;
05356 }
05357 
05358 static bool isDataTypeToken(StringRef Tok) {
05359   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
05360     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
05361     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
05362     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
05363     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
05364     Tok == ".f" || Tok == ".d";
05365 }
05366 
05367 // FIXME: This bit should probably be handled via an explicit match class
05368 // in the .td files that matches the suffix instead of having it be
05369 // a literal string token the way it is now.
05370 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
05371   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
05372 }
05373 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
05374                                  unsigned VariantID);
05375 
05376 static bool RequiresVFPRegListValidation(StringRef Inst,
05377                                          bool &AcceptSinglePrecisionOnly,
05378                                          bool &AcceptDoublePrecisionOnly) {
05379   if (Inst.size() < 7)
05380     return false;
05381 
05382   if (Inst.startswith("fldm") || Inst.startswith("fstm")) {
05383     StringRef AddressingMode = Inst.substr(4, 2);
05384     if (AddressingMode == "ia" || AddressingMode == "db" ||
05385         AddressingMode == "ea" || AddressingMode == "fd") {
05386       AcceptSinglePrecisionOnly = Inst[6] == 's';
05387       AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x';
05388       return true;
05389     }
05390   }
05391 
05392   return false;
05393 }
05394 
05395 /// Parse an arm instruction mnemonic followed by its operands.
05396 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
05397                                     SMLoc NameLoc, OperandVector &Operands) {
05398   // FIXME: Can this be done via tablegen in some fashion?
05399   bool RequireVFPRegisterListCheck;
05400   bool AcceptSinglePrecisionOnly;
05401   bool AcceptDoublePrecisionOnly;
05402   RequireVFPRegisterListCheck =
05403     RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly,
05404                                  AcceptDoublePrecisionOnly);
05405 
05406   // Apply mnemonic aliases before doing anything else, as the destination
05407   // mnemonic may include suffices and we want to handle them normally.
05408   // The generic tblgen'erated code does this later, at the start of
05409   // MatchInstructionImpl(), but that's too late for aliases that include
05410   // any sort of suffix.
05411   uint64_t AvailableFeatures = getAvailableFeatures();
05412   unsigned AssemblerDialect = getParser().getAssemblerDialect();
05413   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
05414 
05415   // First check for the ARM-specific .req directive.
05416   if (Parser.getTok().is(AsmToken::Identifier) &&
05417       Parser.getTok().getIdentifier() == ".req") {
05418     parseDirectiveReq(Name, NameLoc);
05419     // We always return 'error' for this, as we're done with this
05420     // statement and don't need to match the 'instruction."
05421     return true;
05422   }
05423 
05424   // Create the leading tokens for the mnemonic, split by '.' characters.
05425   size_t Start = 0, Next = Name.find('.');
05426   StringRef Mnemonic = Name.slice(Start, Next);
05427 
05428   // Split out the predication code and carry setting flag from the mnemonic.
05429   unsigned PredicationCode;
05430   unsigned ProcessorIMod;
05431   bool CarrySetting;
05432   StringRef ITMask;
05433   Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
05434                            ProcessorIMod, ITMask);
05435 
05436   // In Thumb1, only the branch (B) instruction can be predicated.
05437   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
05438     Parser.eatToEndOfStatement();
05439     return Error(NameLoc, "conditional execution not supported in Thumb1");
05440   }
05441 
05442   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
05443 
05444   // Handle the IT instruction ITMask. Convert it to a bitmask. This
05445   // is the mask as it will be for the IT encoding if the conditional
05446   // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
05447   // where the conditional bit0 is zero, the instruction post-processing
05448   // will adjust the mask accordingly.
05449   if (Mnemonic == "it") {
05450     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
05451     if (ITMask.size() > 3) {
05452       Parser.eatToEndOfStatement();
05453       return Error(Loc, "too many conditions on IT instruction");
05454     }
05455     unsigned Mask = 8;
05456     for (unsigned i = ITMask.size(); i != 0; --i) {
05457       char pos = ITMask[i - 1];
05458       if (pos != 't' && pos != 'e') {
05459         Parser.eatToEndOfStatement();
05460         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
05461       }
05462       Mask >>= 1;
05463       if (ITMask[i - 1] == 't')
05464         Mask |= 8;
05465     }
05466     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
05467   }
05468 
05469   // FIXME: This is all a pretty gross hack. We should automatically handle
05470   // optional operands like this via tblgen.
05471 
05472   // Next, add the CCOut and ConditionCode operands, if needed.
05473   //
05474   // For mnemonics which can ever incorporate a carry setting bit or predication
05475   // code, our matching model involves us always generating CCOut and
05476   // ConditionCode operands to match the mnemonic "as written" and then we let
05477   // the matcher deal with finding the right instruction or generating an
05478   // appropriate error.
05479   bool CanAcceptCarrySet, CanAcceptPredicationCode;
05480   getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
05481 
05482   // If we had a carry-set on an instruction that can't do that, issue an
05483   // error.
05484   if (!CanAcceptCarrySet && CarrySetting) {
05485     Parser.eatToEndOfStatement();
05486     return Error(NameLoc, "instruction '" + Mnemonic +
05487                  "' can not set flags, but 's' suffix specified");
05488   }
05489   // If we had a predication code on an instruction that can't do that, issue an
05490   // error.
05491   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
05492     Parser.eatToEndOfStatement();
05493     return Error(NameLoc, "instruction '" + Mnemonic +
05494                  "' is not predicable, but condition code specified");
05495   }
05496 
05497   // Add the carry setting operand, if necessary.
05498   if (CanAcceptCarrySet) {
05499     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
05500     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
05501                                                Loc));
05502   }
05503 
05504   // Add the predication code operand, if necessary.
05505   if (CanAcceptPredicationCode) {
05506     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
05507                                       CarrySetting);
05508     Operands.push_back(ARMOperand::CreateCondCode(
05509                          ARMCC::CondCodes(PredicationCode), Loc));
05510   }
05511 
05512   // Add the processor imod operand, if necessary.
05513   if (ProcessorIMod) {
05514     Operands.push_back(ARMOperand::CreateImm(
05515           MCConstantExpr::Create(ProcessorIMod, getContext()),
05516                                  NameLoc, NameLoc));
05517   }
05518 
05519   // Add the remaining tokens in the mnemonic.
05520   while (Next != StringRef::npos) {
05521     Start = Next;
05522     Next = Name.find('.', Start + 1);
05523     StringRef ExtraToken = Name.slice(Start, Next);
05524 
05525     // Some NEON instructions have an optional datatype suffix that is
05526     // completely ignored. Check for that.
05527     if (isDataTypeToken(ExtraToken) &&
05528         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
05529       continue;
05530 
05531     // For for ARM mode generate an error if the .n qualifier is used.
05532     if (ExtraToken == ".n" && !isThumb()) {
05533       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
05534       Parser.eatToEndOfStatement();
05535       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
05536                    "arm mode");
05537     }
05538 
05539     // The .n qualifier is always discarded as that is what the tables
05540     // and matcher expect.  In ARM mode the .w qualifier has no effect,
05541     // so discard it to avoid errors that can be caused by the matcher.
05542     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
05543       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
05544       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
05545     }
05546   }
05547 
05548   // Read the remaining operands.
05549   if (getLexer().isNot(AsmToken::EndOfStatement)) {
05550     // Read the first operand.
05551     if (parseOperand(Operands, Mnemonic)) {
05552       Parser.eatToEndOfStatement();
05553       return true;
05554     }
05555 
05556     while (getLexer().is(AsmToken::Comma)) {
05557       Parser.Lex();  // Eat the comma.
05558 
05559       // Parse and remember the operand.
05560       if (parseOperand(Operands, Mnemonic)) {
05561         Parser.eatToEndOfStatement();
05562         return true;
05563       }
05564     }
05565   }
05566 
05567   if (getLexer().isNot(AsmToken::EndOfStatement)) {
05568     SMLoc Loc = getLexer().getLoc();
05569     Parser.eatToEndOfStatement();
05570     return Error(Loc, "unexpected token in argument list");
05571   }
05572 
05573   Parser.Lex(); // Consume the EndOfStatement
05574 
05575   if (RequireVFPRegisterListCheck) {
05576     ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back());
05577     if (AcceptSinglePrecisionOnly && !Op.isSPRRegList())
05578       return Error(Op.getStartLoc(),
05579                    "VFP/Neon single precision register expected");
05580     if (AcceptDoublePrecisionOnly && !Op.isDPRRegList())
05581       return Error(Op.getStartLoc(),
05582                    "VFP/Neon double precision register expected");
05583   }
05584 
05585   // Some instructions, mostly Thumb, have forms for the same mnemonic that
05586   // do and don't have a cc_out optional-def operand. With some spot-checks
05587   // of the operand list, we can figure out which variant we're trying to
05588   // parse and adjust accordingly before actually matching. We shouldn't ever
05589   // try to remove a cc_out operand that was explicitly set on the the
05590   // mnemonic, of course (CarrySetting == true). Reason number #317 the
05591   // table driven matcher doesn't fit well with the ARM instruction set.
05592   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
05593     Operands.erase(Operands.begin() + 1);
05594 
05595   // Some instructions have the same mnemonic, but don't always
05596   // have a predicate. Distinguish them here and delete the
05597   // predicate if needed.
05598   if (shouldOmitPredicateOperand(Mnemonic, Operands))
05599     Operands.erase(Operands.begin() + 1);
05600 
05601   // ARM mode 'blx' need special handling, as the register operand version
05602   // is predicable, but the label operand version is not. So, we can't rely
05603   // on the Mnemonic based checking to correctly figure out when to put
05604   // a k_CondCode operand in the list. If we're trying to match the label
05605   // version, remove the k_CondCode operand here.
05606   if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
05607       static_cast<ARMOperand &>(*Operands[2]).isImm())
05608     Operands.erase(Operands.begin() + 1);
05609 
05610   // Adjust operands of ldrexd/strexd to MCK_GPRPair.
05611   // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
05612   // a single GPRPair reg operand is used in the .td file to replace the two
05613   // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
05614   // expressed as a GPRPair, so we have to manually merge them.
05615   // FIXME: We would really like to be able to tablegen'erate this.
05616   if (!isThumb() && Operands.size() > 4 &&
05617       (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
05618        Mnemonic == "stlexd")) {
05619     bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
05620     unsigned Idx = isLoad ? 2 : 3;
05621     ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
05622     ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
05623 
05624     const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
05625     // Adjust only if Op1 and Op2 are GPRs.
05626     if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
05627         MRC.contains(Op2.getReg())) {
05628       unsigned Reg1 = Op1.getReg();
05629       unsigned Reg2 = Op2.getReg();
05630       unsigned Rt = MRI->getEncodingValue(Reg1);
05631       unsigned Rt2 = MRI->getEncodingValue(Reg2);
05632 
05633       // Rt2 must be Rt + 1 and Rt must be even.
05634       if (Rt + 1 != Rt2 || (Rt & 1)) {
05635         Error(Op2.getStartLoc(), isLoad
05636                                      ? "destination operands must be sequential"
05637                                      : "source operands must be sequential");
05638         return true;
05639       }
05640       unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
05641           &(MRI->getRegClass(ARM::GPRPairRegClassID)));
05642       Operands[Idx] =
05643           ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
05644       Operands.erase(Operands.begin() + Idx + 1);
05645     }
05646   }
05647 
05648   // GNU Assembler extension (compatibility)
05649   if ((Mnemonic == "ldrd" || Mnemonic == "strd")) {
05650     ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
05651     ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
05652     if (Op3.isMem()) {
05653       assert(Op2.isReg() && "expected register argument");
05654 
05655       unsigned SuperReg = MRI->getMatchingSuperReg(
05656           Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID));
05657 
05658       assert(SuperReg && "expected register pair");
05659 
05660       unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1);
05661 
05662       Operands.insert(
05663           Operands.begin() + 3,
05664           ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
05665     }
05666   }
05667 
05668   // FIXME: As said above, this is all a pretty gross hack.  This instruction
05669   // does not fit with other "subs" and tblgen.
05670   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
05671   // so the Mnemonic is the original name "subs" and delete the predicate
05672   // operand so it will match the table entry.
05673   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
05674       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
05675       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
05676       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
05677       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
05678       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
05679     Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
05680     Operands.erase(Operands.begin() + 1);
05681   }
05682   return false;
05683 }
05684 
05685 // Validate context-sensitive operand constraints.
05686 
05687 // return 'true' if register list contains non-low GPR registers,
05688 // 'false' otherwise. If Reg is in the register list or is HiReg, set
05689 // 'containsReg' to true.
05690 static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
05691                                  unsigned HiReg, bool &containsReg) {
05692   containsReg = false;
05693   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
05694     unsigned OpReg = Inst.getOperand(i).getReg();
05695     if (OpReg == Reg)
05696       containsReg = true;
05697     // Anything other than a low register isn't legal here.
05698     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
05699       return true;
05700   }
05701   return false;
05702 }
05703 
05704 // Check if the specified regisgter is in the register list of the inst,
05705 // starting at the indicated operand number.
05706 static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
05707   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
05708     unsigned OpReg = Inst.getOperand(i).getReg();
05709     if (OpReg == Reg)
05710       return true;
05711   }
05712   return false;
05713 }
05714 
05715 // Return true if instruction has the interesting property of being
05716 // allowed in IT blocks, but not being predicable.
05717 static bool instIsBreakpoint(const MCInst &Inst) {
05718     return Inst.getOpcode() == ARM::tBKPT ||
05719            Inst.getOpcode() == ARM::BKPT ||
05720            Inst.getOpcode() == ARM::tHLT ||
05721            Inst.getOpcode() == ARM::HLT;
05722 
05723 }
05724 
05725 // FIXME: We would really like to be able to tablegen'erate this.
05726 bool ARMAsmParser::validateInstruction(MCInst &Inst,
05727                                        const OperandVector &Operands) {
05728   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
05729   SMLoc Loc = Operands[0]->getStartLoc();
05730 
05731   // Check the IT block state first.
05732   // NOTE: BKPT and HLT instructions have the interesting property of being
05733   // allowed in IT blocks, but not being predicable. They just always execute.
05734   if (inITBlock() && !instIsBreakpoint(Inst)) {
05735     unsigned Bit = 1;
05736     if (ITState.FirstCond)
05737       ITState.FirstCond = false;
05738     else
05739       Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
05740     // The instruction must be predicable.
05741     if (!MCID.isPredicable())
05742       return Error(Loc, "instructions in IT block must be predicable");
05743     unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
05744     unsigned ITCond = Bit ? ITState.Cond :
05745       ARMCC::getOppositeCondition(ITState.Cond);
05746     if (Cond != ITCond) {
05747       // Find the condition code Operand to get its SMLoc information.
05748       SMLoc CondLoc;
05749       for (unsigned I = 1; I < Operands.size(); ++I)
05750         if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
05751           CondLoc = Operands[I]->getStartLoc();
05752       return Error(CondLoc, "incorrect condition in IT block; got '" +
05753                    StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
05754                    "', but expected '" +
05755                    ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
05756     }
05757   // Check for non-'al' condition codes outside of the IT block.
05758   } else if (isThumbTwo() && MCID.isPredicable() &&
05759              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
05760              ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
05761              Inst.getOpcode() != ARM::t2Bcc)
05762     return Error(Loc, "predicated instructions must be in IT block");
05763 
05764   const unsigned Opcode = Inst.getOpcode();
05765   switch (Opcode) {
05766   case ARM::LDRD:
05767   case ARM::LDRD_PRE:
05768   case ARM::LDRD_POST: {
05769     const unsigned RtReg = Inst.getOperand(0).getReg();
05770 
05771     // Rt can't be R14.
05772     if (RtReg == ARM::LR)
05773       return Error(Operands[3]->getStartLoc(),
05774                    "Rt can't be R14");
05775 
05776     const unsigned Rt = MRI->getEncodingValue(RtReg);
05777     // Rt must be even-numbered.
05778     if ((Rt & 1) == 1)
05779       return Error(Operands[3]->getStartLoc(),
05780                    "Rt must be even-numbered");
05781 
05782     // Rt2 must be Rt + 1.
05783     const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
05784     if (Rt2 != Rt + 1)
05785       return Error(Operands[3]->getStartLoc(),
05786                    "destination operands must be sequential");
05787 
05788     if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) {
05789       const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
05790       // For addressing modes with writeback, the base register needs to be
05791       // different from the destination registers.
05792       if (Rn == Rt || Rn == Rt2)
05793         return Error(Operands[3]->getStartLoc(),
05794                      "base register needs to be different from destination "
05795                      "registers");
05796     }
05797 
05798     return false;
05799   }
05800   case ARM::t2LDRDi8:
05801   case ARM::t2LDRD_PRE:
05802   case ARM::t2LDRD_POST: {
05803     // Rt2 must be different from Rt.
05804     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
05805     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
05806     if (Rt2 == Rt)
05807       return Error(Operands[3]->getStartLoc(),
05808                    "destination operands can't be identical");
05809     return false;
05810   }
05811   case ARM::STRD: {
05812     // Rt2 must be Rt + 1.
05813     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
05814     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
05815     if (Rt2 != Rt + 1)
05816       return Error(Operands[3]->getStartLoc(),
05817                    "source operands must be sequential");
05818     return false;
05819   }
05820   case ARM::STRD_PRE:
05821   case ARM::STRD_POST: {
05822     // Rt2 must be Rt + 1.
05823     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
05824     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
05825     if (Rt2 != Rt + 1)
05826       return Error(Operands[3]->getStartLoc(),
05827                    "source operands must be sequential");
05828     return false;
05829   }
05830   case ARM::STR_PRE_IMM:
05831   case ARM::STR_PRE_REG:
05832   case ARM::STR_POST_IMM:
05833   case ARM::STR_POST_REG:
05834   case ARM::STRH_PRE:
05835   case ARM::STRH_POST:
05836   case ARM::STRB_PRE_IMM:
05837   case ARM::STRB_PRE_REG:
05838   case ARM::STRB_POST_IMM:
05839   case ARM::STRB_POST_REG: {
05840     // Rt must be different from Rn.
