LLVM API Documentation

ARMConstantIslandPass.cpp
Go to the documentation of this file.
00001 //===-- ARMConstantIslandPass.cpp - ARM constant islands ------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file contains a pass that splits the constant pool up into 'islands'
00011 // which are scattered through-out the function.  This is required due to the
00012 // limited pc-relative displacements that ARM has.
00013 //
00014 //===----------------------------------------------------------------------===//
00015 
00016 #include "ARM.h"
00017 #include "ARMMachineFunctionInfo.h"
00018 #include "MCTargetDesc/ARMAddressingModes.h"
00019 #include "Thumb2InstrInfo.h"
00020 #include "llvm/ADT/STLExtras.h"
00021 #include "llvm/ADT/SmallSet.h"
00022 #include "llvm/ADT/SmallVector.h"
00023 #include "llvm/ADT/Statistic.h"
00024 #include "llvm/CodeGen/MachineConstantPool.h"
00025 #include "llvm/CodeGen/MachineFunctionPass.h"
00026 #include "llvm/CodeGen/MachineJumpTableInfo.h"
00027 #include "llvm/CodeGen/MachineRegisterInfo.h"
00028 #include "llvm/IR/DataLayout.h"
00029 #include "llvm/Support/CommandLine.h"
00030 #include "llvm/Support/Debug.h"
00031 #include "llvm/Support/ErrorHandling.h"
00032 #include "llvm/Support/Format.h"
00033 #include "llvm/Support/raw_ostream.h"
00034 #include "llvm/Target/TargetMachine.h"
00035 #include <algorithm>
00036 using namespace llvm;
00037 
00038 #define DEBUG_TYPE "arm-cp-islands"
00039 
00040 STATISTIC(NumCPEs,       "Number of constpool entries");
00041 STATISTIC(NumSplit,      "Number of uncond branches inserted");
00042 STATISTIC(NumCBrFixed,   "Number of cond branches fixed");
00043 STATISTIC(NumUBrFixed,   "Number of uncond branches fixed");
00044 STATISTIC(NumTBs,        "Number of table branches generated");
00045 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
00046 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
00047 STATISTIC(NumCBZ,        "Number of CBZ / CBNZ formed");
00048 STATISTIC(NumJTMoved,    "Number of jump table destination blocks moved");
00049 STATISTIC(NumJTInserted, "Number of jump table intermediate blocks inserted");
00050 
00051 
00052 static cl::opt<bool>
00053 AdjustJumpTableBlocks("arm-adjust-jump-tables", cl::Hidden, cl::init(true),
00054           cl::desc("Adjust basic block layout to better use TB[BH]"));
00055 
00056 // FIXME: This option should be removed once it has received sufficient testing.
00057 static cl::opt<bool>
00058 AlignConstantIslands("arm-align-constant-islands", cl::Hidden, cl::init(true),
00059           cl::desc("Align constant islands in code"));
00060 
00061 /// UnknownPadding - Return the worst case padding that could result from
00062 /// unknown offset bits.  This does not include alignment padding caused by
00063 /// known offset bits.
00064 ///
00065 /// @param LogAlign log2(alignment)
00066 /// @param KnownBits Number of known low offset bits.
00067 static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
00068   if (KnownBits < LogAlign)
00069     return (1u << LogAlign) - (1u << KnownBits);
00070   return 0;
00071 }
00072 
00073 namespace {
00074   /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
00075   /// requires constant pool entries to be scattered among the instructions
00076   /// inside a function.  To do this, it completely ignores the normal LLVM
00077   /// constant pool; instead, it places constants wherever it feels like with
00078   /// special instructions.
00079   ///
00080   /// The terminology used in this pass includes:
00081   ///   Islands - Clumps of constants placed in the function.
00082   ///   Water   - Potential places where an island could be formed.
00083   ///   CPE     - A constant pool entry that has been placed somewhere, which
00084   ///             tracks a list of users.
00085   class ARMConstantIslands : public MachineFunctionPass {
00086     /// BasicBlockInfo - Information about the offset and size of a single
00087     /// basic block.