05841     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
05842     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
05843 
05844     if (Rt == Rn)
05845       return Error(Operands[3]->getStartLoc(),
05846                    "source register and base register can't be identical");
05847     return false;
05848   }
05849   case ARM::LDR_PRE_IMM:
05850   case ARM::LDR_PRE_REG:
05851   case ARM::LDR_POST_IMM:
05852   case ARM::LDR_POST_REG:
05853   case ARM::LDRH_PRE:
05854   case ARM::LDRH_POST:
05855   case ARM::LDRSH_PRE:
05856   case ARM::LDRSH_POST:
05857   case ARM::LDRB_PRE_IMM:
05858   case ARM::LDRB_PRE_REG:
05859   case ARM::LDRB_POST_IMM:
05860   case ARM::LDRB_POST_REG:
05861   case ARM::LDRSB_PRE:
05862   case ARM::LDRSB_POST: {
05863     // Rt must be different from Rn.
05864     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
05865     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
05866 
05867     if (Rt == Rn)
05868       return Error(Operands[3]->getStartLoc(),
05869                    "destination register and base register can't be identical");
05870     return false;
05871   }
05872   case ARM::SBFX:
05873   case ARM::UBFX: {
05874     // Width must be in range [1, 32-lsb].
05875     unsigned LSB = Inst.getOperand(2).getImm();
05876     unsigned Widthm1 = Inst.getOperand(3).getImm();
05877     if (Widthm1 >= 32 - LSB)
05878       return Error(Operands[5]->getStartLoc(),
05879                    "bitfield width must be in range [1,32-lsb]");
05880     return false;
05881   }
05882   // Notionally handles ARM::tLDMIA_UPD too.
05883   case ARM::tLDMIA: {
05884     // If we're parsing Thumb2, the .w variant is available and handles
05885     // most cases that are normally illegal for a Thumb1 LDM instruction.
05886     // We'll make the transformation in processInstruction() if necessary.
05887     //
05888     // Thumb LDM instructions are writeback iff the base register is not
05889     // in the register list.
05890     unsigned Rn = Inst.getOperand(0).getReg();
05891     bool HasWritebackToken =
05892         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
05893          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
05894     bool ListContainsBase;
05895     if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
05896       return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
05897                    "registers must be in range r0-r7");
05898     // If we should have writeback, then there should be a '!' token.
05899     if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
05900       return Error(Operands[2]->getStartLoc(),
05901                    "writeback operator '!' expected");
05902     // If we should not have writeback, there must not be a '!'. This is
05903     // true even for the 32-bit wide encodings.
05904     if (ListContainsBase && HasWritebackToken)
05905       return Error(Operands[3]->getStartLoc(),
05906                    "writeback operator '!' not allowed when base register "
05907                    "in register list");
05908 
05909     break;
05910   }
05911   case ARM::LDMIA_UPD:
05912   case ARM::LDMDB_UPD:
05913   case ARM::LDMIB_UPD:
05914   case ARM::LDMDA_UPD:
05915     // ARM variants loading and updating the same register are only officially
05916     // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
05917     if (!hasV7Ops())
05918       break;
05919     // Fallthrough
05920   case ARM::t2LDMIA_UPD:
05921   case ARM::t2LDMDB_UPD:
05922   case ARM::t2STMIA_UPD:
05923   case ARM::t2STMDB_UPD: {
05924     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
05925       return Error(Operands.back()->getStartLoc(),
05926                    "writeback register not allowed in register list");
05927     break;
05928   }
05929   case ARM::sysLDMIA_UPD:
05930   case ARM::sysLDMDA_UPD:
05931   case ARM::sysLDMDB_UPD:
05932   case ARM::sysLDMIB_UPD:
05933     if (!listContainsReg(Inst, 3, ARM::PC))
05934       return Error(Operands[4]->getStartLoc(),
05935                    "writeback register only allowed on system LDM "
05936                    "if PC in register-list");
05937     break;
05938   case ARM::sysSTMIA_UPD:
05939   case ARM::sysSTMDA_UPD:
05940   case ARM::sysSTMDB_UPD:
05941   case ARM::sysSTMIB_UPD:
05942     return Error(Operands[2]->getStartLoc(),
05943                  "system STM cannot have writeback register");
05944   case ARM::tMUL: {
05945     // The second source operand must be the same register as the destination
05946     // operand.
05947     //
05948     // In this case, we must directly check the parsed operands because the
05949     // cvtThumbMultiply() function is written in such a way that it guarantees
05950     // this first statement is always true for the new Inst.  Essentially, the
05951     // destination is unconditionally copied into the second source operand
05952     // without checking to see if it matches what we actually parsed.
05953     if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
05954                                  ((ARMOperand &)*Operands[5]).getReg()) &&
05955         (((ARMOperand &)*Operands[3]).getReg() !=
05956          ((ARMOperand &)*Operands[4]).getReg())) {
05957       return Error(Operands[3]->getStartLoc(),
05958                    "destination register must match source register");
05959     }
05960     break;
05961   }
05962   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
05963   // so only issue a diagnostic for thumb1. The instructions will be
05964   // switched to the t2 encodings in processInstruction() if necessary.
05965   case ARM::tPOP: {
05966     bool ListContainsBase;
05967     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
05968         !isThumbTwo())
05969       return Error(Operands[2]->getStartLoc(),
05970                    "registers must be in range r0-r7 or pc");
05971     break;
05972   }
05973   case ARM::tPUSH: {
05974     bool ListContainsBase;
05975     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
05976         !isThumbTwo())
05977       return Error(Operands[2]->getStartLoc(),
05978                    "registers must be in range r0-r7 or lr");
05979     break;
05980   }
05981   case ARM::tSTMIA_UPD: {
05982     bool ListContainsBase, InvalidLowList;
05983     InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
05984                                           0, ListContainsBase);
05985     if (InvalidLowList && !isThumbTwo())
05986       return Error(Operands[4]->getStartLoc(),
05987                    "registers must be in range r0-r7");
05988 
05989     // This would be converted to a 32-bit stm, but that's not valid if the
05990     // writeback register is in the list.
05991     if (InvalidLowList && ListContainsBase)
05992       return Error(Operands[4]->getStartLoc(),
05993                    "writeback operator '!' not allowed when base register "
05994                    "in register list");
05995     break;
05996   }
05997   case ARM::tADDrSP: {
05998     // If the non-SP source operand and the destination operand are not the
05999     // same, we need thumb2 (for the wide encoding), or we have an error.
06000     if (!isThumbTwo() &&
06001         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
06002       return Error(Operands[4]->getStartLoc(),
06003                    "source register must be the same as destination");
06004     }
06005     break;
06006   }
06007   // Final range checking for Thumb unconditional branch instructions.
06008   case ARM::tB:
06009     if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
06010       return Error(Operands[2]->getStartLoc(), "branch target out of range");
06011     break;
06012   case ARM::t2B: {
06013     int op = (Operands[2]->isImm()) ? 2 : 3;
06014     if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
06015       return Error(Operands[op]->getStartLoc(), "branch target out of range");
06016     break;
06017   }
06018   // Final range checking for Thumb conditional branch instructions.
06019   case ARM::tBcc:
06020     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
06021       return Error(Operands[2]->getStartLoc(), "branch target out of range");
06022     break;
06023   case ARM::t2Bcc: {
06024     int Op = (Operands[2]->isImm()) ? 2 : 3;
06025     if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
06026       return Error(Operands[Op]->getStartLoc(), "branch target out of range");
06027     break;
06028   }
06029   case ARM::MOVi16:
06030   case ARM::t2MOVi16:
06031   case ARM::t2MOVTi16:
06032     {
06033     // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
06034     // especially when we turn it into a movw and the expression <symbol> does
06035     // not have a :lower16: or :upper16 as part of the expression.  We don't
06036     // want the behavior of silently truncating, which can be unexpected and
06037     // lead to bugs that are difficult to find since this is an easy mistake
06038     // to make.
06039     int i = (Operands[3]->isImm()) ? 3 : 4;
06040     ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
06041     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
06042     if (CE) break;
06043     const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
06044     if (!E) break;
06045     const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
06046     if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
06047                        ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
06048       return Error(
06049           Op.getStartLoc(),
06050           "immediate expression for mov requires :lower16: or :upper16");
06051     break;
06052   }
06053   }
06054 
06055   return false;
06056 }
06057 
06058 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
06059   switch(Opc) {
06060   default: llvm_unreachable("unexpected opcode!");
06061   // VST1LN
06062   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
06063   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
06064   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
06065   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
06066   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
06067   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
06068   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
06069   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
06070   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
06071 
06072   // VST2LN
06073   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
06074   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
06075   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
06076   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
06077   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
06078 
06079   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
06080   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
06081   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
06082   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
06083   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
06084 
06085   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
06086   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
06087   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
06088   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
06089   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
06090 
06091   // VST3LN
06092   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
06093   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
06094   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
06095   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
06096   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
06097   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
06098   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
06099   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
06100   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
06101   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
06102   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
06103   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
06104   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
06105   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
06106   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
06107 
06108   // VST3
06109   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
06110   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
06111   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
06112   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
06113   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
06114   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
06115   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
06116   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
06117   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
06118   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
06119   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
06120   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
06121   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
06122   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
06123   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
06124   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
06125   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
06126   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
06127 
06128   // VST4LN
06129   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
06130   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
06131   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
06132   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
06133   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
06134   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
06135   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
06136   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
06137   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
06138   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
06139   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
06140   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
06141   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
06142   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
06143   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
06144 
06145   // VST4
06146   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
06147   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
06148   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
06149   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
06150   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
06151   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
06152   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
06153   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
06154   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
06155   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
06156   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
06157   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
06158   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
06159   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
06160   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
06161   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
06162   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
06163   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
06164   }
06165 }
06166 
06167 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
06168   switch(Opc) {
06169   default: llvm_unreachable("unexpected opcode!");
06170   // VLD1LN
06171   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
06172   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
06173   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
06174   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
06175   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
06176   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
06177   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
06178   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
06179   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
06180 
06181   // VLD2LN
06182   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
06183   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
06184   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
06185   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
06186   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
06187   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
06188   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
06189   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
06190   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
06191   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
06192   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
06193   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
06194   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
06195   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
06196   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
06197 
06198   // VLD3DUP
06199   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
06200   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
06201   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
06202   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
06203   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
06204   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
06205   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
06206   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
06207   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
06208   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
06209   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
06210   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
06211   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
06212   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
06213   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
06214   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
06215   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
06216   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
06217 
06218   // VLD3LN
06219   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
06220   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
06221   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
06222   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
06223   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
06224   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
06225   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
06226   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
06227   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
06228   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
06229   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
06230   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
06231   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
06232   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
06233   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
06234 
06235   // VLD3
06236   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
06237   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
06238   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
06239   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
06240   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
06241   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
06242   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
06243   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
06244   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
06245   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
06246   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
06247   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
06248   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
06249   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
06250   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
06251   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
06252   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
06253   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
06254 
06255   // VLD4LN
06256   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
06257   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
06258   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
06259   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
06260   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
06261   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
06262   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
06263   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
06264   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
06265   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
06266   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
06267   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
06268   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
06269   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
06270   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
06271 
06272   // VLD4DUP
06273   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
06274   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
06275   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
06276   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
06277   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
06278   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
06279   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
06280   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
06281   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
06282   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
06283   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
06284   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
06285   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
06286   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
06287   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
06288   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
06289   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
06290   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
06291 
06292   // VLD4
06293   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
06294   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
06295   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
06296   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
06297   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
06298   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
06299   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
06300   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
06301   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
06302   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
06303   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
06304   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
06305   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
06306   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
06307   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
06308   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
06309   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
06310   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
06311   }
06312 }
06313 
06314 bool ARMAsmParser::processInstruction(MCInst &Inst,
06315                                       const OperandVector &Operands) {
06316   switch (Inst.getOpcode()) {
06317   // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
06318   case ARM::LDRT_POST:
06319   case ARM::LDRBT_POST: {
06320     const unsigned Opcode =
06321       (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
06322                                            : ARM::LDRBT_POST_IMM;
06323     MCInst TmpInst;
06324     TmpInst.setOpcode(Opcode);
06325     TmpInst.addOperand(Inst.getOperand(0));
06326     TmpInst.addOperand(Inst.getOperand(1));
06327     TmpInst.addOperand(Inst.getOperand(1));
06328     TmpInst.addOperand(MCOperand::CreateReg(0));
06329     TmpInst.addOperand(MCOperand::CreateImm(0));
06330     TmpInst.addOperand(Inst.getOperand(2));
06331     TmpInst.addOperand(Inst.getOperand(3));
06332     Inst = TmpInst;
06333     return true;
06334   }
06335   // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
06336   case ARM::STRT_POST:
06337   case ARM::STRBT_POST: {
06338     const unsigned Opcode =
06339       (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
06340                                            : ARM::STRBT_POST_IMM;
06341     MCInst TmpInst;
06342     TmpInst.setOpcode(Opcode);
06343     TmpInst.addOperand(Inst.getOperand(1));
06344     TmpInst.addOperand(Inst.getOperand(0));
06345     TmpInst.addOperand(Inst.getOperand(1));
06346     TmpInst.addOperand(MCOperand::CreateReg(0));
06347     TmpInst.addOperand(MCOperand::CreateImm(0));
06348     TmpInst.addOperand(Inst.getOperand(2));
06349     TmpInst.addOperand(Inst.getOperand(3));
06350     Inst = TmpInst;
06351     return true;
06352   }
06353   // Alias for alternate form of 'ADR Rd, #imm' instruction.
06354   case ARM::ADDri: {
06355     if (Inst.getOperand(1).getReg() != ARM::PC ||
06356         Inst.getOperand(5).getReg() != 0)
06357       return false;
06358     MCInst TmpInst;
06359     TmpInst.setOpcode(ARM::ADR);
06360     TmpInst.addOperand(Inst.getOperand(0));
06361     TmpInst.addOperand(Inst.getOperand(2));
06362     TmpInst.addOperand(Inst.getOperand(3));
06363     TmpInst.addOperand(Inst.getOperand(4));
06364     Inst = TmpInst;
06365     return true;
06366   }
06367   // Aliases for alternate PC+imm syntax of LDR instructions.
06368   case ARM::t2LDRpcrel:
06369     // Select the narrow version if the immediate will fit.
06370     if (Inst.getOperand(1).getImm() > 0 &&
06371         Inst.getOperand(1).getImm() <= 0xff &&
06372         !(static_cast<ARMOperand &>(*Operands[2]).isToken() &&
06373           static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w"))
06374       Inst.setOpcode(ARM::tLDRpci);
06375     else
06376       Inst.setOpcode(ARM::t2LDRpci);
06377     return true;
06378   case ARM::t2LDRBpcrel:
06379     Inst.setOpcode(ARM::t2LDRBpci);
06380     return true;
06381   case ARM::t2LDRHpcrel:
06382     Inst.setOpcode(ARM::t2LDRHpci);
06383     return true;
06384   case ARM::t2LDRSBpcrel:
06385     Inst.setOpcode(ARM::t2LDRSBpci);
06386     return true;
06387   case ARM::t2LDRSHpcrel:
06388     Inst.setOpcode(ARM::t2LDRSHpci);
06389     return true;
06390   // Handle NEON VST complex aliases.
06391   case ARM::VST1LNdWB_register_Asm_8:
06392   case ARM::VST1LNdWB_register_Asm_16:
06393   case ARM::VST1LNdWB_register_Asm_32: {
06394     MCInst TmpInst;
06395     // Shuffle the operands around so the lane index operand is in the
06396     // right place.
06397     unsigned Spacing;
06398     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
06399     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06400     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06401     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06402     TmpInst.addOperand(Inst.getOperand(4)); // Rm
06403     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06404     TmpInst.addOperand(Inst.getOperand(1)); // lane
06405     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
06406     TmpInst.addOperand(Inst.getOperand(6));
06407     Inst = TmpInst;
06408     return true;
06409   }
06410 
06411   case ARM::VST2LNdWB_register_Asm_8:
06412   case ARM::VST2LNdWB_register_Asm_16:
06413   case ARM::VST2LNdWB_register_Asm_32:
06414   case ARM::VST2LNqWB_register_Asm_16:
06415   case ARM::VST2LNqWB_register_Asm_32: {
06416     MCInst TmpInst;
06417     // Shuffle the operands around so the lane index operand is in the
06418     // right place.
06419     unsigned Spacing;
06420     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
06421     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06422     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06423     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06424     TmpInst.addOperand(Inst.getOperand(4)); // Rm
06425     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06426     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06427                                             Spacing));
06428     TmpInst.addOperand(Inst.getOperand(1)); // lane
06429     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
06430     TmpInst.addOperand(Inst.getOperand(6));
06431     Inst = TmpInst;
06432     return true;
06433   }
06434 
06435   case ARM::VST3LNdWB_register_Asm_8:
06436   case ARM::VST3LNdWB_register_Asm_16:
06437   case ARM::VST3LNdWB_register_Asm_32:
06438   case ARM::VST3LNqWB_register_Asm_16:
06439   case ARM::VST3LNqWB_register_Asm_32: {
06440     MCInst TmpInst;
06441     // Shuffle the operands around so the lane index operand is in the
06442     // right place.
06443     unsigned Spacing;
06444     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
06445     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06446     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06447     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06448     TmpInst.addOperand(Inst.getOperand(4)); // Rm
06449     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06450     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06451                                             Spacing));
06452     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06453                                             Spacing * 2));
06454     TmpInst.addOperand(Inst.getOperand(1)); // lane
06455     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
06456     TmpInst.addOperand(Inst.getOperand(6));
06457     Inst = TmpInst;
06458     return true;
06459   }
06460 
06461   case ARM::VST4LNdWB_register_Asm_8:
06462   case ARM::VST4LNdWB_register_Asm_16:
06463   case ARM::VST4LNdWB_register_Asm_32:
06464   case ARM::VST4LNqWB_register_Asm_16:
06465   case ARM::VST4LNqWB_register_Asm_32: {
06466     MCInst TmpInst;
06467     // Shuffle the operands around so the lane index operand is in the
06468     // right place.
06469     unsigned Spacing;
06470     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
06471     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06472     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06473     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06474     TmpInst.addOperand(Inst.getOperand(4)); // Rm
06475     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06476     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06477                                             Spacing));
06478     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06479                                             Spacing * 2));
06480     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06481                                             Spacing * 3));
06482     TmpInst.addOperand(Inst.getOperand(1)); // lane
06483     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
06484     TmpInst.addOperand(Inst.getOperand(6));
06485     Inst = TmpInst;
06486     return true;
06487   }
06488 
06489   case ARM::VST1LNdWB_fixed_Asm_8:
06490   case ARM::VST1LNdWB_fixed_Asm_16:
06491   case ARM::VST1LNdWB_fixed_Asm_32: {
06492     MCInst TmpInst;
06493     // Shuffle the operands around so the lane index operand is in the
06494     // right place.
06495     unsigned Spacing;
06496     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
06497     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06498     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06499     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06500     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
06501     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06502     TmpInst.addOperand(Inst.getOperand(1)); // lane
06503     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06504     TmpInst.addOperand(Inst.getOperand(5));
06505     Inst = TmpInst;
06506     return true;
06507   }
06508 
06509   case ARM::VST2LNdWB_fixed_Asm_8:
06510   case ARM::VST2LNdWB_fixed_Asm_16:
06511   case ARM::VST2LNdWB_fixed_Asm_32:
06512   case ARM::VST2LNqWB_fixed_Asm_16:
06513   case ARM::VST2LNqWB_fixed_Asm_32: {
06514     MCInst TmpInst;
06515     // Shuffle the operands around so the lane index operand is in the
06516     // right place.
06517     unsigned Spacing;
06518     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
06519     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06520     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06521     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06522     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
06523     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06524     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06525                                             Spacing));
06526     TmpInst.addOperand(Inst.getOperand(1)); // lane
06527     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06528     TmpInst.addOperand(Inst.getOperand(5));
06529     Inst = TmpInst;
06530     return true;
06531   }
06532 
06533   case ARM::VST3LNdWB_fixed_Asm_8:
06534   case ARM::VST3LNdWB_fixed_Asm_16:
06535   case ARM::VST3LNdWB_fixed_Asm_32:
06536   case ARM::VST3LNqWB_fixed_Asm_16:
06537   case ARM::VST3LNqWB_fixed_Asm_32: {
06538     MCInst TmpInst;
06539     // Shuffle the operands around so the lane index operand is in the
06540     // right place.
06541     unsigned Spacing;
06542     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
06543     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06544     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06545     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06546     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
06547     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06548     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06549                                             Spacing));
06550     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06551                                             Spacing * 2));
06552     TmpInst.addOperand(Inst.getOperand(1)); // lane
06553     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06554     TmpInst.addOperand(Inst.getOperand(5));
06555     Inst = TmpInst;
06556     return true;
06557   }
06558 
06559   case ARM::VST4LNdWB_fixed_Asm_8:
06560   case ARM::VST4LNdWB_fixed_Asm_16:
06561   case ARM::VST4LNdWB_fixed_Asm_32:
06562   case ARM::VST4LNqWB_fixed_Asm_16:
06563   case ARM::VST4LNqWB_fixed_Asm_32: {
06564     MCInst TmpInst;
06565     // Shuffle the operands around so the lane index operand is in the
06566     // right place.
06567     unsigned Spacing;
06568     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
06569     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06570     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06571     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06572     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
06573     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06574     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06575                                             Spacing));
06576     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06577                                             Spacing * 2));
06578     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06579                                             Spacing * 3));
06580     TmpInst.addOperand(Inst.getOperand(1)); // lane
06581     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06582     TmpInst.addOperand(Inst.getOperand(5));
06583     Inst = TmpInst;
06584     return true;
06585   }
06586 
06587   case ARM::VST1LNdAsm_8:
06588   case ARM::VST1LNdAsm_16:
06589   case ARM::VST1LNdAsm_32: {
06590     MCInst TmpInst;
06591     // Shuffle the operands around so the lane index operand is in the
06592     // right place.
06593     unsigned Spacing;
06594     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
06595     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06596     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06597     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06598     TmpInst.addOperand(Inst.getOperand(1)); // lane
06599     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06600     TmpInst.addOperand(Inst.getOperand(5));
06601     Inst = TmpInst;
06602     return true;
06603   }
06604 
06605   case ARM::VST2LNdAsm_8:
06606   case ARM::VST2LNdAsm_16:
06607   case ARM::VST2LNdAsm_32:
06608   case ARM::VST2LNqAsm_16:
06609   case ARM::VST2LNqAsm_32: {
06610     MCInst TmpInst;
06611     // Shuffle the operands around so the lane index operand is in the
06612     // right place.
06613     unsigned Spacing;
06614     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
06615     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06616     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06617     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06618     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06619                                             Spacing));
06620     TmpInst.addOperand(Inst.getOperand(1)); // lane
06621     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06622     TmpInst.addOperand(Inst.getOperand(5));
06623     Inst = TmpInst;
06624     return true;
06625   }
06626 
06627   case ARM::VST3LNdAsm_8:
06628   case ARM::VST3LNdAsm_16:
06629   case ARM::VST3LNdAsm_32:
06630   case ARM::VST3LNqAsm_16:
06631   case ARM::VST3LNqAsm_32: {
06632     MCInst TmpInst;
06633     // Shuffle the operands around so the lane index operand is in the
06634     // right place.
06635     unsigned Spacing;
06636     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
06637     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06638     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06639     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06640     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06641                                             Spacing));
06642     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06643                                             Spacing * 2));
06644     TmpInst.addOperand(Inst.getOperand(1)); // lane
06645     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06646     TmpInst.addOperand(Inst.getOperand(5));
06647     Inst = TmpInst;
06648     return true;
06649   }
06650 
06651   case ARM::VST4LNdAsm_8:
06652   case ARM::VST4LNdAsm_16:
06653   case ARM::VST4LNdAsm_32:
06654   case ARM::VST4LNqAsm_16:
06655   case ARM::VST4LNqAsm_32: {
06656     MCInst TmpInst;
06657     // Shuffle the operands around so the lane index operand is in the
06658     // right place.
06659     unsigned Spacing;
06660     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
06661     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06662     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06663     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06664     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06665                                             Spacing));
06666     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06667                                             Spacing * 2));
06668     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06669                                             Spacing * 3));
06670     TmpInst.addOperand(Inst.getOperand(1)); // lane
06671     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06672     TmpInst.addOperand(Inst.getOperand(5));
06673     Inst = TmpInst;
06674     return true;
06675   }
06676 
06677   // Handle NEON VLD complex aliases.
06678   case ARM::VLD1LNdWB_register_Asm_8:
06679   case ARM::VLD1LNdWB_register_Asm_16:
06680   case ARM::VLD1LNdWB_register_Asm_32: {
06681     MCInst TmpInst;
06682     // Shuffle the operands around so the lane index operand is in the
06683     // right place.
06684     unsigned Spacing;
06685     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
06686     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06687     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06688     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06689     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06690     TmpInst.addOperand(Inst.getOperand(4)); // Rm
06691     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
06692     TmpInst.addOperand(Inst.getOperand(1)); // lane
06693     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
06694     TmpInst.addOperand(Inst.getOperand(6));
06695     Inst = TmpInst;
06696     return true;
06697   }
06698 
06699   case ARM::VLD2LNdWB_register_Asm_8:
06700   case ARM::VLD2LNdWB_register_Asm_16:
06701   case ARM::VLD2LNdWB_register_Asm_32:
06702   case ARM::VLD2LNqWB_register_Asm_16:
06703   case ARM::VLD2LNqWB_register_Asm_32: {
06704     MCInst TmpInst;
06705     // Shuffle the operands around so the lane index operand is in the
06706     // right place.
06707     unsigned Spacing;
06708     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
06709     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06710     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06711                                             Spacing));
06712     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06713     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06714     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06715     TmpInst.addOperand(Inst.getOperand(4)); // Rm
06716     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
06717     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06718                                             Spacing));
06719     TmpInst.addOperand(Inst.getOperand(1)); // lane
06720     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
06721     TmpInst.addOperand(Inst.getOperand(6));
06722     Inst = TmpInst;
06723     return true;
06724   }
06725 
06726   case ARM::VLD3LNdWB_register_Asm_8:
06727   case ARM::VLD3LNdWB_register_Asm_16:
06728   case ARM::VLD3LNdWB_register_Asm_32:
06729   case ARM::VLD3LNqWB_register_Asm_16:
06730   case ARM::VLD3LNqWB_register_Asm_32: {
06731     MCInst TmpInst;
06732     // Shuffle the operands around so the lane index operand is in the
06733     // right place.
06734     unsigned Spacing;
06735     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
06736     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06737     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06738                                             Spacing));
06739     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06740                                             Spacing * 2));
06741     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06742     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06743     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06744     TmpInst.addOperand(Inst.getOperand(4)); // Rm
06745     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
06746     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06747                                             Spacing));
06748     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06749                                             Spacing * 2));
06750     TmpInst.addOperand(Inst.getOperand(1)); // lane
06751     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
06752     TmpInst.addOperand(Inst.getOperand(6));
06753     Inst = TmpInst;
06754     return true;
06755   }
06756 
06757   case ARM::VLD4LNdWB_register_Asm_8:
06758   case ARM::VLD4LNdWB_register_Asm_16:
06759   case ARM::VLD4LNdWB_register_Asm_32:
06760   case ARM::VLD4LNqWB_register_Asm_16:
06761   case ARM::VLD4LNqWB_register_Asm_32: {
06762     MCInst TmpInst;
06763     // Shuffle the operands around so the lane index operand is in the
06764     // right place.
06765     unsigned Spacing;
06766     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
06767     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06768     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06769                                             Spacing));
06770     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06771                                             Spacing * 2));
06772     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06773                                             Spacing * 3));
06774     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06775     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06776     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06777     TmpInst.addOperand(Inst.getOperand(4)); // Rm
06778     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
06779     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06780                                             Spacing));
06781     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06782                                             Spacing * 2));
06783     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06784                                             Spacing * 3));
06785     TmpInst.addOperand(Inst.getOperand(1)); // lane
06786     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
06787     TmpInst.addOperand(Inst.getOperand(6));
06788     Inst = TmpInst;
06789     return true;
06790   }
06791 
06792   case ARM::VLD1LNdWB_fixed_Asm_8:
06793   case ARM::VLD1LNdWB_fixed_Asm_16:
06794   case ARM::VLD1LNdWB_fixed_Asm_32: {
06795     MCInst TmpInst;
06796     // Shuffle the operands around so the lane index operand is in the
06797     // right place.
06798     unsigned Spacing;
06799     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
06800     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06801     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06802     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06803     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06804     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
06805     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
06806     TmpInst.addOperand(Inst.getOperand(1)); // lane
06807     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06808     TmpInst.addOperand(Inst.getOperand(5));
06809     Inst = TmpInst;
06810     return true;
06811   }
06812 
06813   case ARM::VLD2LNdWB_fixed_Asm_8:
06814   case ARM::VLD2LNdWB_fixed_Asm_16:
06815   case ARM::VLD2LNdWB_fixed_Asm_32:
06816   case ARM::VLD2LNqWB_fixed_Asm_16:
06817   case ARM::VLD2LNqWB_fixed_Asm_32: {
06818     MCInst TmpInst;
06819     // Shuffle the operands around so the lane index operand is in the
06820     // right place.
06821     unsigned Spacing;
06822     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
06823     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06824     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06825                                             Spacing));
06826     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06827     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06828     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06829     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
06830     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
06831     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06832                                             Spacing));
06833     TmpInst.addOperand(Inst.getOperand(1)); // lane
06834     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06835     TmpInst.addOperand(Inst.getOperand(5));
06836     Inst = TmpInst;
06837     return true;
06838   }
06839 
06840   case ARM::VLD3LNdWB_fixed_Asm_8:
06841   case ARM::VLD3LNdWB_fixed_Asm_16:
06842   case ARM::VLD3LNdWB_fixed_Asm_32:
06843   case ARM::VLD3LNqWB_fixed_Asm_16:
06844   case ARM::VLD3LNqWB_fixed_Asm_32: {
06845     MCInst TmpInst;
06846     // Shuffle the operands around so the lane index operand is in the
06847     // right place.
06848     unsigned Spacing;
06849     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
06850     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06851     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06852                                             Spacing));
06853     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06854                                             Spacing * 2));
06855     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06856     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06857     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06858     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
06859     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
06860     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06861                                             Spacing));
06862     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06863                                             Spacing * 2));
06864     TmpInst.addOperand(Inst.getOperand(1)); // lane
06865     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06866     TmpInst.addOperand(Inst.getOperand(5));
06867     Inst = TmpInst;
06868     return true;
06869   }
06870 
06871   case ARM::VLD4LNdWB_fixed_Asm_8:
06872   case ARM::VLD4LNdWB_fixed_Asm_16:
06873   case ARM::VLD4LNdWB_fixed_Asm_32:
06874   case ARM::VLD4LNqWB_fixed_Asm_16:
06875   case ARM::VLD4LNqWB_fixed_Asm_32: {
06876     MCInst TmpInst;
06877     // Shuffle the operands around so the lane index operand is in the
06878     // right place.
06879     unsigned Spacing;
06880     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
06881     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06882     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06883                                             Spacing));
06884     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06885                                             Spacing * 2));
06886     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06887                                             Spacing * 3));
06888     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
06889     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06890     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06891     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
06892     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
06893     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06894                                             Spacing));
06895     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06896                                             Spacing * 2));
06897     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06898                                             Spacing * 3));
06899     TmpInst.addOperand(Inst.getOperand(1)); // lane
06900     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06901     TmpInst.addOperand(Inst.getOperand(5));
06902     Inst = TmpInst;
06903     return true;
06904   }
06905 
06906   case ARM::VLD1LNdAsm_8:
06907   case ARM::VLD1LNdAsm_16:
06908   case ARM::VLD1LNdAsm_32: {
06909     MCInst TmpInst;
06910     // Shuffle the operands around so the lane index operand is in the
06911     // right place.
06912     unsigned Spacing;
06913     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
06914     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06915     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06916     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06917     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
06918     TmpInst.addOperand(Inst.getOperand(1)); // lane
06919     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06920     TmpInst.addOperand(Inst.getOperand(5));
06921     Inst = TmpInst;
06922     return true;
06923   }
06924 
06925   case ARM::VLD2LNdAsm_8:
06926   case ARM::VLD2LNdAsm_16:
06927   case ARM::VLD2LNdAsm_32:
06928   case ARM::VLD2LNqAsm_16:
06929   case ARM::VLD2LNqAsm_32: {
06930     MCInst TmpInst;
06931     // Shuffle the operands around so the lane index operand is in the
06932     // right place.
06933     unsigned Spacing;
06934     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
06935     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06936     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06937                                             Spacing));
06938     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06939     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06940     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
06941     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06942                                             Spacing));
06943     TmpInst.addOperand(Inst.getOperand(1)); // lane
06944     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06945     TmpInst.addOperand(Inst.getOperand(5));
06946     Inst = TmpInst;
06947     return true;
06948   }
06949 
06950   case ARM::VLD3LNdAsm_8:
06951   case ARM::VLD3LNdAsm_16:
06952   case ARM::VLD3LNdAsm_32:
06953   case ARM::VLD3LNqAsm_16:
06954   case ARM::VLD3LNqAsm_32: {
06955     MCInst TmpInst;
06956     // Shuffle the operands around so the lane index operand is in the
06957     // right place.
06958     unsigned Spacing;
06959     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
06960     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06961     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06962                                             Spacing));
06963     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06964                                             Spacing * 2));
06965     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06966     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06967     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
06968     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06969                                             Spacing));
06970     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06971                                             Spacing * 2));
06972     TmpInst.addOperand(Inst.getOperand(1)); // lane
06973     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
06974     TmpInst.addOperand(Inst.getOperand(5));
06975     Inst = TmpInst;
06976     return true;
06977   }
06978 
06979   case ARM::VLD4LNdAsm_8:
06980   case ARM::VLD4LNdAsm_16:
06981   case ARM::VLD4LNdAsm_32:
06982   case ARM::VLD4LNqAsm_16:
06983   case ARM::VLD4LNqAsm_32: {
06984     MCInst TmpInst;
06985     // Shuffle the operands around so the lane index operand is in the
06986     // right place.
06987     unsigned Spacing;
06988     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
06989     TmpInst.addOperand(Inst.getOperand(0)); // Vd
06990     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06991                                             Spacing));
06992     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06993                                             Spacing * 2));
06994     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
06995                                             Spacing * 3));
06996     TmpInst.addOperand(Inst.getOperand(2)); // Rn
06997     TmpInst.addOperand(Inst.getOperand(3)); // alignment
06998     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
06999     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07000                                             Spacing));
07001     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07002                                             Spacing * 2));
07003     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07004                                             Spacing * 3));
07005     TmpInst.addOperand(Inst.getOperand(1)); // lane
07006     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
07007     TmpInst.addOperand(Inst.getOperand(5));
07008     Inst = TmpInst;
07009     return true;
07010   }
07011 
07012   // VLD3DUP single 3-element structure to all lanes instructions.