00088     struct BasicBlockInfo {
00089       /// Offset - Distance from the beginning of the function to the beginning
00090       /// of this basic block.
00091       ///
00092       /// Offsets are computed assuming worst case padding before an aligned
00093       /// block. This means that subtracting basic block offsets always gives a
00094       /// conservative estimate of the real distance which may be smaller.
00095       ///
00096       /// Because worst case padding is used, the computed offset of an aligned
00097       /// block may not actually be aligned.
00098       unsigned Offset;
00099 
00100       /// Size - Size of the basic block in bytes.  If the block contains
00101       /// inline assembly, this is a worst case estimate.
00102       ///
00103       /// The size does not include any alignment padding whether from the
00104       /// beginning of the block, or from an aligned jump table at the end.
00105       unsigned Size;
00106 
00107       /// KnownBits - The number of low bits in Offset that are known to be
00108       /// exact.  The remaining bits of Offset are an upper bound.
00109       uint8_t KnownBits;
00110 
00111       /// Unalign - When non-zero, the block contains instructions (inline asm)
00112       /// of unknown size.  The real size may be smaller than Size bytes by a
00113       /// multiple of 1 << Unalign.
00114       uint8_t Unalign;
00115 
00116       /// PostAlign - When non-zero, the block terminator contains a .align
00117       /// directive, so the end of the block is aligned to 1 << PostAlign
00118       /// bytes.
00119       uint8_t PostAlign;
00120 
00121       BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0),
00122         PostAlign(0) {}
00123 
00124       /// Compute the number of known offset bits internally to this block.
00125       /// This number should be used to predict worst case padding when
00126       /// splitting the block.
00127       unsigned internalKnownBits() const {
00128         unsigned Bits = Unalign ? Unalign : KnownBits;
00129         // If the block size isn't a multiple of the known bits, assume the
00130         // worst case padding.
00131         if (Size & ((1u << Bits) - 1))
00132           Bits = countTrailingZeros(Size);
00133         return Bits;
00134       }
00135 
00136       /// Compute the offset immediately following this block.  If LogAlign is
00137       /// specified, return the offset the successor block will get if it has
00138       /// this alignment.
00139       unsigned postOffset(unsigned LogAlign = 0) const {
00140         unsigned PO = Offset + Size;
00141         unsigned LA = std::max(unsigned(PostAlign), LogAlign);
00142         if (!LA)
00143           return PO;
00144         // Add alignment padding from the terminator.
00145         return PO + UnknownPadding(LA, internalKnownBits());
00146       }
00147 
00148       /// Compute the number of known low bits of postOffset.  If this block
00149       /// contains inline asm, the number of known bits drops to the
00150       /// instruction alignment.  An aligned terminator may increase the number
00151       /// of know bits.
00152       /// If LogAlign is given, also consider the alignment of the next block.
00153       unsigned postKnownBits(unsigned LogAlign = 0) const {
00154         return std::max(std::max(unsigned(PostAlign), LogAlign),
00155                         internalKnownBits());
00156       }
00157     };
00158 
00159     std::vector<BasicBlockInfo> BBInfo;
00160 
00161     /// WaterList - A sorted list of basic blocks where islands could be placed
00162     /// (i.e. blocks that don't fall through to the following block, due
00163     /// to a return, unreachable, or unconditional branch).
00164     std::vector<MachineBasicBlock*> WaterList;
00165 
00166     /// NewWaterList - The subset of WaterList that was created since the
00167     /// previous iteration by inserting unconditional branches.