07013   case ARM::VLD3DUPdAsm_8:
07014   case ARM::VLD3DUPdAsm_16:
07015   case ARM::VLD3DUPdAsm_32:
07016   case ARM::VLD3DUPqAsm_8:
07017   case ARM::VLD3DUPqAsm_16:
07018   case ARM::VLD3DUPqAsm_32: {
07019     MCInst TmpInst;
07020     unsigned Spacing;
07021     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
07022     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07023     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07024                                             Spacing));
07025     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07026                                             Spacing * 2));
07027     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07028     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07029     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07030     TmpInst.addOperand(Inst.getOperand(4));
07031     Inst = TmpInst;
07032     return true;
07033   }
07034 
07035   case ARM::VLD3DUPdWB_fixed_Asm_8:
07036   case ARM::VLD3DUPdWB_fixed_Asm_16:
07037   case ARM::VLD3DUPdWB_fixed_Asm_32:
07038   case ARM::VLD3DUPqWB_fixed_Asm_8:
07039   case ARM::VLD3DUPqWB_fixed_Asm_16:
07040   case ARM::VLD3DUPqWB_fixed_Asm_32: {
07041     MCInst TmpInst;
07042     unsigned Spacing;
07043     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
07044     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07045     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07046                                             Spacing));
07047     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07048                                             Spacing * 2));
07049     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07050     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
07051     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07052     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
07053     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07054     TmpInst.addOperand(Inst.getOperand(4));
07055     Inst = TmpInst;
07056     return true;
07057   }
07058 
07059   case ARM::VLD3DUPdWB_register_Asm_8:
07060   case ARM::VLD3DUPdWB_register_Asm_16:
07061   case ARM::VLD3DUPdWB_register_Asm_32:
07062   case ARM::VLD3DUPqWB_register_Asm_8:
07063   case ARM::VLD3DUPqWB_register_Asm_16:
07064   case ARM::VLD3DUPqWB_register_Asm_32: {
07065     MCInst TmpInst;
07066     unsigned Spacing;
07067     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
07068     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07069     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07070                                             Spacing));
07071     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07072                                             Spacing * 2));
07073     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07074     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
07075     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07076     TmpInst.addOperand(Inst.getOperand(3)); // Rm
07077     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
07078     TmpInst.addOperand(Inst.getOperand(5));
07079     Inst = TmpInst;
07080     return true;
07081   }
07082 
07083   // VLD3 multiple 3-element structure instructions.
07084   case ARM::VLD3dAsm_8:
07085   case ARM::VLD3dAsm_16:
07086   case ARM::VLD3dAsm_32:
07087   case ARM::VLD3qAsm_8:
07088   case ARM::VLD3qAsm_16:
07089   case ARM::VLD3qAsm_32: {
07090     MCInst TmpInst;
07091     unsigned Spacing;
07092     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
07093     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07094     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07095                                             Spacing));
07096     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07097                                             Spacing * 2));
07098     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07099     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07100     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07101     TmpInst.addOperand(Inst.getOperand(4));
07102     Inst = TmpInst;
07103     return true;
07104   }
07105 
07106   case ARM::VLD3dWB_fixed_Asm_8:
07107   case ARM::VLD3dWB_fixed_Asm_16:
07108   case ARM::VLD3dWB_fixed_Asm_32:
07109   case ARM::VLD3qWB_fixed_Asm_8:
07110   case ARM::VLD3qWB_fixed_Asm_16:
07111   case ARM::VLD3qWB_fixed_Asm_32: {
07112     MCInst TmpInst;
07113     unsigned Spacing;
07114     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
07115     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07116     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07117                                             Spacing));
07118     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07119                                             Spacing * 2));
07120     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07121     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
07122     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07123     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
07124     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07125     TmpInst.addOperand(Inst.getOperand(4));
07126     Inst = TmpInst;
07127     return true;
07128   }
07129 
07130   case ARM::VLD3dWB_register_Asm_8:
07131   case ARM::VLD3dWB_register_Asm_16:
07132   case ARM::VLD3dWB_register_Asm_32:
07133   case ARM::VLD3qWB_register_Asm_8:
07134   case ARM::VLD3qWB_register_Asm_16:
07135   case ARM::VLD3qWB_register_Asm_32: {
07136     MCInst TmpInst;
07137     unsigned Spacing;
07138     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
07139     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07140     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07141                                             Spacing));
07142     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07143                                             Spacing * 2));
07144     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07145     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
07146     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07147     TmpInst.addOperand(Inst.getOperand(3)); // Rm
07148     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
07149     TmpInst.addOperand(Inst.getOperand(5));
07150     Inst = TmpInst;
07151     return true;
07152   }
07153 
07154   // VLD4DUP single 3-element structure to all lanes instructions.
07155   case ARM::VLD4DUPdAsm_8:
07156   case ARM::VLD4DUPdAsm_16:
07157   case ARM::VLD4DUPdAsm_32:
07158   case ARM::VLD4DUPqAsm_8:
07159   case ARM::VLD4DUPqAsm_16:
07160   case ARM::VLD4DUPqAsm_32: {
07161     MCInst TmpInst;
07162     unsigned Spacing;
07163     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
07164     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07165     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07166                                             Spacing));
07167     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07168                                             Spacing * 2));
07169     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07170                                             Spacing * 3));
07171     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07172     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07173     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07174     TmpInst.addOperand(Inst.getOperand(4));
07175     Inst = TmpInst;
07176     return true;
07177   }
07178 
07179   case ARM::VLD4DUPdWB_fixed_Asm_8:
07180   case ARM::VLD4DUPdWB_fixed_Asm_16:
07181   case ARM::VLD4DUPdWB_fixed_Asm_32:
07182   case ARM::VLD4DUPqWB_fixed_Asm_8:
07183   case ARM::VLD4DUPqWB_fixed_Asm_16:
07184   case ARM::VLD4DUPqWB_fixed_Asm_32: {
07185     MCInst TmpInst;
07186     unsigned Spacing;
07187     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
07188     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07189     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07190                                             Spacing));
07191     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07192                                             Spacing * 2));
07193     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07194                                             Spacing * 3));
07195     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07196     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
07197     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07198     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
07199     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07200     TmpInst.addOperand(Inst.getOperand(4));
07201     Inst = TmpInst;
07202     return true;
07203   }
07204 
07205   case ARM::VLD4DUPdWB_register_Asm_8:
07206   case ARM::VLD4DUPdWB_register_Asm_16:
07207   case ARM::VLD4DUPdWB_register_Asm_32:
07208   case ARM::VLD4DUPqWB_register_Asm_8:
07209   case ARM::VLD4DUPqWB_register_Asm_16:
07210   case ARM::VLD4DUPqWB_register_Asm_32: {
07211     MCInst TmpInst;
07212     unsigned Spacing;
07213     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
07214     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07215     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07216                                             Spacing));
07217     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07218                                             Spacing * 2));
07219     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07220                                             Spacing * 3));
07221     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07222     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
07223     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07224     TmpInst.addOperand(Inst.getOperand(3)); // Rm
07225     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
07226     TmpInst.addOperand(Inst.getOperand(5));
07227     Inst = TmpInst;
07228     return true;
07229   }
07230 
07231   // VLD4 multiple 4-element structure instructions.
07232   case ARM::VLD4dAsm_8:
07233   case ARM::VLD4dAsm_16:
07234   case ARM::VLD4dAsm_32:
07235   case ARM::VLD4qAsm_8:
07236   case ARM::VLD4qAsm_16:
07237   case ARM::VLD4qAsm_32: {
07238     MCInst TmpInst;
07239     unsigned Spacing;
07240     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
07241     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07242     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07243                                             Spacing));
07244     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07245                                             Spacing * 2));
07246     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07247                                             Spacing * 3));
07248     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07249     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07250     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07251     TmpInst.addOperand(Inst.getOperand(4));
07252     Inst = TmpInst;
07253     return true;
07254   }
07255 
07256   case ARM::VLD4dWB_fixed_Asm_8:
07257   case ARM::VLD4dWB_fixed_Asm_16:
07258   case ARM::VLD4dWB_fixed_Asm_32:
07259   case ARM::VLD4qWB_fixed_Asm_8:
07260   case ARM::VLD4qWB_fixed_Asm_16:
07261   case ARM::VLD4qWB_fixed_Asm_32: {
07262     MCInst TmpInst;
07263     unsigned Spacing;
07264     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
07265     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07266     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07267                                             Spacing));
07268     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07269                                             Spacing * 2));
07270     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07271                                             Spacing * 3));
07272     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07273     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
07274     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07275     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
07276     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07277     TmpInst.addOperand(Inst.getOperand(4));
07278     Inst = TmpInst;
07279     return true;
07280   }
07281 
07282   case ARM::VLD4dWB_register_Asm_8:
07283   case ARM::VLD4dWB_register_Asm_16:
07284   case ARM::VLD4dWB_register_Asm_32:
07285   case ARM::VLD4qWB_register_Asm_8:
07286   case ARM::VLD4qWB_register_Asm_16:
07287   case ARM::VLD4qWB_register_Asm_32: {
07288     MCInst TmpInst;
07289     unsigned Spacing;
07290     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
07291     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07292     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07293                                             Spacing));
07294     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07295                                             Spacing * 2));
07296     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07297                                             Spacing * 3));
07298     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07299     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
07300     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07301     TmpInst.addOperand(Inst.getOperand(3)); // Rm
07302     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
07303     TmpInst.addOperand(Inst.getOperand(5));
07304     Inst = TmpInst;
07305     return true;
07306   }
07307 
07308   // VST3 multiple 3-element structure instructions.
07309   case ARM::VST3dAsm_8:
07310   case ARM::VST3dAsm_16:
07311   case ARM::VST3dAsm_32:
07312   case ARM::VST3qAsm_8:
07313   case ARM::VST3qAsm_16:
07314   case ARM::VST3qAsm_32: {
07315     MCInst TmpInst;
07316     unsigned Spacing;
07317     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
07318     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07319     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07320     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07321     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07322                                             Spacing));
07323     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07324                                             Spacing * 2));
07325     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07326     TmpInst.addOperand(Inst.getOperand(4));
07327     Inst = TmpInst;
07328     return true;
07329   }
07330 
07331   case ARM::VST3dWB_fixed_Asm_8:
07332   case ARM::VST3dWB_fixed_Asm_16:
07333   case ARM::VST3dWB_fixed_Asm_32:
07334   case ARM::VST3qWB_fixed_Asm_8:
07335   case ARM::VST3qWB_fixed_Asm_16:
07336   case ARM::VST3qWB_fixed_Asm_32: {
07337     MCInst TmpInst;
07338     unsigned Spacing;
07339     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
07340     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07341     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
07342     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07343     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
07344     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07345     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07346                                             Spacing));
07347     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07348                                             Spacing * 2));
07349     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07350     TmpInst.addOperand(Inst.getOperand(4));
07351     Inst = TmpInst;
07352     return true;
07353   }
07354 
07355   case ARM::VST3dWB_register_Asm_8:
07356   case ARM::VST3dWB_register_Asm_16:
07357   case ARM::VST3dWB_register_Asm_32:
07358   case ARM::VST3qWB_register_Asm_8:
07359   case ARM::VST3qWB_register_Asm_16:
07360   case ARM::VST3qWB_register_Asm_32: {
07361     MCInst TmpInst;
07362     unsigned Spacing;
07363     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
07364     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07365     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
07366     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07367     TmpInst.addOperand(Inst.getOperand(3)); // Rm
07368     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07369     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07370                                             Spacing));
07371     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07372                                             Spacing * 2));
07373     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
07374     TmpInst.addOperand(Inst.getOperand(5));
07375     Inst = TmpInst;
07376     return true;
07377   }
07378 
07379   // VST4 multiple 3-element structure instructions.
07380   case ARM::VST4dAsm_8:
07381   case ARM::VST4dAsm_16:
07382   case ARM::VST4dAsm_32:
07383   case ARM::VST4qAsm_8:
07384   case ARM::VST4qAsm_16:
07385   case ARM::VST4qAsm_32: {
07386     MCInst TmpInst;
07387     unsigned Spacing;
07388     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
07389     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07390     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07391     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07392     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07393                                             Spacing));
07394     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07395                                             Spacing * 2));
07396     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07397                                             Spacing * 3));
07398     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07399     TmpInst.addOperand(Inst.getOperand(4));
07400     Inst = TmpInst;
07401     return true;
07402   }
07403 
07404   case ARM::VST4dWB_fixed_Asm_8:
07405   case ARM::VST4dWB_fixed_Asm_16:
07406   case ARM::VST4dWB_fixed_Asm_32:
07407   case ARM::VST4qWB_fixed_Asm_8:
07408   case ARM::VST4qWB_fixed_Asm_16:
07409   case ARM::VST4qWB_fixed_Asm_32: {
07410     MCInst TmpInst;
07411     unsigned Spacing;
07412     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
07413     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07414     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
07415     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07416     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
07417     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07418     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07419                                             Spacing));
07420     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07421                                             Spacing * 2));
07422     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07423                                             Spacing * 3));
07424     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07425     TmpInst.addOperand(Inst.getOperand(4));
07426     Inst = TmpInst;
07427     return true;
07428   }
07429 
07430   case ARM::VST4dWB_register_Asm_8:
07431   case ARM::VST4dWB_register_Asm_16:
07432   case ARM::VST4dWB_register_Asm_32:
07433   case ARM::VST4qWB_register_Asm_8:
07434   case ARM::VST4qWB_register_Asm_16:
07435   case ARM::VST4qWB_register_Asm_32: {
07436     MCInst TmpInst;
07437     unsigned Spacing;
07438     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
07439     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07440     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
07441     TmpInst.addOperand(Inst.getOperand(2)); // alignment
07442     TmpInst.addOperand(Inst.getOperand(3)); // Rm
07443     TmpInst.addOperand(Inst.getOperand(0)); // Vd
07444     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07445                                             Spacing));
07446     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07447                                             Spacing * 2));
07448     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
07449                                             Spacing * 3));
07450     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
07451     TmpInst.addOperand(Inst.getOperand(5));
07452     Inst = TmpInst;
07453     return true;
07454   }
07455 
07456   // Handle encoding choice for the shift-immediate instructions.
07457   case ARM::t2LSLri:
07458   case ARM::t2LSRri:
07459   case ARM::t2ASRri: {
07460     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
07461         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
07462         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
07463         !(static_cast<ARMOperand &>(*Operands[3]).isToken() &&
07464           static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) {
07465       unsigned NewOpc;
07466       switch (Inst.getOpcode()) {
07467       default: llvm_unreachable("unexpected opcode");
07468       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
07469       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
07470       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
07471       }
07472       // The Thumb1 operands aren't in the same order. Awesome, eh?
07473       MCInst TmpInst;
07474       TmpInst.setOpcode(NewOpc);
07475       TmpInst.addOperand(Inst.getOperand(0));
07476       TmpInst.addOperand(Inst.getOperand(5));
07477       TmpInst.addOperand(Inst.getOperand(1));
07478       TmpInst.addOperand(Inst.getOperand(2));
07479       TmpInst.addOperand(Inst.getOperand(3));
07480       TmpInst.addOperand(Inst.getOperand(4));
07481       Inst = TmpInst;
07482       return true;
07483     }
07484     return false;
07485   }
07486 
07487   // Handle the Thumb2 mode MOV complex aliases.
07488   case ARM::t2MOVsr:
07489   case ARM::t2MOVSsr: {
07490     // Which instruction to expand to depends on the CCOut operand and
07491     // whether we're in an IT block if the register operands are low
07492     // registers.
07493     bool isNarrow = false;
07494     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
07495         isARMLowRegister(Inst.getOperand(1).getReg()) &&
07496         isARMLowRegister(Inst.getOperand(2).getReg()) &&
07497         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
07498         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
07499       isNarrow = true;
07500     MCInst TmpInst;
07501     unsigned newOpc;
07502     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
07503     default: llvm_unreachable("unexpected opcode!");
07504     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
07505     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
07506     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
07507     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
07508     }
07509     TmpInst.setOpcode(newOpc);
07510     TmpInst.addOperand(Inst.getOperand(0)); // Rd
07511     if (isNarrow)
07512       TmpInst.addOperand(MCOperand::CreateReg(
07513           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
07514     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07515     TmpInst.addOperand(Inst.getOperand(2)); // Rm
07516     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
07517     TmpInst.addOperand(Inst.getOperand(5));
07518     if (!isNarrow)
07519       TmpInst.addOperand(MCOperand::CreateReg(
07520           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
07521     Inst = TmpInst;
07522     return true;
07523   }
07524   case ARM::t2MOVsi:
07525   case ARM::t2MOVSsi: {
07526     // Which instruction to expand to depends on the CCOut operand and
07527     // whether we're in an IT block if the register operands are low
07528     // registers.
07529     bool isNarrow = false;
07530     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
07531         isARMLowRegister(Inst.getOperand(1).getReg()) &&
07532         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
07533       isNarrow = true;
07534     MCInst TmpInst;
07535     unsigned newOpc;
07536     switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
07537     default: llvm_unreachable("unexpected opcode!");
07538     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
07539     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
07540     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
07541     case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
07542     case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
07543     }
07544     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
07545     if (Amount == 32) Amount = 0;
07546     TmpInst.setOpcode(newOpc);
07547     TmpInst.addOperand(Inst.getOperand(0)); // Rd
07548     if (isNarrow)
07549       TmpInst.addOperand(MCOperand::CreateReg(
07550           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
07551     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07552     if (newOpc != ARM::t2RRX)
07553       TmpInst.addOperand(MCOperand::CreateImm(Amount));
07554     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07555     TmpInst.addOperand(Inst.getOperand(4));
07556     if (!isNarrow)
07557       TmpInst.addOperand(MCOperand::CreateReg(
07558           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
07559     Inst = TmpInst;
07560     return true;
07561   }
07562   // Handle the ARM mode MOV complex aliases.
07563   case ARM::ASRr:
07564   case ARM::LSRr:
07565   case ARM::LSLr:
07566   case ARM::RORr: {
07567     ARM_AM::ShiftOpc ShiftTy;
07568     switch(Inst.getOpcode()) {
07569     default: llvm_unreachable("unexpected opcode!");
07570     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
07571     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
07572     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
07573     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
07574     }
07575     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
07576     MCInst TmpInst;
07577     TmpInst.setOpcode(ARM::MOVsr);
07578     TmpInst.addOperand(Inst.getOperand(0)); // Rd
07579     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07580     TmpInst.addOperand(Inst.getOperand(2)); // Rm
07581     TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
07582     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07583     TmpInst.addOperand(Inst.getOperand(4));
07584     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
07585     Inst = TmpInst;
07586     return true;
07587   }
07588   case ARM::ASRi:
07589   case ARM::LSRi:
07590   case ARM::LSLi:
07591   case ARM::RORi: {
07592     ARM_AM::ShiftOpc ShiftTy;
07593     switch(Inst.getOpcode()) {
07594     default: llvm_unreachable("unexpected opcode!");
07595     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
07596     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
07597     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
07598     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
07599     }
07600     // A shift by zero is a plain MOVr, not a MOVsi.
07601     unsigned Amt = Inst.getOperand(2).getImm();
07602     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
07603     // A shift by 32 should be encoded as 0 when permitted
07604     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
07605       Amt = 0;
07606     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
07607     MCInst TmpInst;
07608     TmpInst.setOpcode(Opc);
07609     TmpInst.addOperand(Inst.getOperand(0)); // Rd
07610     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07611     if (Opc == ARM::MOVsi)
07612       TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
07613     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
07614     TmpInst.addOperand(Inst.getOperand(4));
07615     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
07616     Inst = TmpInst;
07617     return true;
07618   }
07619   case ARM::RRXi: {
07620     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
07621     MCInst TmpInst;
07622     TmpInst.setOpcode(ARM::MOVsi);
07623     TmpInst.addOperand(Inst.getOperand(0)); // Rd
07624     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07625     TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
07626     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
07627     TmpInst.addOperand(Inst.getOperand(3));
07628     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
07629     Inst = TmpInst;
07630     return true;
07631   }
07632   case ARM::t2LDMIA_UPD: {
07633     // If this is a load of a single register, then we should use
07634     // a post-indexed LDR instruction instead, per the ARM ARM.
07635     if (Inst.getNumOperands() != 5)
07636       return false;
07637     MCInst TmpInst;
07638     TmpInst.setOpcode(ARM::t2LDR_POST);
07639     TmpInst.addOperand(Inst.getOperand(4)); // Rt
07640     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
07641     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07642     TmpInst.addOperand(MCOperand::CreateImm(4));
07643     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
07644     TmpInst.addOperand(Inst.getOperand(3));
07645     Inst = TmpInst;
07646     return true;
07647   }
07648   case ARM::t2STMDB_UPD: {
07649     // If this is a store of a single register, then we should use
07650     // a pre-indexed STR instruction instead, per the ARM ARM.
07651     if (Inst.getNumOperands() != 5)
07652       return false;
07653     MCInst TmpInst;
07654     TmpInst.setOpcode(ARM::t2STR_PRE);
07655     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
07656     TmpInst.addOperand(Inst.getOperand(4)); // Rt
07657     TmpInst.addOperand(Inst.getOperand(1)); // Rn
07658     TmpInst.addOperand(MCOperand::CreateImm(-4));
07659     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
07660     TmpInst.addOperand(Inst.getOperand(3));
07661     Inst = TmpInst;
07662     return true;
07663   }
07664   case ARM::LDMIA_UPD:
07665     // If this is a load of a single register via a 'pop', then we should use
07666     // a post-indexed LDR instruction instead, per the ARM ARM.
07667     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
07668         Inst.getNumOperands() == 5) {
07669       MCInst TmpInst;
07670       TmpInst.setOpcode(ARM::LDR_POST_IMM);
07671       TmpInst.addOperand(Inst.getOperand(4)); // Rt
07672       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
07673       TmpInst.addOperand(Inst.getOperand(1)); // Rn
07674       TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
07675       TmpInst.addOperand(MCOperand::CreateImm(4));
07676       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
07677       TmpInst.addOperand(Inst.getOperand(3));
07678       Inst = TmpInst;
07679       return true;
07680     }
07681     break;
07682   case ARM::STMDB_UPD:
07683     // If this is a store of a single register via a 'push', then we should use
07684     // a pre-indexed STR instruction instead, per the ARM ARM.
07685     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
07686         Inst.getNumOperands() == 5) {
07687       MCInst TmpInst;
07688       TmpInst.setOpcode(ARM::STR_PRE_IMM);
07689       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
07690       TmpInst.addOperand(Inst.getOperand(4)); // Rt
07691       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
07692       TmpInst.addOperand(MCOperand::CreateImm(-4));
07693       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
07694       TmpInst.addOperand(Inst.getOperand(3));
07695       Inst = TmpInst;
07696     }
07697     break;
07698   case ARM::t2ADDri12:
07699     // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
07700     // mnemonic was used (not "addw"), encoding T3 is preferred.
07701     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
07702         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
07703       break;
07704     Inst.setOpcode(ARM::t2ADDri);
07705     Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
07706     break;
07707   case ARM::t2SUBri12:
07708     // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
07709     // mnemonic was used (not "subw"), encoding T3 is preferred.
07710     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
07711         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
07712       break;
07713     Inst.setOpcode(ARM::t2SUBri);
07714     Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
07715     break;
07716   case ARM::tADDi8:
07717     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
07718     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
07719     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
07720     // to encoding T1 if <Rd> is omitted."
07721     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
07722       Inst.setOpcode(ARM::tADDi3);
07723       return true;
07724     }
07725     break;
07726   case ARM::tSUBi8:
07727     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
07728     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
07729     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
07730     // to encoding T1 if <Rd> is omitted."
07731     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
07732       Inst.setOpcode(ARM::tSUBi3);
07733       return true;
07734     }
07735     break;
07736   case ARM::t2ADDri:
07737   case ARM::t2SUBri: {
07738     // If the destination and first source operand are the same, and
07739     // the flags are compatible with the current IT status, use encoding T2
07740     // instead of T3. For compatibility with the system 'as'. Make sure the
07741     // wide encoding wasn't explicit.
07742     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
07743         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
07744         (unsigned)Inst.getOperand(2).getImm() > 255 ||
07745         ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
07746          (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
07747         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
07748          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w"))
07749       break;
07750     MCInst TmpInst;
07751     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
07752                       ARM::tADDi8 : ARM::tSUBi8);
07753     TmpInst.addOperand(Inst.getOperand(0));
07754     TmpInst.addOperand(Inst.getOperand(5));
07755     TmpInst.addOperand(Inst.getOperand(0));
07756     TmpInst.addOperand(Inst.getOperand(2));
07757     TmpInst.addOperand(Inst.getOperand(3));
07758     TmpInst.addOperand(Inst.getOperand(4));
07759     Inst = TmpInst;
07760     return true;
07761   }
07762   case ARM::t2ADDrr: {
07763     // If the destination and first source operand are the same, and
07764     // there's no setting of the flags, use encoding T2 instead of T3.
07765     // Note that this is only for ADD, not SUB. This mirrors the system
07766     // 'as' behaviour. Make sure the wide encoding wasn't explicit.
07767     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
07768         Inst.getOperand(5).getReg() != 0 ||
07769         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
07770          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w"))
07771       break;
07772     MCInst TmpInst;
07773     TmpInst.setOpcode(ARM::tADDhirr);
07774     TmpInst.addOperand(Inst.getOperand(0));
07775     TmpInst.addOperand(Inst.getOperand(0));
07776     TmpInst.addOperand(Inst.getOperand(2));
07777     TmpInst.addOperand(Inst.getOperand(3));
07778     TmpInst.addOperand(Inst.getOperand(4));
07779     Inst = TmpInst;
07780     return true;
07781   }
07782   case ARM::tADDrSP: {
07783     // If the non-SP source operand and the destination operand are not the
07784     // same, we need to use the 32-bit encoding if it's available.
07785     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
07786       Inst.setOpcode(ARM::t2ADDrr);
07787       Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
07788       return true;
07789     }
07790     break;
07791   }
07792   case ARM::tB:
07793     // A Thumb conditional branch outside of an IT block is a tBcc.
07794     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
07795       Inst.setOpcode(ARM::tBcc);
07796       return true;
07797     }
07798     break;
07799   case ARM::t2B:
07800     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
07801     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
07802       Inst.setOpcode(ARM::t2Bcc);
07803       return true;
07804     }
07805     break;
07806   case ARM::t2Bcc:
07807     // If the conditional is AL or we're in an IT block, we really want t2B.
07808     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
07809       Inst.setOpcode(ARM::t2B);
07810       return true;
07811     }
07812     break;
07813   case ARM::tBcc:
07814     // If the conditional is AL, we really want tB.
07815     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
07816       Inst.setOpcode(ARM::tB);
07817       return true;
07818     }
07819     break;
07820   case ARM::tLDMIA: {
07821     // If the register list contains any high registers, or if the writeback
07822     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
07823     // instead if we're in Thumb2. Otherwise, this should have generated
07824     // an error in validateInstruction().
07825     unsigned Rn = Inst.getOperand(0).getReg();
07826     bool hasWritebackToken =
07827         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
07828          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
07829     bool listContainsBase;
07830     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
07831         (!listContainsBase && !hasWritebackToken) ||
07832         (listContainsBase && hasWritebackToken)) {
07833       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
07834       assert (isThumbTwo());
07835       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
07836       // If we're switching to the updating version, we need to insert
07837       // the writeback tied operand.
07838       if (hasWritebackToken)
07839         Inst.insert(Inst.begin(),
07840                     MCOperand::CreateReg(Inst.getOperand(0).getReg()));
07841       return true;
07842     }
07843     break;
07844   }
07845   case ARM::tSTMIA_UPD: {
07846     // If the register list contains any high registers, we need to use
07847     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
07848     // should have generated an error in validateInstruction().
07849     unsigned Rn = Inst.getOperand(0).getReg();
07850     bool listContainsBase;
07851     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
07852       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
07853       assert (isThumbTwo());
07854       Inst.setOpcode(ARM::t2STMIA_UPD);
07855       return true;
07856     }
07857     break;
07858   }
07859   case ARM::tPOP: {
07860     bool listContainsBase;
07861     // If the register list contains any high registers, we need to use
07862     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
07863     // should have generated an error in validateInstruction().
07864     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
07865       return false;
07866     assert (isThumbTwo());
07867     Inst.setOpcode(ARM::t2LDMIA_UPD);
07868     // Add the base register and writeback operands.
07869     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
07870     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
07871     return true;
07872   }
07873   case ARM::tPUSH: {
07874     bool listContainsBase;
07875     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
07876       return false;
07877     assert (isThumbTwo());
07878     Inst.setOpcode(ARM::t2STMDB_UPD);
07879     // Add the base register and writeback operands.
07880     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
07881     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
07882     return true;
07883   }
07884   case ARM::t2MOVi: {
07885     // If we can use the 16-bit encoding and the user didn't explicitly
07886     // request the 32-bit variant, transform it here.
07887     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
07888         (unsigned)Inst.getOperand(1).getImm() <= 255 &&
07889         ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
07890           Inst.getOperand(4).getReg() == ARM::CPSR) ||
07891          (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
07892         (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
07893          static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
07894       // The operands aren't in the same order for tMOVi8...
07895       MCInst TmpInst;
07896       TmpInst.setOpcode(ARM::tMOVi8);
07897       TmpInst.addOperand(Inst.getOperand(0));
07898       TmpInst.addOperand(Inst.getOperand(4));
07899       TmpInst.addOperand(Inst.getOperand(1));
07900       TmpInst.addOperand(Inst.getOperand(2));
07901       TmpInst.addOperand(Inst.getOperand(3));
07902       Inst = TmpInst;
07903       return true;
07904     }
07905     break;
07906   }
07907   case ARM::t2MOVr: {
07908     // If we can use the 16-bit encoding and the user didn't explicitly
07909     // request the 32-bit variant, transform it here.
07910     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
07911         isARMLowRegister(Inst.getOperand(1).getReg()) &&
07912         Inst.getOperand(2).getImm() == ARMCC::AL &&
07913         Inst.getOperand(4).getReg() == ARM::CPSR &&
07914         (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
07915          static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
07916       // The operands aren't the same for tMOV[S]r... (no cc_out)
07917       MCInst TmpInst;
07918       TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
07919       TmpInst.addOperand(Inst.getOperand(0));
07920       TmpInst.addOperand(Inst.getOperand(1));
07921       TmpInst.addOperand(Inst.getOperand(2));
07922       TmpInst.addOperand(Inst.getOperand(3));
07923       Inst = TmpInst;
07924       return true;
07925     }
07926     break;
07927   }
07928   case ARM::t2SXTH:
07929   case ARM::t2SXTB:
07930   case ARM::t2UXTH:
07931   case ARM::t2UXTB: {
07932     // If we can use the 16-bit encoding and the user didn't explicitly
07933     // request the 32-bit variant, transform it here.
07934     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
07935         isARMLowRegister(Inst.getOperand(1).getReg()) &&
07936         Inst.getOperand(2).getImm() == 0 &&
07937         (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
07938          static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
07939       unsigned NewOpc;
07940       switch (Inst.getOpcode()) {
07941       default: llvm_unreachable("Illegal opcode!");
07942       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
07943       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
07944       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
07945       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
07946       }
07947       // The operands aren't the same for thumb1 (no rotate operand).
07948       MCInst TmpInst;
07949       TmpInst.setOpcode(NewOpc);
07950       TmpInst.addOperand(Inst.getOperand(0));
07951       TmpInst.addOperand(Inst.getOperand(1));
07952       TmpInst.addOperand(Inst.getOperand(3));
07953       TmpInst.addOperand(Inst.getOperand(4));
07954       Inst = TmpInst;
07955       return true;
07956     }
07957     break;
07958   }
07959   case ARM::MOVsi: {
07960     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
07961     // rrx shifts and asr/lsr of #32 is encoded as 0
07962     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 
07963       return false;
07964     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
07965       // Shifting by zero is accepted as a vanilla 'MOVr'
07966       MCInst TmpInst;
07967       TmpInst.setOpcode(ARM::MOVr);
07968       TmpInst.addOperand(Inst.getOperand(0));
07969       TmpInst.addOperand(Inst.getOperand(1));
07970       TmpInst.addOperand(Inst.getOperand(3));
07971       TmpInst.addOperand(Inst.getOperand(4));
07972       TmpInst.addOperand(Inst.getOperand(5));
07973       Inst = TmpInst;
07974       return true;
07975     }
07976     return false;
07977   }
07978   case ARM::ANDrsi:
07979   case ARM::ORRrsi:
07980   case ARM::EORrsi:
07981   case ARM::BICrsi:
07982   case ARM::SUBrsi:
07983   case ARM::ADDrsi: {
07984     unsigned newOpc;
07985     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
07986     if (SOpc == ARM_AM::rrx) return false;
07987     switch (Inst.getOpcode()) {
07988     default: llvm_unreachable("unexpected opcode!");
07989     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
07990     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
07991     case ARM::EORrsi: newOpc = ARM::EORrr; break;
07992     case ARM::BICrsi: newOpc = ARM::BICrr; break;
07993     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
07994     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
07995     }
07996     // If the shift is by zero, use the non-shifted instruction definition.
07997     // The exception is for right shifts, where 0 == 32
07998     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
07999         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
08000       MCInst TmpInst;
08001       TmpInst.setOpcode(newOpc);
08002       TmpInst.addOperand(Inst.getOperand(0));
08003       TmpInst.addOperand(Inst.getOperand(1));
08004       TmpInst.addOperand(Inst.getOperand(2));
08005       TmpInst.addOperand(Inst.getOperand(4));
08006       TmpInst.addOperand(Inst.getOperand(5));
08007       TmpInst.addOperand(Inst.getOperand(6));
08008       Inst = TmpInst;
08009       return true;
08010     }
08011     return false;
08012   }
08013   case ARM::ITasm:
08014   case ARM::t2IT: {
08015     // The mask bits for all but the first condition are represented as
08016     // the low bit of the condition code value implies 't'. We currently
08017     // always have 1 implies 't', so XOR toggle the bits if the low bit
08018     // of the condition code is zero. 
08019     MCOperand &MO = Inst.getOperand(1);
08020     unsigned Mask = MO.getImm();
08021     unsigned OrigMask = Mask;
08022     unsigned TZ = countTrailingZeros(Mask);
08023     if ((Inst.getOperand(0).getImm() & 1) == 0) {
08024       assert(Mask && TZ <= 3 && "illegal IT mask value!");
08025       Mask ^= (0xE << TZ) & 0xF;
08026     }
08027     MO.setImm(Mask);
08028 
08029     // Set up the IT block state according to the IT instruction we just
08030     // matched.
08031     assert(!inITBlock() && "nested IT blocks?!");
08032     ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
08033     ITState.Mask = OrigMask; // Use the original mask, not the updated one.
08034     ITState.CurPosition = 0;
08035     ITState.FirstCond = true;
08036     break;
08037   }
08038   case ARM::t2LSLrr:
08039   case ARM::t2LSRrr:
08040   case ARM::t2ASRrr:
08041   case ARM::t2SBCrr:
08042   case ARM::t2RORrr:
08043   case ARM::t2BICrr:
08044   {
08045     // Assemblers should use the narrow encodings of these instructions when permissible.
08046     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
08047          isARMLowRegister(Inst.getOperand(2).getReg())) &&
08048         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
08049         ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
08050          (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
08051         (!static_cast<ARMOperand &>(*Operands[3]).isToken() ||
08052          !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower(
08053              ".w"))) {
08054       unsigned NewOpc;
08055       switch (Inst.getOpcode()) {
08056         default: llvm_unreachable("unexpected opcode");
08057         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
08058         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
08059         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
08060         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
08061         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
08062         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
08063       }
08064       MCInst TmpInst;
08065       TmpInst.setOpcode(NewOpc);
08066       TmpInst.addOperand(Inst.getOperand(0));
08067       TmpInst.addOperand(Inst.getOperand(5));
08068       TmpInst.addOperand(Inst.getOperand(1));
08069       TmpInst.addOperand(Inst.getOperand(2));
08070       TmpInst.addOperand(Inst.getOperand(3));
08071       TmpInst.addOperand(Inst.getOperand(4));
08072       Inst = TmpInst;
08073       return true;
08074     }
08075     return false;
08076   }
08077   case ARM::t2ANDrr:
08078   case ARM::t2EORrr:
08079   case ARM::t2ADCrr:
08080   case ARM::t2ORRrr:
08081   {
08082     // Assemblers should use the narrow encodings of these instructions when permissible.
08083     // These instructions are special in that they are commutable, so shorter encodings
08084     // are available more often.