00168     SmallSet<MachineBasicBlock*, 4> NewWaterList;
00169 
00170     typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
00171 
00172     /// CPUser - One user of a constant pool, keeping the machine instruction
00173     /// pointer, the constant pool being referenced, and the max displacement
00174     /// allowed from the instruction to the CP.  The HighWaterMark records the
00175     /// highest basic block where a new CPEntry can be placed.  To ensure this
00176     /// pass terminates, the CP entries are initially placed at the end of the
00177     /// function and then move monotonically to lower addresses.  The
00178     /// exception to this rule is when the current CP entry for a particular
00179     /// CPUser is out of range, but there is another CP entry for the same
00180     /// constant value in range.  We want to use the existing in-range CP
00181     /// entry, but if it later moves out of range, the search for new water
00182     /// should resume where it left off.  The HighWaterMark is used to record
00183     /// that point.
00184     struct CPUser {
00185       MachineInstr *MI;
00186       MachineInstr *CPEMI;
00187       MachineBasicBlock *HighWaterMark;
00188     private:
00189       unsigned MaxDisp;
00190     public:
00191       bool NegOk;
00192       bool IsSoImm;
00193       bool KnownAlignment;
00194       CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
00195              bool neg, bool soimm)
00196         : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm),
00197           KnownAlignment(false) {
00198         HighWaterMark = CPEMI->getParent();
00199       }
00200       /// getMaxDisp - Returns the maximum displacement supported by MI.
00201       /// Correct for unknown alignment.
00202       /// Conservatively subtract 2 bytes to handle weird alignment effects.
00203       unsigned getMaxDisp() const {
00204         return (KnownAlignment ? MaxDisp : MaxDisp - 2) - 2;
00205       }
00206     };
00207 
00208     /// CPUsers - Keep track of all of the machine instructions that use various
00209     /// constant pools and their max displacement.
00210     std::vector<CPUser> CPUsers;
00211 
00212     /// CPEntry - One per constant pool entry, keeping the machine instruction
00213     /// pointer, the constpool index, and the number of CPUser's which
00214     /// reference this entry.
00215     struct CPEntry {
00216       MachineInstr *CPEMI;
00217       unsigned CPI;
00218       unsigned RefCount;
00219       CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
00220         : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
00221     };
00222 
00223     /// CPEntries - Keep track of all of the constant pool entry machine
00224     /// instructions. For each original constpool index (i.e. those that
00225     /// existed upon entry to this pass), it keeps a vector of entries.
00226     /// Original elements are cloned as we go along; the clones are
00227     /// put in the vector of the original element, but have distinct CPIs.
00228     std::vector<std::vector<CPEntry> > CPEntries;
00229 
00230     /// ImmBranch - One per immediate branch, keeping the machine instruction
00231     /// pointer, conditional or unconditional, the max displacement,
00232     /// and (if isCond is true) the corresponding unconditional branch
00233     /// opcode.
00234     struct ImmBranch {
00235       MachineInstr *MI;
00236       unsigned MaxDisp : 31;
00237       bool isCond : 1;
00238       int UncondBr;
00239       ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
00240         : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
00241     };
00242 
00243     /// ImmBranches - Keep track of all the immediate branch instructions.
00244     ///
00245     std::vector<ImmBranch> ImmBranches;
00246 
00247     /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
00248     ///
00249     SmallVector<MachineInstr*, 4> PushPopMIs;
00250 
00251     /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
00252     SmallVector<MachineInstr*, 4> T2JumpTables;
00253 
00254     /// HasFarJump - True if any far jump instruction has been emitted during
00255     /// the branch fix up pass.