08085     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
08086          isARMLowRegister(Inst.getOperand(2).getReg())) &&
08087         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
08088          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
08089         ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
08090          (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
08091         (!static_cast<ARMOperand &>(*Operands[3]).isToken() ||
08092          !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower(
08093              ".w"))) {
08094       unsigned NewOpc;
08095       switch (Inst.getOpcode()) {
08096         default: llvm_unreachable("unexpected opcode");
08097         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
08098         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
08099         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
08100         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
08101       }
08102       MCInst TmpInst;
08103       TmpInst.setOpcode(NewOpc);
08104       TmpInst.addOperand(Inst.getOperand(0));
08105       TmpInst.addOperand(Inst.getOperand(5));
08106       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
08107         TmpInst.addOperand(Inst.getOperand(1));
08108         TmpInst.addOperand(Inst.getOperand(2));
08109       } else {
08110         TmpInst.addOperand(Inst.getOperand(2));
08111         TmpInst.addOperand(Inst.getOperand(1));
08112       }
08113       TmpInst.addOperand(Inst.getOperand(3));
08114       TmpInst.addOperand(Inst.getOperand(4));
08115       Inst = TmpInst;
08116       return true;
08117     }
08118     return false;
08119   }
08120   }
08121   return false;
08122 }
08123 
08124 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
08125   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
08126   // suffix depending on whether they're in an IT block or not.
08127   unsigned Opc = Inst.getOpcode();
08128   const MCInstrDesc &MCID = MII.get(Opc);
08129   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
08130     assert(MCID.hasOptionalDef() &&
08131            "optionally flag setting instruction missing optional def operand");
08132     assert(MCID.NumOperands == Inst.getNumOperands() &&
08133            "operand count mismatch!");
08134     // Find the optional-def operand (cc_out).
08135     unsigned OpNo;
08136     for (OpNo = 0;
08137          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
08138          ++OpNo)
08139       ;
08140     // If we're parsing Thumb1, reject it completely.
08141     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
08142       return Match_MnemonicFail;
08143     // If we're parsing Thumb2, which form is legal depends on whether we're
08144     // in an IT block.
08145     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
08146         !inITBlock())
08147       return Match_RequiresITBlock;
08148     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
08149         inITBlock())
08150       return Match_RequiresNotITBlock;
08151   }
08152   // Some high-register supporting Thumb1 encodings only allow both registers
08153   // to be from r0-r7 when in Thumb2.
08154   else if (Opc == ARM::tADDhirr && isThumbOne() &&
08155            isARMLowRegister(Inst.getOperand(1).getReg()) &&
08156            isARMLowRegister(Inst.getOperand(2).getReg()))
08157     return Match_RequiresThumb2;
08158   // Others only require ARMv6 or later.
08159   else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
08160            isARMLowRegister(Inst.getOperand(0).getReg()) &&
08161            isARMLowRegister(Inst.getOperand(1).getReg()))
08162     return Match_RequiresV6;
08163   return Match_Success;
08164 }
08165 
08166 namespace llvm {
08167 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) {
08168   return true; // In an assembly source, no need to second-guess
08169 }
08170 }
08171 
08172 static const char *getSubtargetFeatureName(uint64_t Val);
08173 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
08174                                            OperandVector &Operands,
08175                                            MCStreamer &Out, uint64_t &ErrorInfo,
08176                                            bool MatchingInlineAsm) {
08177   MCInst Inst;
08178   unsigned MatchResult;
08179 
08180   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
08181                                      MatchingInlineAsm);
08182   switch (MatchResult) {
08183   default: break;
08184   case Match_Success:
08185     // Context sensitive operand constraints aren't handled by the matcher,
08186     // so check them here.
08187     if (validateInstruction(Inst, Operands)) {
08188       // Still progress the IT block, otherwise one wrong condition causes
08189       // nasty cascading errors.
08190       forwardITPosition();
08191       return true;
08192     }
08193 
08194     { // processInstruction() updates inITBlock state, we need to save it away
08195       bool wasInITBlock = inITBlock();
08196 
08197       // Some instructions need post-processing to, for example, tweak which
08198       // encoding is selected. Loop on it while changes happen so the
08199       // individual transformations can chain off each other. E.g.,
08200       // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
08201       while (processInstruction(Inst, Operands))
08202         ;
08203 
08204       // Only after the instruction is fully processed, we can validate it
08205       if (wasInITBlock && hasV8Ops() && isThumb() &&
08206           !isV8EligibleForIT(&Inst)) {
08207         Warning(IDLoc, "deprecated instruction in IT block");
08208       }
08209     }
08210 
08211     // Only move forward at the very end so that everything in validate
08212     // and process gets a consistent answer about whether we're in an IT
08213     // block.
08214     forwardITPosition();
08215 
08216     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
08217     // doesn't actually encode.
08218     if (Inst.getOpcode() == ARM::ITasm)
08219       return false;
08220 
08221     Inst.setLoc(IDLoc);
08222     Out.EmitInstruction(Inst, STI);
08223     return false;
08224   case Match_MissingFeature: {
08225     assert(ErrorInfo && "Unknown missing feature!");
08226     // Special case the error message for the very common case where only
08227     // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
08228     std::string Msg = "instruction requires:";
08229     uint64_t Mask = 1;
08230     for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
08231       if (ErrorInfo & Mask) {
08232         Msg += " ";
08233         Msg += getSubtargetFeatureName(ErrorInfo & Mask);
08234       }
08235       Mask <<= 1;
08236     }
08237     return Error(IDLoc, Msg);
08238   }
08239   case Match_InvalidOperand: {
08240     SMLoc ErrorLoc = IDLoc;
08241     if (ErrorInfo != ~0ULL) {
08242       if (ErrorInfo >= Operands.size())
08243         return Error(IDLoc, "too few operands for instruction");
08244 
08245       ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
08246       if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
08247     }
08248 
08249     return Error(ErrorLoc, "invalid operand for instruction");
08250   }
08251   case Match_MnemonicFail:
08252     return Error(IDLoc, "invalid instruction",
08253                  ((ARMOperand &)*Operands[0]).getLocRange());
08254   case Match_RequiresNotITBlock:
08255     return Error(IDLoc, "flag setting instruction only valid outside IT block");
08256   case Match_RequiresITBlock:
08257     return Error(IDLoc, "instruction only valid inside IT block");
08258   case Match_RequiresV6:
08259     return Error(IDLoc, "instruction variant requires ARMv6 or later");
08260   case Match_RequiresThumb2:
08261     return Error(IDLoc, "instruction variant requires Thumb2");
08262   case Match_ImmRange0_15: {
08263     SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
08264     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
08265     return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
08266   }
08267   case Match_ImmRange0_239: {
08268     SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
08269     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
08270     return Error(ErrorLoc, "immediate operand must be in the range [0,239]");
08271   }
08272   case Match_AlignedMemoryRequiresNone:
08273   case Match_DupAlignedMemoryRequiresNone:
08274   case Match_AlignedMemoryRequires16:
08275   case Match_DupAlignedMemoryRequires16:
08276   case Match_AlignedMemoryRequires32:
08277   case Match_DupAlignedMemoryRequires32:
08278   case Match_AlignedMemoryRequires64:
08279   case Match_DupAlignedMemoryRequires64:
08280   case Match_AlignedMemoryRequires64or128:
08281   case Match_DupAlignedMemoryRequires64or128:
08282   case Match_AlignedMemoryRequires64or128or256:
08283   {
08284     SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc();
08285     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
08286     switch (MatchResult) {
08287       default:
08288         llvm_unreachable("Missing Match_Aligned type");
08289       case Match_AlignedMemoryRequiresNone:
08290       case Match_DupAlignedMemoryRequiresNone:
08291         return Error(ErrorLoc, "alignment must be omitted");
08292       case Match_AlignedMemoryRequires16:
08293       case Match_DupAlignedMemoryRequires16:
08294         return Error(ErrorLoc, "alignment must be 16 or omitted");
08295       case Match_AlignedMemoryRequires32:
08296       case Match_DupAlignedMemoryRequires32:
08297         return Error(ErrorLoc, "alignment must be 32 or omitted");
08298       case Match_AlignedMemoryRequires64:
08299       case Match_DupAlignedMemoryRequires64:
08300         return Error(ErrorLoc, "alignment must be 64 or omitted");
08301       case Match_AlignedMemoryRequires64or128:
08302       case Match_DupAlignedMemoryRequires64or128:
08303         return Error(ErrorLoc, "alignment must be 64, 128 or omitted");
08304       case Match_AlignedMemoryRequires64or128or256:
08305         return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted");
08306     }
08307   }
08308   }
08309 
08310   llvm_unreachable("Implement any new match types added!");
08311 }
08312 
08313 /// parseDirective parses the arm specific directives
08314 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
08315   const MCObjectFileInfo::Environment Format =
08316     getContext().getObjectFileInfo()->getObjectFileType();
08317   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
08318   bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
08319 
08320   StringRef IDVal = DirectiveID.getIdentifier();
08321   if (IDVal == ".word")
08322     return parseLiteralValues(4, DirectiveID.getLoc());
08323   else if (IDVal == ".short" || IDVal == ".hword")
08324     return parseLiteralValues(2, DirectiveID.getLoc());
08325   else if (IDVal == ".thumb")
08326     return parseDirectiveThumb(DirectiveID.getLoc());
08327   else if (IDVal == ".arm")
08328     return parseDirectiveARM(DirectiveID.getLoc());
08329   else if (IDVal == ".thumb_func")
08330     return parseDirectiveThumbFunc(DirectiveID.getLoc());
08331   else if (IDVal == ".code")
08332     return parseDirectiveCode(DirectiveID.getLoc());
08333   else if (IDVal == ".syntax")
08334     return parseDirectiveSyntax(DirectiveID.getLoc());
08335   else if (IDVal == ".unreq")
08336     return parseDirectiveUnreq(DirectiveID.getLoc());
08337   else if (IDVal == ".fnend")
08338     return parseDirectiveFnEnd(DirectiveID.getLoc());
08339   else if (IDVal == ".cantunwind")
08340     return parseDirectiveCantUnwind(DirectiveID.getLoc());
08341   else if (IDVal == ".personality")
08342     return parseDirectivePersonality(DirectiveID.getLoc());
08343   else if (IDVal == ".handlerdata")
08344     return parseDirectiveHandlerData(DirectiveID.getLoc());
08345   else if (IDVal == ".setfp")
08346     return parseDirectiveSetFP(DirectiveID.getLoc());
08347   else if (IDVal == ".pad")
08348     return parseDirectivePad(DirectiveID.getLoc());
08349   else if (IDVal == ".save")
08350     return parseDirectiveRegSave(DirectiveID.getLoc(), false);
08351   else if (IDVal == ".vsave")
08352     return parseDirectiveRegSave(DirectiveID.getLoc(), true);
08353   else if (IDVal == ".ltorg" || IDVal == ".pool")
08354     return parseDirectiveLtorg(DirectiveID.getLoc());
08355   else if (IDVal == ".even")
08356     return parseDirectiveEven(DirectiveID.getLoc());
08357   else if (IDVal == ".personalityindex")
08358     return parseDirectivePersonalityIndex(DirectiveID.getLoc());
08359   else if (IDVal == ".unwind_raw")
08360     return parseDirectiveUnwindRaw(DirectiveID.getLoc());
08361   else if (IDVal == ".movsp")
08362     return parseDirectiveMovSP(DirectiveID.getLoc());
08363   else if (IDVal == ".arch_extension")
08364     return parseDirectiveArchExtension(DirectiveID.getLoc());
08365   else if (IDVal == ".align")
08366     return parseDirectiveAlign(DirectiveID.getLoc());
08367   else if (IDVal == ".thumb_set")
08368     return parseDirectiveThumbSet(DirectiveID.getLoc());
08369 
08370   if (!IsMachO && !IsCOFF) {
08371     if (IDVal == ".arch")
08372       return parseDirectiveArch(DirectiveID.getLoc());
08373     else if (IDVal == ".cpu")
08374       return parseDirectiveCPU(DirectiveID.getLoc());
08375     else if (IDVal == ".eabi_attribute")
08376       return parseDirectiveEabiAttr(DirectiveID.getLoc());
08377     else if (IDVal == ".fpu")
08378       return parseDirectiveFPU(DirectiveID.getLoc());
08379     else if (IDVal == ".fnstart")
08380       return parseDirectiveFnStart(DirectiveID.getLoc());
08381     else if (IDVal == ".inst")
08382       return parseDirectiveInst(DirectiveID.getLoc());
08383     else if (IDVal == ".inst.n")
08384       return parseDirectiveInst(DirectiveID.getLoc(), 'n');
08385     else if (IDVal == ".inst.w")
08386       return parseDirectiveInst(DirectiveID.getLoc(), 'w');
08387     else if (IDVal == ".object_arch")
08388       return parseDirectiveObjectArch(DirectiveID.getLoc());
08389     else if (IDVal == ".tlsdescseq")
08390       return parseDirectiveTLSDescSeq(DirectiveID.getLoc());
08391   }
08392 
08393   return true;
08394 }
08395 
08396 /// parseLiteralValues
08397 ///  ::= .hword expression [, expression]*
08398 ///  ::= .short expression [, expression]*
08399 ///  ::= .word expression [, expression]*
08400 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
08401   if (getLexer().isNot(AsmToken::EndOfStatement)) {
08402     for (;;) {
08403       const MCExpr *Value;
08404       if (getParser().parseExpression(Value)) {
08405         Parser.eatToEndOfStatement();
08406         return false;
08407       }
08408 
08409       getParser().getStreamer().EmitValue(Value, Size);
08410 
08411       if (getLexer().is(AsmToken::EndOfStatement))
08412         break;
08413 
08414       // FIXME: Improve diagnostic.
08415       if (getLexer().isNot(AsmToken::Comma)) {
08416         Error(L, "unexpected token in directive");
08417         return false;
08418       }
08419       Parser.Lex();
08420     }
08421   }
08422 
08423   Parser.Lex();
08424   return false;
08425 }
08426 
08427 /// parseDirectiveThumb
08428 ///  ::= .thumb
08429 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
08430   if (getLexer().isNot(AsmToken::EndOfStatement)) {
08431     Error(L, "unexpected token in directive");
08432     return false;
08433   }
08434   Parser.Lex();
08435 
08436   if (!hasThumb()) {
08437     Error(L, "target does not support Thumb mode");
08438     return false;
08439   }
08440 
08441   if (!isThumb())
08442     SwitchMode();
08443 
08444   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
08445   return false;
08446 }
08447 
08448 /// parseDirectiveARM
08449 ///  ::= .arm
08450 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
08451   if (getLexer().isNot(AsmToken::EndOfStatement)) {
08452     Error(L, "unexpected token in directive");
08453     return false;
08454   }
08455   Parser.Lex();
08456 
08457   if (!hasARM()) {
08458     Error(L, "target does not support ARM mode");
08459     return false;
08460   }
08461 
08462   if (isThumb())
08463     SwitchMode();
08464 
08465   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
08466   return false;
08467 }
08468 
08469 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
08470   if (NextSymbolIsThumb) {
08471     getParser().getStreamer().EmitThumbFunc(Symbol);
08472     NextSymbolIsThumb = false;
08473   }
08474 }
08475 
08476 /// parseDirectiveThumbFunc
08477 ///  ::= .thumbfunc symbol_name
08478 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
08479   const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
08480   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
08481 
08482   // Darwin asm has (optionally) function name after .thumb_func direction
08483   // ELF doesn't
08484   if (IsMachO) {
08485     const AsmToken &Tok = Parser.getTok();
08486     if (Tok.isNot(AsmToken::EndOfStatement)) {
08487       if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) {
08488         Error(L, "unexpected token in .thumb_func directive");
08489         return false;
08490       }
08491 
08492       MCSymbol *Func =
08493           getParser().getContext().GetOrCreateSymbol(Tok.getIdentifier());
08494       getParser().getStreamer().EmitThumbFunc(Func);
08495       Parser.Lex(); // Consume the identifier token.
08496       return false;
08497     }
08498   }
08499 
08500   if (getLexer().isNot(AsmToken::EndOfStatement)) {
08501     Error(Parser.getTok().getLoc(), "unexpected token in directive");
08502     Parser.eatToEndOfStatement();
08503     return false;
08504   }
08505 
08506   NextSymbolIsThumb = true;
08507   return false;
08508 }
08509 
08510 /// parseDirectiveSyntax
08511 ///  ::= .syntax unified | divided
08512 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
08513   const AsmToken &Tok = Parser.getTok();
08514   if (Tok.isNot(AsmToken::Identifier)) {
08515     Error(L, "unexpected token in .syntax directive");
08516     return false;
08517   }
08518 
08519   StringRef Mode = Tok.getString();
08520   if (Mode == "unified" || Mode == "UNIFIED") {
08521     Parser.Lex();
08522   } else if (Mode == "divided" || Mode == "DIVIDED") {
08523     Error(L, "'.syntax divided' arm asssembly not supported");
08524     return false;
08525   } else {
08526     Error(L, "unrecognized syntax mode in .syntax directive");
08527     return false;
08528   }
08529 
08530   if (getLexer().isNot(AsmToken::EndOfStatement)) {
08531     Error(Parser.getTok().getLoc(), "unexpected token in directive");
08532     return false;
08533   }
08534   Parser.Lex();
08535 
08536   // TODO tell the MC streamer the mode
08537   // getParser().getStreamer().Emit???();
08538   return false;
08539 }
08540 
08541 /// parseDirectiveCode
08542 ///  ::= .code 16 | 32
08543 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
08544   const AsmToken &Tok = Parser.getTok();
08545   if (Tok.isNot(AsmToken::Integer)) {
08546     Error(L, "unexpected token in .code directive");
08547     return false;
08548   }
08549   int64_t Val = Parser.getTok().getIntVal();
08550   if (Val != 16 && Val != 32) {
08551     Error(L, "invalid operand to .code directive");
08552     return false;
08553   }
08554   Parser.Lex();
08555 
08556   if (getLexer().isNot(AsmToken::EndOfStatement)) {
08557     Error(Parser.getTok().getLoc(), "unexpected token in directive");
08558     return false;
08559   }
08560   Parser.Lex();
08561 
08562   if (Val == 16) {
08563     if (!hasThumb()) {
08564       Error(L, "target does not support Thumb mode");
08565       return false;
08566     }
08567 
08568     if (!isThumb())
08569       SwitchMode();
08570     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
08571   } else {
08572     if (!hasARM()) {
08573       Error(L, "target does not support ARM mode");
08574       return false;
08575     }
08576 
08577     if (isThumb())
08578       SwitchMode();
08579     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
08580   }
08581 
08582   return false;
08583 }
08584 
08585 /// parseDirectiveReq
08586 ///  ::= name .req registername
08587 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
08588   Parser.Lex(); // Eat the '.req' token.
08589   unsigned Reg;
08590   SMLoc SRegLoc, ERegLoc;
08591   if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
08592     Parser.eatToEndOfStatement();
08593     Error(SRegLoc, "register name expected");
08594     return false;
08595   }
08596 
08597   // Shouldn't be anything else.
08598   if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
08599     Parser.eatToEndOfStatement();
08600     Error(Parser.getTok().getLoc(), "unexpected input in .req directive.");
08601     return false;
08602   }
08603 
08604   Parser.Lex(); // Consume the EndOfStatement
08605 
08606   if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg) {
08607     Error(SRegLoc, "redefinition of '" + Name + "' does not match original.");
08608     return false;
08609   }
08610 
08611   return false;
08612 }
08613 
08614 /// parseDirectiveUneq
08615 ///  ::= .unreq registername
08616 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
08617   if (Parser.getTok().isNot(AsmToken::Identifier)) {
08618     Parser.eatToEndOfStatement();
08619     Error(L, "unexpected input in .unreq directive.");
08620     return false;
08621   }
08622   RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
08623   Parser.Lex(); // Eat the identifier.
08624   return false;
08625 }
08626 
08627 /// parseDirectiveArch
08628 ///  ::= .arch token
08629 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
08630   StringRef Arch = getParser().parseStringToEndOfStatement().trim();
08631 
08632   unsigned ID = StringSwitch<unsigned>(Arch)
08633 #define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
08634     .Case(NAME, ARM::ID)
08635 #define ARM_ARCH_ALIAS(NAME, ID) \
08636     .Case(NAME, ARM::ID)
08637 #include "MCTargetDesc/ARMArchName.def"
08638     .Default(ARM::INVALID_ARCH);
08639 
08640   if (ID == ARM::INVALID_ARCH) {
08641     Error(L, "Unknown arch name");
08642     return false;
08643   }
08644 
08645   getTargetStreamer().emitArch(ID);
08646   return false;
08647 }
08648 
08649 /// parseDirectiveEabiAttr
08650 ///  ::= .eabi_attribute int, int [, "str"]
08651 ///  ::= .eabi_attribute Tag_name, int [, "str"]
08652 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
08653   int64_t Tag;
08654   SMLoc TagLoc;
08655   TagLoc = Parser.getTok().getLoc();
08656   if (Parser.getTok().is(AsmToken::Identifier)) {
08657     StringRef Name = Parser.getTok().getIdentifier();
08658     Tag = ARMBuildAttrs::AttrTypeFromString(Name);
08659     if (Tag == -1) {
08660       Error(TagLoc, "attribute name not recognised: " + Name);
08661       Parser.eatToEndOfStatement();
08662       return false;
08663     }
08664     Parser.Lex();
08665   } else {
08666     const MCExpr *AttrExpr;
08667 
08668     TagLoc = Parser.getTok().getLoc();
08669     if (Parser.parseExpression(AttrExpr)) {
08670       Parser.eatToEndOfStatement();
08671       return false;
08672     }
08673 
08674     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
08675     if (!CE) {
08676       Error(TagLoc, "expected numeric constant");
08677       Parser.eatToEndOfStatement();
08678       return false;
08679     }
08680 
08681     Tag = CE->getValue();
08682   }
08683 
08684   if (Parser.getTok().isNot(AsmToken::Comma)) {
08685     Error(Parser.getTok().getLoc(), "comma expected");
08686     Parser.eatToEndOfStatement();
08687     return false;
08688   }
08689   Parser.Lex(); // skip comma
08690 
08691   StringRef StringValue = "";
08692   bool IsStringValue = false;
08693 
08694   int64_t IntegerValue = 0;
08695   bool IsIntegerValue = false;
08696 
08697   if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
08698     IsStringValue = true;
08699   else if (Tag == ARMBuildAttrs::compatibility) {
08700     IsStringValue = true;
08701     IsIntegerValue = true;
08702   } else if (Tag < 32 || Tag % 2 == 0)
08703     IsIntegerValue = true;
08704   else if (Tag % 2 == 1)
08705     IsStringValue = true;
08706   else
08707     llvm_unreachable("invalid tag type");
08708 
08709   if (IsIntegerValue) {
08710     const MCExpr *ValueExpr;
08711     SMLoc ValueExprLoc = Parser.getTok().getLoc();
08712     if (Parser.parseExpression(ValueExpr)) {
08713       Parser.eatToEndOfStatement();
08714       return false;
08715     }
08716 
08717     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
08718     if (!CE) {
08719       Error(ValueExprLoc, "expected numeric constant");
08720       Parser.eatToEndOfStatement();
08721       return false;
08722     }
08723 
08724     IntegerValue = CE->getValue();
08725   }
08726 
08727   if (Tag == ARMBuildAttrs::compatibility) {
08728     if (Parser.getTok().isNot(AsmToken::Comma))
08729       IsStringValue = false;
08730     else
08731       Parser.Lex();
08732   }
08733 
08734   if (IsStringValue) {
08735     if (Parser.getTok().isNot(AsmToken::String)) {
08736       Error(Parser.getTok().getLoc(), "bad string constant");
08737       Parser.eatToEndOfStatement();
08738       return false;
08739     }
08740 
08741     StringValue = Parser.getTok().getStringContents();
08742     Parser.Lex();
08743   }
08744 
08745   if (IsIntegerValue && IsStringValue) {
08746     assert(Tag == ARMBuildAttrs::compatibility);
08747     getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
08748   } else if (IsIntegerValue)
08749     getTargetStreamer().emitAttribute(Tag, IntegerValue);
08750   else if (IsStringValue)
08751     getTargetStreamer().emitTextAttribute(Tag, StringValue);
08752   return false;
08753 }
08754 
08755 /// parseDirectiveCPU
08756 ///  ::= .cpu str
08757 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
08758   StringRef CPU = getParser().parseStringToEndOfStatement().trim();
08759   getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
08760   return false;
08761 }
08762 
08763 // FIXME: This is duplicated in getARMFPUFeatures() in
08764 // tools/clang/lib/Driver/Tools.cpp
08765 static const struct {
08766   const unsigned Fpu;
08767   const uint64_t Enabled;
08768   const uint64_t Disabled;
08769 } Fpus[] = {
08770       {ARM::VFP, ARM::FeatureVFP2, ARM::FeatureNEON},
08771       {ARM::VFPV2, ARM::FeatureVFP2, ARM::FeatureNEON},
08772       {ARM::VFPV3, ARM::FeatureVFP3, ARM::FeatureNEON},
08773       {ARM::VFPV3_D16, ARM::FeatureVFP3 | ARM::FeatureD16, ARM::FeatureNEON},
08774       {ARM::VFPV4, ARM::FeatureVFP4, ARM::FeatureNEON},
08775       {ARM::VFPV4_D16, ARM::FeatureVFP4 | ARM::FeatureD16, ARM::FeatureNEON},
08776       {ARM::FP_ARMV8, ARM::FeatureFPARMv8,
08777        ARM::FeatureNEON | ARM::FeatureCrypto},
08778       {ARM::NEON, ARM::FeatureNEON, 0},
08779       {ARM::NEON_VFPV4, ARM::FeatureVFP4 | ARM::FeatureNEON, 0},
08780       {ARM::NEON_FP_ARMV8, ARM::FeatureFPARMv8 | ARM::FeatureNEON,
08781        ARM::FeatureCrypto},
08782       {ARM::CRYPTO_NEON_FP_ARMV8,
08783        ARM::FeatureFPARMv8 | ARM::FeatureNEON | ARM::FeatureCrypto, 0},
08784       {ARM::SOFTVFP, 0, 0},
08785 };
08786 
08787 /// parseDirectiveFPU
08788 ///  ::= .fpu str
08789 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
08790   StringRef FPU = getParser().parseStringToEndOfStatement().trim();
08791 
08792   unsigned ID = StringSwitch<unsigned>(FPU)
08793 #define ARM_FPU_NAME(NAME, ID) .Case(NAME, ARM::ID)
08794 #include "ARMFPUName.def"
08795     .Default(ARM::INVALID_FPU);
08796 
08797   if (ID == ARM::INVALID_FPU) {
08798     Error(L, "Unknown FPU name");
08799     return false;
08800   }
08801 
08802   for (const auto &Fpu : Fpus) {
08803     if (Fpu.Fpu != ID)
08804       continue;
08805 
08806     // Need to toggle features that should be on but are off and that
08807     // should off but are on.
08808     uint64_t Toggle = (Fpu.Enabled & ~STI.getFeatureBits()) |
08809                       (Fpu.Disabled & STI.getFeatureBits());
08810     setAvailableFeatures(ComputeAvailableFeatures(STI.ToggleFeature(Toggle)));
08811     break;
08812   }
08813 
08814   getTargetStreamer().emitFPU(ID);
08815   return false;
08816 }
08817 
08818 /// parseDirectiveFnStart
08819 ///  ::= .fnstart
08820 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
08821   if (UC.hasFnStart()) {
08822     Error(L, ".fnstart starts before the end of previous one");
08823     UC.emitFnStartLocNotes();
08824     return false;
08825   }
08826 
08827   // Reset the unwind directives parser state
08828   UC.reset();
08829 
08830   getTargetStreamer().emitFnStart();
08831 
08832   UC.recordFnStart(L);
08833   return false;
08834 }
08835 
08836 /// parseDirectiveFnEnd
08837 ///  ::= .fnend
08838 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
08839   // Check the ordering of unwind directives
08840   if (!UC.hasFnStart()) {
08841     Error(L, ".fnstart must precede .fnend directive");
08842     return false;
08843   }
08844 
08845   // Reset the unwind directives parser state
08846   getTargetStreamer().emitFnEnd();
08847 
08848   UC.reset();
08849   return false;
08850 }
08851 
08852 /// parseDirectiveCantUnwind
08853 ///  ::= .cantunwind
08854 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
08855   UC.recordCantUnwind(L);
08856 
08857   // Check the ordering of unwind directives
08858   if (!UC.hasFnStart()) {
08859     Error(L, ".fnstart must precede .cantunwind directive");
08860     return false;
08861   }
08862   if (UC.hasHandlerData()) {
08863     Error(L, ".cantunwind can't be used with .handlerdata directive");
08864     UC.emitHandlerDataLocNotes();
08865     return false;
08866   }
08867   if (UC.hasPersonality()) {
08868     Error(L, ".cantunwind can't be used with .personality directive");
08869     UC.emitPersonalityLocNotes();
08870     return false;
08871   }
08872 
08873   getTargetStreamer().emitCantUnwind();
08874   return false;
08875 }
08876 
08877 /// parseDirectivePersonality
08878 ///  ::= .personality name
08879 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
08880   bool HasExistingPersonality = UC.hasPersonality();
08881 
08882   UC.recordPersonality(L);
08883 
08884   // Check the ordering of unwind directives
08885   if (!UC.hasFnStart()) {
08886     Error(L, ".fnstart must precede .personality directive");
08887     return false;
08888   }
08889   if (UC.cantUnwind()) {
08890     Error(L, ".personality can't be used with .cantunwind directive");
08891     UC.emitCantUnwindLocNotes();
08892     return false;
08893   }
08894   if (UC.hasHandlerData()) {
08895     Error(L, ".personality must precede .handlerdata directive");
08896     UC.emitHandlerDataLocNotes();
08897     return false;
08898   }
08899   if (HasExistingPersonality) {
08900     Parser.eatToEndOfStatement();
08901     Error(L, "multiple personality directives");
08902     UC.emitPersonalityLocNotes();
08903     return false;
08904   }
08905 
08906   // Parse the name of the personality routine
08907   if (Parser.getTok().isNot(AsmToken::Identifier)) {
08908     Parser.eatToEndOfStatement();
08909     Error(L, "unexpected input in .personality directive.");
08910     return false;
08911   }
08912   StringRef Name(Parser.getTok().getIdentifier());
08913   Parser.Lex();
08914 
08915   MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name);
08916   getTargetStreamer().emitPersonality(PR);
08917   return false;
08918 }
08919 
08920 /// parseDirectiveHandlerData
08921 ///  ::= .handlerdata
08922 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
08923   UC.recordHandlerData(L);
08924 
08925   // Check the ordering of unwind directives
08926   if (!UC.hasFnStart()) {
08927     Error(L, ".fnstart must precede .personality directive");
08928     return false;
08929   }
08930   if (UC.cantUnwind()) {
08931     Error(L, ".handlerdata can't be used with .cantunwind directive");
08932     UC.emitCantUnwindLocNotes();
08933     return false;
08934   }
08935 
08936   getTargetStreamer().emitHandlerData();
08937   return false;
08938 }
08939 
08940 /// parseDirectiveSetFP
08941 ///  ::= .setfp fpreg, spreg [, offset]
08942 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
08943   // Check the ordering of unwind directives
08944   if (!UC.hasFnStart()) {
08945     Error(L, ".fnstart must precede .setfp directive");
08946     return false;
08947   }
08948   if (UC.hasHandlerData()) {
08949     Error(L, ".setfp must precede .handlerdata directive");
08950     return false;
08951   }
08952 
08953   // Parse fpreg
08954   SMLoc FPRegLoc = Parser.getTok().getLoc();
08955   int FPReg = tryParseRegister();
08956   if (FPReg == -1) {
08957     Error(FPRegLoc, "frame pointer register expected");
08958     return false;
08959   }
08960 
08961   // Consume comma
08962   if (Parser.getTok().isNot(AsmToken::Comma)) {
08963     Error(Parser.getTok().getLoc(), "comma expected");
08964     return false;
08965   }
08966   Parser.Lex(); // skip comma
08967 
08968   // Parse spreg
08969   SMLoc SPRegLoc = Parser.getTok().getLoc();
08970   int SPReg = tryParseRegister();
08971   if (SPReg == -1) {
08972     Error(SPRegLoc, "stack pointer register expected");
08973     return false;
08974   }
08975 
08976   if (SPReg != ARM::SP && SPReg != UC.getFPReg()) {
08977     Error(SPRegLoc, "register should be either $sp or the latest fp register");
08978     return false;
08979   }
08980 
08981   // Update the frame pointer register
08982   UC.saveFPReg(FPReg);
08983 
08984   // Parse offset
08985   int64_t Offset = 0;
08986   if (Parser.getTok().is(AsmToken::Comma)) {
08987     Parser.Lex(); // skip comma
08988 
08989     if (Parser.getTok().isNot(AsmToken::Hash) &&
08990         Parser.getTok().isNot(AsmToken::Dollar)) {
08991       Error(Parser.getTok().getLoc(), "'#' expected");
08992       return false;
08993     }
08994     Parser.Lex(); // skip hash token.
08995 
08996     const MCExpr *OffsetExpr;
08997     SMLoc ExLoc = Parser.getTok().getLoc();
08998     SMLoc EndLoc;
08999     if (getParser().parseExpression(OffsetExpr, EndLoc)) {
09000       Error(ExLoc, "malformed setfp offset");
09001       return false;
09002     }
09003     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
09004     if (!CE) {
09005       Error(ExLoc, "setfp offset must be an immediate");
09006       return false;
09007     }
09008 
09009     Offset = CE->getValue();
09010   }
09011 
09012   getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
09013                                 static_cast<unsigned>(SPReg), Offset);
09014   return false;
09015 }
09016 
09017 /// parseDirective
09018 ///  ::= .pad offset
09019 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
09020   // Check the ordering of unwind directives
09021   if (!UC.hasFnStart()) {
09022     Error(L, ".fnstart must precede .pad directive");
09023     return false;
09024   }
09025   if (UC.hasHandlerData()) {
09026     Error(L, ".pad must precede .handlerdata directive");
09027     return false;
09028   }
09029 
09030   // Parse the offset
09031   if (Parser.getTok().isNot(AsmToken::Hash) &&
09032       Parser.getTok().isNot(AsmToken::Dollar)) {
09033     Error(Parser.getTok().getLoc(), "'#' expected");
09034     return false;
09035   }
09036   Parser.Lex(); // skip hash token.
09037 
09038   const MCExpr *OffsetExpr;
09039   SMLoc ExLoc = Parser.getTok().getLoc();
09040   SMLoc EndLoc;
09041   if (getParser().parseExpression(OffsetExpr, EndLoc)) {
09042     Error(ExLoc, "malformed pad offset");
09043     return false;
09044   }
09045   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
09046   if (!CE) {
09047     Error(ExLoc, "pad offset must be an immediate");
09048     return false;
09049   }
09050 
09051   getTargetStreamer().emitPad(CE->getValue());
09052   return false;
09053 }
09054 
09055 /// parseDirectiveRegSave
09056 ///  ::= .save  { registers }
09057 ///  ::= .vsave { registers }
09058 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
09059   // Check the ordering of unwind directives
09060   if (!UC.hasFnStart()) {
09061     Error(L, ".fnstart must precede .save or .vsave directives");
09062     return false;
09063   }
09064   if (UC.hasHandlerData()) {
09065     Error(L, ".save or .vsave must precede .handlerdata directive");
09066     return false;
09067   }
09068 
09069   // RAII object to make sure parsed operands are deleted.
09070   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
09071 
09072   // Parse the register list
09073   if (parseRegisterList(Operands))
09074     return false;
09075   ARMOperand &Op = (ARMOperand &)*Operands[0];
09076   if (!IsVector && !Op.isRegList()) {
09077     Error(L, ".save expects GPR registers");
09078     return false;
09079   }
09080   if (IsVector && !Op.isDPRRegList()) {
09081     Error(L, ".vsave expects DPR registers");
09082     return false;
09083   }
09084 
09085   getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
09086   return false;
09087 }
09088 
09089 /// parseDirectiveInst
09090 ///  ::= .inst opcode [, ...]
09091 ///  ::= .inst.n opcode [, ...]
09092 ///  ::= .inst.w opcode [, ...]