00256     bool HasFarJump;
00257 
00258     MachineFunction *MF;
00259     MachineConstantPool *MCP;
00260     const ARMBaseInstrInfo *TII;
00261     const ARMSubtarget *STI;
00262     ARMFunctionInfo *AFI;
00263     bool isThumb;
00264     bool isThumb1;
00265     bool isThumb2;
00266   public:
00267     static char ID;
00268     ARMConstantIslands() : MachineFunctionPass(ID) {}
00269 
00270     bool runOnMachineFunction(MachineFunction &MF) override;
00271 
00272     const char *getPassName() const override {
00273       return "ARM constant island placement and branch shortening pass";
00274     }
00275 
00276   private:
00277     void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
00278     CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
00279     unsigned getCPELogAlign(const MachineInstr *CPEMI);
00280     void scanFunctionJumpTables();
00281     void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
00282     MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
00283     void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
00284     void adjustBBOffsetsAfter(MachineBasicBlock *BB);
00285     bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
00286     int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
00287     bool findAvailableWater(CPUser&U, unsigned UserOffset,
00288                             water_iterator &WaterIter);
00289     void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
00290                         MachineBasicBlock *&NewMBB);
00291     bool handleConstantPoolUser(unsigned CPUserIndex);
00292     void removeDeadCPEMI(MachineInstr *CPEMI);
00293     bool removeUnusedCPEntries();
00294     bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
00295                           MachineInstr *CPEMI, unsigned Disp, bool NegOk,
00296                           bool DoDump = false);
00297     bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
00298                         CPUser &U, unsigned &Growth);
00299     bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
00300     bool fixupImmediateBr(ImmBranch &Br);
00301     bool fixupConditionalBr(ImmBranch &Br);
00302     bool fixupUnconditionalBr(ImmBranch &Br);
00303     bool undoLRSpillRestore();
00304     bool mayOptimizeThumb2Instruction(const MachineInstr *MI) const;
00305     bool optimizeThumb2Instructions();
00306     bool optimizeThumb2Branches();
00307     bool reorderThumb2JumpTables();
00308     bool optimizeThumb2JumpTables();
00309     MachineBasicBlock *adjustJTTargetBlockForward(MachineBasicBlock *BB,
00310                                                   MachineBasicBlock *JTBB);
00311 
00312     void computeBlockSize(MachineBasicBlock *MBB);
00313     unsigned getOffsetOf(MachineInstr *MI) const;
00314     unsigned getUserOffset(CPUser&) const;
00315     void dumpBBs();
00316     void verify();
00317 
00318     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
00319                          unsigned Disp, bool NegativeOK, bool IsSoImm = false);
00320     bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
00321                          const CPUser &U) {
00322       return isOffsetInRange(UserOffset, TrialOffset,
00323                              U.getMaxDisp(), U.NegOk, U.IsSoImm);
00324     }
00325   };
00326   char ARMConstantIslands::ID = 0;
00327 }
00328 
00329 /// verify - check BBOffsets, BBSizes, alignment of islands
00330 void ARMConstantIslands::verify() {
00331 #ifndef NDEBUG
00332   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
00333        MBBI != E; ++MBBI) {
00334     MachineBasicBlock *MBB = MBBI;
00335     unsigned MBBId = MBB->getNumber();
00336     assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset);
00337   }
00338   DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
00339   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
00340     CPUser &U = CPUsers[i];
00341     unsigned UserOffset = getUserOffset(U);
00342     // Verify offset using the real max displacement without the safety
00343     // adjustment.
00344     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getMaxDisp()+2, U.NegOk,
00345                          /* DoDump = */ true)) {
00346       DEBUG(dbgs() << "OK\n");
00347       continue;
00348     }
00349     DEBUG(dbgs() << "Out of range.\n");
00350     dumpBBs();
00351     DEBUG(MF->dump());
00352     llvm_unreachable("Constant pool entry out of range!");
00353   }
00354 #endif
00355 }
00356 
00357 /// print block size and offset information - debugging
00358 void ARMConstantIslands::dumpBBs() {
00359   DEBUG({
00360     for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
00361       const BasicBlockInfo &BBI = BBInfo[J];
00362       dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
00363              << " kb=" << unsigned(BBI.KnownBits)
00364              << " ua=" << unsigned(BBI.Unalign)
00365              << " pa=" << unsigned(BBI.PostAlign)
00366              << format(" size=%#x\n", BBInfo[J].Size);
00367     }
00368   });
00369 }
00370 
00371 /// createARMConstantIslandPass - returns an instance of the constpool
00372 /// island pass.