09093 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
09094   int Width;
09095 
09096   if (isThumb()) {
09097     switch (Suffix) {
09098     case 'n':
09099       Width = 2;
09100       break;
09101     case 'w':
09102       Width = 4;
09103       break;
09104     default:
09105       Parser.eatToEndOfStatement();
09106       Error(Loc, "cannot determine Thumb instruction size, "
09107                  "use inst.n/inst.w instead");
09108       return false;
09109     }
09110   } else {
09111     if (Suffix) {
09112       Parser.eatToEndOfStatement();
09113       Error(Loc, "width suffixes are invalid in ARM mode");
09114       return false;
09115     }
09116     Width = 4;
09117   }
09118 
09119   if (getLexer().is(AsmToken::EndOfStatement)) {
09120     Parser.eatToEndOfStatement();
09121     Error(Loc, "expected expression following directive");
09122     return false;
09123   }
09124 
09125   for (;;) {
09126     const MCExpr *Expr;
09127 
09128     if (getParser().parseExpression(Expr)) {
09129       Error(Loc, "expected expression");
09130       return false;
09131     }
09132 
09133     const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
09134     if (!Value) {
09135       Error(Loc, "expected constant expression");
09136       return false;
09137     }
09138 
09139     switch (Width) {
09140     case 2:
09141       if (Value->getValue() > 0xffff) {
09142         Error(Loc, "inst.n operand is too big, use inst.w instead");
09143         return false;
09144       }
09145       break;
09146     case 4:
09147       if (Value->getValue() > 0xffffffff) {
09148         Error(Loc,
09149               StringRef(Suffix ? "inst.w" : "inst") + " operand is too big");
09150         return false;
09151       }
09152       break;
09153     default:
09154       llvm_unreachable("only supported widths are 2 and 4");
09155     }
09156 
09157     getTargetStreamer().emitInst(Value->getValue(), Suffix);
09158 
09159     if (getLexer().is(AsmToken::EndOfStatement))
09160       break;
09161 
09162     if (getLexer().isNot(AsmToken::Comma)) {
09163       Error(Loc, "unexpected token in directive");
09164       return false;
09165     }
09166 
09167     Parser.Lex();
09168   }
09169 
09170   Parser.Lex();
09171   return false;
09172 }
09173 
09174 /// parseDirectiveLtorg
09175 ///  ::= .ltorg | .pool
09176 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
09177   getTargetStreamer().emitCurrentConstantPool();
09178   return false;
09179 }
09180 
09181 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
09182   const MCSection *Section = getStreamer().getCurrentSection().first;
09183 
09184   if (getLexer().isNot(AsmToken::EndOfStatement)) {
09185     TokError("unexpected token in directive");
09186     return false;
09187   }
09188 
09189   if (!Section) {
09190     getStreamer().InitSections();
09191     Section = getStreamer().getCurrentSection().first;
09192   }
09193 
09194   assert(Section && "must have section to emit alignment");
09195   if (Section->UseCodeAlign())
09196     getStreamer().EmitCodeAlignment(2);
09197   else
09198     getStreamer().EmitValueToAlignment(2);
09199 
09200   return false;
09201 }
09202 
09203 /// parseDirectivePersonalityIndex
09204 ///   ::= .personalityindex index
09205 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
09206   bool HasExistingPersonality = UC.hasPersonality();
09207 
09208   UC.recordPersonalityIndex(L);
09209 
09210   if (!UC.hasFnStart()) {
09211     Parser.eatToEndOfStatement();
09212     Error(L, ".fnstart must precede .personalityindex directive");
09213     return false;
09214   }
09215   if (UC.cantUnwind()) {
09216     Parser.eatToEndOfStatement();
09217     Error(L, ".personalityindex cannot be used with .cantunwind");
09218     UC.emitCantUnwindLocNotes();
09219     return false;
09220   }
09221   if (UC.hasHandlerData()) {
09222     Parser.eatToEndOfStatement();
09223     Error(L, ".personalityindex must precede .handlerdata directive");
09224     UC.emitHandlerDataLocNotes();
09225     return false;
09226   }
09227   if (HasExistingPersonality) {
09228     Parser.eatToEndOfStatement();
09229     Error(L, "multiple personality directives");
09230     UC.emitPersonalityLocNotes();
09231     return false;
09232   }
09233 
09234   const MCExpr *IndexExpression;
09235   SMLoc IndexLoc = Parser.getTok().getLoc();
09236   if (Parser.parseExpression(IndexExpression)) {
09237     Parser.eatToEndOfStatement();
09238     return false;
09239   }
09240 
09241   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
09242   if (!CE) {
09243     Parser.eatToEndOfStatement();
09244     Error(IndexLoc, "index must be a constant number");
09245     return false;
09246   }
09247   if (CE->getValue() < 0 ||
09248       CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) {
09249     Parser.eatToEndOfStatement();
09250     Error(IndexLoc, "personality routine index should be in range [0-3]");
09251     return false;
09252   }
09253 
09254   getTargetStreamer().emitPersonalityIndex(CE->getValue());
09255   return false;
09256 }
09257 
09258 /// parseDirectiveUnwindRaw
09259 ///   ::= .unwind_raw offset, opcode [, opcode...]
09260 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
09261   if (!UC.hasFnStart()) {
09262     Parser.eatToEndOfStatement();
09263     Error(L, ".fnstart must precede .unwind_raw directives");
09264     return false;
09265   }
09266 
09267   int64_t StackOffset;
09268 
09269   const MCExpr *OffsetExpr;
09270   SMLoc OffsetLoc = getLexer().getLoc();
09271   if (getLexer().is(AsmToken::EndOfStatement) ||
09272       getParser().parseExpression(OffsetExpr)) {
09273     Error(OffsetLoc, "expected expression");
09274     Parser.eatToEndOfStatement();
09275     return false;
09276   }
09277 
09278   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
09279   if (!CE) {
09280     Error(OffsetLoc, "offset must be a constant");
09281     Parser.eatToEndOfStatement();
09282     return false;
09283   }
09284 
09285   StackOffset = CE->getValue();
09286 
09287   if (getLexer().isNot(AsmToken::Comma)) {
09288     Error(getLexer().getLoc(), "expected comma");
09289     Parser.eatToEndOfStatement();
09290     return false;
09291   }
09292   Parser.Lex();
09293 
09294   SmallVector<uint8_t, 16> Opcodes;
09295   for (;;) {
09296     const MCExpr *OE;
09297 
09298     SMLoc OpcodeLoc = getLexer().getLoc();
09299     if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) {
09300       Error(OpcodeLoc, "expected opcode expression");
09301       Parser.eatToEndOfStatement();
09302       return false;
09303     }
09304 
09305     const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
09306     if (!OC) {
09307       Error(OpcodeLoc, "opcode value must be a constant");
09308       Parser.eatToEndOfStatement();
09309       return false;
09310     }
09311 
09312     const int64_t Opcode = OC->getValue();
09313     if (Opcode & ~0xff) {
09314       Error(OpcodeLoc, "invalid opcode");
09315       Parser.eatToEndOfStatement();
09316       return false;
09317     }
09318 
09319     Opcodes.push_back(uint8_t(Opcode));
09320 
09321     if (getLexer().is(AsmToken::EndOfStatement))
09322       break;
09323 
09324     if (getLexer().isNot(AsmToken::Comma)) {
09325       Error(getLexer().getLoc(), "unexpected token in directive");
09326       Parser.eatToEndOfStatement();
09327       return false;
09328     }
09329 
09330     Parser.Lex();
09331   }
09332 
09333   getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
09334 
09335   Parser.Lex();
09336   return false;
09337 }
09338 
09339 /// parseDirectiveTLSDescSeq
09340 ///   ::= .tlsdescseq tls-variable
09341 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
09342   if (getLexer().isNot(AsmToken::Identifier)) {
09343     TokError("expected variable after '.tlsdescseq' directive");
09344     Parser.eatToEndOfStatement();
09345     return false;
09346   }
09347 
09348   const MCSymbolRefExpr *SRE =
09349     MCSymbolRefExpr::Create(Parser.getTok().getIdentifier(),
09350                             MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
09351   Lex();
09352 
09353   if (getLexer().isNot(AsmToken::EndOfStatement)) {
09354     Error(Parser.getTok().getLoc(), "unexpected token");
09355     Parser.eatToEndOfStatement();
09356     return false;
09357   }
09358 
09359   getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
09360   return false;
09361 }
09362 
09363 /// parseDirectiveMovSP
09364 ///  ::= .movsp reg [, #offset]
09365 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
09366   if (!UC.hasFnStart()) {
09367     Parser.eatToEndOfStatement();
09368     Error(L, ".fnstart must precede .movsp directives");
09369     return false;
09370   }
09371   if (UC.getFPReg() != ARM::SP) {
09372     Parser.eatToEndOfStatement();
09373     Error(L, "unexpected .movsp directive");
09374     return false;
09375   }
09376 
09377   SMLoc SPRegLoc = Parser.getTok().getLoc();
09378   int SPReg = tryParseRegister();
09379   if (SPReg == -1) {
09380     Parser.eatToEndOfStatement();
09381     Error(SPRegLoc, "register expected");
09382     return false;
09383   }
09384 
09385   if (SPReg == ARM::SP || SPReg == ARM::PC) {
09386     Parser.eatToEndOfStatement();
09387     Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
09388     return false;
09389   }
09390 
09391   int64_t Offset = 0;
09392   if (Parser.getTok().is(AsmToken::Comma)) {
09393     Parser.Lex();
09394 
09395     if (Parser.getTok().isNot(AsmToken::Hash)) {
09396       Error(Parser.getTok().getLoc(), "expected #constant");
09397       Parser.eatToEndOfStatement();
09398       return false;
09399     }
09400     Parser.Lex();
09401 
09402     const MCExpr *OffsetExpr;
09403     SMLoc OffsetLoc = Parser.getTok().getLoc();
09404     if (Parser.parseExpression(OffsetExpr)) {
09405       Parser.eatToEndOfStatement();
09406       Error(OffsetLoc, "malformed offset expression");
09407       return false;
09408     }
09409 
09410     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
09411     if (!CE) {
09412       Parser.eatToEndOfStatement();
09413       Error(OffsetLoc, "offset must be an immediate constant");
09414       return false;
09415     }
09416 
09417     Offset = CE->getValue();
09418   }
09419 
09420   getTargetStreamer().emitMovSP(SPReg, Offset);
09421   UC.saveFPReg(SPReg);
09422 
09423   return false;
09424 }
09425 
09426 /// parseDirectiveObjectArch
09427 ///   ::= .object_arch name
09428 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
09429   if (getLexer().isNot(AsmToken::Identifier)) {
09430     Error(getLexer().getLoc(), "unexpected token");
09431     Parser.eatToEndOfStatement();
09432     return false;
09433   }
09434 
09435   StringRef Arch = Parser.getTok().getString();
09436   SMLoc ArchLoc = Parser.getTok().getLoc();
09437   getLexer().Lex();
09438 
09439   unsigned ID = StringSwitch<unsigned>(Arch)
09440 #define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
09441     .Case(NAME, ARM::ID)
09442 #define ARM_ARCH_ALIAS(NAME, ID) \
09443     .Case(NAME, ARM::ID)
09444 #include "MCTargetDesc/ARMArchName.def"
09445 #undef ARM_ARCH_NAME
09446 #undef ARM_ARCH_ALIAS
09447     .Default(ARM::INVALID_ARCH);
09448 
09449   if (ID == ARM::INVALID_ARCH) {
09450     Error(ArchLoc, "unknown architecture '" + Arch + "'");
09451     Parser.eatToEndOfStatement();
09452     return false;
09453   }
09454 
09455   getTargetStreamer().emitObjectArch(ID);
09456 
09457   if (getLexer().isNot(AsmToken::EndOfStatement)) {
09458     Error(getLexer().getLoc(), "unexpected token");
09459     Parser.eatToEndOfStatement();
09460   }
09461 
09462   return false;
09463 }
09464 
09465 /// parseDirectiveAlign
09466 ///   ::= .align
09467 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
09468   // NOTE: if this is not the end of the statement, fall back to the target
09469   // agnostic handling for this directive which will correctly handle this.
09470   if (getLexer().isNot(AsmToken::EndOfStatement))
09471     return true;
09472 
09473   // '.align' is target specifically handled to mean 2**2 byte alignment.
09474   if (getStreamer().getCurrentSection().first->UseCodeAlign())
09475     getStreamer().EmitCodeAlignment(4, 0);
09476   else
09477     getStreamer().EmitValueToAlignment(4, 0, 1, 0);
09478 
09479   return false;
09480 }
09481 
09482 /// parseDirectiveThumbSet
09483 ///  ::= .thumb_set name, value
09484 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
09485   StringRef Name;
09486   if (Parser.parseIdentifier(Name)) {
09487     TokError("expected identifier after '.thumb_set'");
09488     Parser.eatToEndOfStatement();
09489     return false;
09490   }
09491 
09492   if (getLexer().isNot(AsmToken::Comma)) {
09493     TokError("expected comma after name '" + Name + "'");
09494     Parser.eatToEndOfStatement();
09495     return false;
09496   }
09497   Lex();
09498 
09499   const MCExpr *Value;
09500   if (Parser.parseExpression(Value)) {
09501     TokError("missing expression");
09502     Parser.eatToEndOfStatement();
09503     return false;
09504   }
09505 
09506   if (getLexer().isNot(AsmToken::EndOfStatement)) {
09507     TokError("unexpected token");
09508     Parser.eatToEndOfStatement();
09509     return false;
09510   }
09511   Lex();
09512 
09513   MCSymbol *Alias = getContext().GetOrCreateSymbol(Name);
09514   getTargetStreamer().emitThumbSet(Alias, Value);
09515   return false;
09516 }
09517 
09518 /// Force static initialization.
09519 extern "C" void LLVMInitializeARMAsmParser() {
09520   RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget);
09521   RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget);
09522   RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget);
09523   RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget);
09524 }
09525 
09526 #define GET_REGISTER_MATCHER
09527 #define GET_SUBTARGET_FEATURE_NAME
09528 #define GET_MATCHER_IMPLEMENTATION
09529 #include "ARMGenAsmMatcher.inc"
09530 
09531 static const struct {
09532   const char *Name;
09533   const unsigned ArchCheck;
09534   const uint64_t Features;
09535 } Extensions[] = {
09536   { "crc", Feature_HasV8, ARM::FeatureCRC },
09537   { "crypto",  Feature_HasV8,
09538     ARM::FeatureCrypto | ARM::FeatureNEON | ARM::FeatureFPARMv8 },
09539   { "fp", Feature_HasV8, ARM::FeatureFPARMv8 },
09540   { "idiv", Feature_HasV7 | Feature_IsNotMClass,
09541     ARM::FeatureHWDiv | ARM::FeatureHWDivARM },
09542   // FIXME: iWMMXT not supported
09543   { "iwmmxt", Feature_None, 0 },
09544   // FIXME: iWMMXT2 not supported
09545   { "iwmmxt2", Feature_None, 0 },
09546   // FIXME: Maverick not supported
09547   { "maverick", Feature_None, 0 },
09548   { "mp", Feature_HasV7 | Feature_IsNotMClass, ARM::FeatureMP },
09549   // FIXME: ARMv6-m OS Extensions feature not checked
09550   { "os", Feature_None, 0 },
09551   // FIXME: Also available in ARMv6-K
09552   { "sec", Feature_HasV7, ARM::FeatureTrustZone },
09553   { "simd", Feature_HasV8, ARM::FeatureNEON | ARM::FeatureFPARMv8 },
09554   // FIXME: Only available in A-class, isel not predicated
09555   { "virt", Feature_HasV7, ARM::FeatureVirtualization },
09556   // FIXME: xscale not supported
09557   { "xscale", Feature_None, 0 },
09558 };
09559 
09560 /// parseDirectiveArchExtension
09561 ///   ::= .arch_extension [no]feature
09562 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
09563   if (getLexer().isNot(AsmToken::Identifier)) {
09564     Error(getLexer().getLoc(), "unexpected token");
09565     Parser.eatToEndOfStatement();
09566     return false;
09567   }
09568 
09569   StringRef Name = Parser.getTok().getString();
09570   SMLoc ExtLoc = Parser.getTok().getLoc();
09571   getLexer().Lex();
09572 
09573   bool EnableFeature = true;
09574   if (Name.startswith_lower("no")) {
09575     EnableFeature = false;
09576     Name = Name.substr(2);
09577   }
09578 
09579   for (const auto &Extension : Extensions) {
09580     if (Extension.Name != Name)
09581       continue;
09582 
09583     if (!Extension.Features)
09584       report_fatal_error("unsupported architectural extension: " + Name);
09585 
09586     if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) {
09587       Error(ExtLoc, "architectural extension '" + Name + "' is not "
09588             "allowed for the current base architecture");
09589       return false;
09590     }
09591 
09592     uint64_t ToggleFeatures = EnableFeature
09593                                   ? (~STI.getFeatureBits() & Extension.Features)
09594                                   : ( STI.getFeatureBits() & Extension.Features);
09595     uint64_t Features =
09596         ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
09597     setAvailableFeatures(Features);
09598     return false;
09599   }
09600 
09601   Error(ExtLoc, "unknown architectural extension: " + Name);
09602   Parser.eatToEndOfStatement();
09603   return false;
09604 }
09605 
09606 // Define this matcher function after the auto-generated include so we
09607 // have the match class enum definitions.
09608 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
09609                                                   unsigned Kind) {
09610   ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
09611   // If the kind is a token for a literal immediate, check if our asm
09612   // operand matches. This is for InstAliases which have a fixed-value
09613   // immediate in the syntax.
09614   switch (Kind) {
09615   default: break;
09616   case MCK__35_0:
09617     if (Op.isImm())
09618       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
09619         if (CE->getValue() == 0)
09620           return Match_Success;
09621     break;
09622   case MCK_ARMSOImm:
09623     if (Op.isImm()) {
09624       const MCExpr *SOExpr = Op.getImm();
09625       int64_t Value;
09626       if (!SOExpr->EvaluateAsAbsolute(Value))
09627         return Match_Success;
09628       assert((Value >= INT32_MIN && Value <= UINT32_MAX) &&
09629              "expression value must be representable in 32 bits");
09630     }
09631     break;
09632   case MCK_GPRPair:
09633     if (Op.isReg() &&
09634         MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
09635       return Match_Success;
09636     break;
09637   }
09638   return Match_InvalidOperand;
09639 }