00373 FunctionPass *llvm::createARMConstantIslandPass() {
00374   return new ARMConstantIslands();
00375 }
00376 
00377 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &mf) {
00378   MF = &mf;
00379   MCP = mf.getConstantPool();
00380 
00381   DEBUG(dbgs() << "***** ARMConstantIslands: "
00382                << MCP->getConstants().size() << " CP entries, aligned to "
00383                << MCP->getConstantPoolAlignment() << " bytes *****\n");
00384 
00385   TII = (const ARMBaseInstrInfo *)MF->getTarget()
00386             .getSubtargetImpl()
00387             ->getInstrInfo();
00388   AFI = MF->getInfo<ARMFunctionInfo>();
00389   STI = &MF->getTarget().getSubtarget<ARMSubtarget>();
00390 
00391   isThumb = AFI->isThumbFunction();
00392   isThumb1 = AFI->isThumb1OnlyFunction();
00393   isThumb2 = AFI->isThumb2Function();
00394 
00395   HasFarJump = false;
00396 
00397   // This pass invalidates liveness information when it splits basic blocks.
00398   MF->getRegInfo().invalidateLiveness();
00399 
00400   // Renumber all of the machine basic blocks in the function, guaranteeing that
00401   // the numbers agree with the position of the block in the function.
00402   MF->RenumberBlocks();
00403 
00404   // Try to reorder and otherwise adjust the block layout to make good use
00405   // of the TB[BH] instructions.
00406   bool MadeChange = false;
00407   if (isThumb2 && AdjustJumpTableBlocks) {
00408     scanFunctionJumpTables();
00409     MadeChange |= reorderThumb2JumpTables();
00410     // Data is out of date, so clear it. It'll be re-computed later.
00411     T2JumpTables.clear();
00412     // Blocks may have shifted around. Keep the numbering up to date.
00413     MF->RenumberBlocks();
00414   }
00415 
00416   // Thumb1 functions containing constant pools get 4-byte alignment.
00417   // This is so we can keep exact track of where the alignment padding goes.
00418 
00419   // ARM and Thumb2 functions need to be 4-byte aligned.
00420   if (!isThumb1)
00421     MF->ensureAlignment(2);  // 2 = log2(4)
00422 
00423   // Perform the initial placement of the constant pool entries.  To start with,
00424   // we put them all at the end of the function.
00425   std::vector<MachineInstr*> CPEMIs;
00426   if (!MCP->isEmpty())
00427     doInitialPlacement(CPEMIs);
00428 
00429   /// The next UID to take is the first unused one.
00430   AFI->initPICLabelUId(CPEMIs.size());
00431 
00432   // Do the initial scan of the function, building up information about the
00433   // sizes of each block, the location of all the water, and finding all of the
00434   // constant pool users.
00435   initializeFunctionInfo(CPEMIs);
00436   CPEMIs.clear();
00437   DEBUG(dumpBBs());
00438 
00439 
00440   /// Remove dead constant pool entries.
00441   MadeChange |= removeUnusedCPEntries();
00442 
00443   // Iteratively place constant pool entries and fix up branches until there
00444   // is no change.
00445   unsigned NoCPIters = 0, NoBRIters = 0;
00446   while (true) {
00447     DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
00448     bool CPChange = false;
00449     for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
00450       CPChange |= handleConstantPoolUser(i);
00451     if (CPChange && ++NoCPIters > 30)
00452       report_fatal_error("Constant Island pass failed to converge!");
00453     DEBUG(dumpBBs());
00454 
00455     // Clear NewWaterList now.  If we split a block for branches, it should
00456     // appear as "new water" for the next iteration of constant pool placement.
00457     NewWaterList.clear();
00458 
00459     DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
00460     bool BRChange = false;
00461     for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
00462       BRChange |= fixupImmediateBr(ImmBranches[i]);
00463     if (BRChange && ++NoBRIters > 30)
00464       report_fatal_error("Branch Fix Up pass failed to converge!");
00465     DEBUG(dumpBBs());
00466 
00467     if (!CPChange && !BRChange)
00468       break;
00469     MadeChange = true;
00470   }
00471 
00472   // Shrink 32-bit Thumb2 branch, load, and store instructions.
00473   if (isThumb2 && !STI->prefers32BitThumb())
00474     MadeChange |= optimizeThumb2Instructions();
00475 
00476   // After a while, this might be made debug-only, but it is not expensive.
00477   verify();
00478 
00479   // If LR has been forced spilled and no far jump (i.e. BL) has been issued,
00480   // undo the spill / restore of LR if possible.
00481   if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
00482     MadeChange |= undoLRSpillRestore();
00483 
00484   // Save the mapping between original and cloned constpool entries.
00485   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
00486     for (unsigned j = 0, je = CPEntries[i].size(); j != je; ++j) {
00487       const CPEntry & CPE = CPEntries[i][j];
00488       AFI->recordCPEClone(i, CPE.CPI);
00489     }
00490   }
00491 
00492   DEBUG(dbgs() << '\n'; dumpBBs());
00493 
00494   BBInfo.clear();
00495   WaterList.clear();
00496   CPUsers.clear();
00497   CPEntries.clear();
00498   ImmBranches.clear();
00499   PushPopMIs.clear();
00500   T2JumpTables.clear();
00501 
00502   return MadeChange;
00503 }
00504 
00505 /// doInitialPlacement - Perform the initial placement of the constant pool
00506 /// entries.  To start with, we put them all at the end of the function.
00507 void
00508 ARMConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
00509   // Create the basic block to hold the CPE's.
00510   MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
00511   MF->push_back(BB);
00512 
00513   // MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
00514   unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
00515 
00516   // Mark the basic block as required by the const-pool.
00517   // If AlignConstantIslands isn't set, use 4-byte alignment for everything.
00518   BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
00519 
00520   // The function needs to be as aligned as the basic blocks. The linker may
00521   // move functions around based on their alignment.
00522   MF->ensureAlignment(BB->getAlignment());
00523 
00524   // Order the entries in BB by descending alignment.  That ensures correct
00525   // alignment of all entries as long as BB is sufficiently aligned.  Keep
00526   // track of the insertion point for each alignment.  We are going to bucket
00527   // sort the entries as they are created.
00528   SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
00529 
00530   // Add all of the constants from the constant pool to the end block, use an
00531   // identity mapping of CPI's to CPE's.
00532   const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
00533 
00534   const DataLayout &TD = *MF->getSubtarget().getDataLayout();
00535   for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
00536     unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
00537     assert(Size >= 4 && "Too small constant pool entry");
00538     unsigned Align = CPs[i].getAlignment();
00539     assert(isPowerOf2_32(Align) && "Invalid alignment");
00540     // Verify that all constant pool entries are a multiple of their alignment.
00541     // If not, we would have to pad them out so that instructions stay aligned.
00542     assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
00543 
00544     // Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
00545     unsigned LogAlign = Log2_32(Align);
00546     MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
00547     MachineInstr *CPEMI =
00548       BuildMI(*BB, InsAt, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
00549         .addImm(i).addConstantPoolIndex(i).addImm(Size);
00550     CPEMIs.push_back(CPEMI);
00551 
00552     // Ensure that future entries with higher alignment get inserted before
00553     // CPEMI. This is bucket sort with iterators.
00554     for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
00555       if (InsPoint[a] == InsAt)
00556         InsPoint[a] = CPEMI;
00557 
00558     // Add a new CPEntry, but no corresponding CPUser yet.
00559     std::vector<CPEntry> CPEs;
00560     CPEs.push_back(CPEntry(CPEMI, i));
00561     CPEntries.push_back(CPEs);
00562     ++NumCPEs;
00563     DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
00564                  << Size << ", align = " << Align <<'\n');
00565   }
00566   DEBUG(BB->dump());
00567 }
00568 
00569 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
00570 /// into the block immediately after it.
00571 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
00572   // Get the next machine basic block in the function.
00573   MachineFunction::iterator MBBI = MBB;
00574   // Can't fall off end of function.
00575   if (std::next(MBBI) == MBB->getParent()->end())
00576     return false;
00577 
00578   MachineBasicBlock *NextBB = std::next(MBBI);
00579   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
00580        E = MBB->succ_end(); I != E; ++I)
00581     if (*I == NextBB)
00582       return true;
00583 
00584   return false;
00585 }
00586 
00587 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
00588 /// look up the corresponding CPEntry.
00589 ARMConstantIslands::CPEntry
00590 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
00591                                         const MachineInstr *CPEMI) {
00592   std::vector<CPEntry> &CPEs = CPEntries[CPI];
00593   // Number of entries per constpool index should be small, just do a
00594   // linear search.
00595   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
00596     if (CPEs[i].CPEMI == CPEMI)
00597       return &CPEs[i];
00598   }
00599   return nullptr;
00600 }
00601 
00602 /// getCPELogAlign - Returns the required alignment of the constant pool entry
00603 /// represented by CPEMI.  Alignment is measured in log2(bytes) units.
00604 unsigned ARMConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
00605   assert(CPEMI && CPEMI->getOpcode() == ARM::CONSTPOOL_ENTRY);
00606 
00607   // Everything is 4-byte aligned unless AlignConstantIslands is set.
00608   if (!AlignConstantIslands)
00609     return 2;
00610 
00611   unsigned CPI = CPEMI->getOperand(1).getIndex();
00612   assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
00613   unsigned Align = MCP->getConstants()[CPI].getAlignment();
00614   assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
00615   return Log2_32(Align);
00616 }
00617 
00618 /// scanFunctionJumpTables - Do a scan of the function, building up
00619 /// information about the sizes of each block and the locations of all
00620 /// the jump tables.
00621 void ARMConstantIslands::scanFunctionJumpTables() {
00622   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
00623        MBBI != E; ++MBBI) {
00624     MachineBasicBlock &MBB = *MBBI;
00625 
00626     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
00627          I != E; ++I)
00628       if (I->isBranch() && I->getOpcode() == ARM::t2BR_JT)
00629         T2JumpTables.push_back(I);
00630   }
00631 }
00632 
00633 /// initializeFunctionInfo - Do the initial scan of the function, building up
00634 /// information about the sizes of each block, the location of all the water,
00635 /// and finding all of the constant pool users.
00636 void ARMConstantIslands::
00637 initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
00638   BBInfo.clear();
00639   BBInfo.resize(MF->getNumBlockIDs());
00640 
00641   // First thing, compute the size of all basic blocks, and see if the function
00642   // has any inline assembly in it. If so, we have to be conservative about
00643   // alignment assumptions, as we don't know for sure the size of any
00644   // instructions in the inline assembly.
00645   for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
00646     computeBlockSize(I);
00647 
00648   // The known bits of the entry block offset are determined by the function
00649   // alignment.
00650   BBInfo.front().KnownBits = MF->getAlignment();
00651 
00652   // Compute block offsets and known bits.
00653   adjustBBOffsetsAfter(MF->begin());
00654 
00655   // Now go back through the instructions and build up our data structures.
00656   for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
00657        MBBI != E; ++MBBI) {
00658     MachineBasicBlock &MBB = *MBBI;
00659 
00660     // If this block doesn't fall through into the next MBB, then this is
00661     // 'water' that a constant pool island could be placed.
00662     if (!BBHasFallthrough(&MBB))
00663       WaterList.push_back(&MBB);
00664 
00665     for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
00666          I != E; ++I) {
00667       if (I->isDebugValue())
00668         continue;
00669 
00670       int Opc = I->getOpcode();
00671       if (I->isBranch()) {
00672         bool isCond = false;
00673         unsigned Bits = 0;
00674         unsigned Scale = 1;
00675         int UOpc = Opc;
00676         switch (Opc) {
00677         default:
00678           continue;  // Ignore other JT branches
00679         case ARM::t2BR_JT:
00680           T2JumpTables.push_back(I);
00681           continue;   // Does not get an entry in ImmBranches
00682         case ARM::Bcc:
00683           isCond = true;
00684           UOpc = ARM::B;
00685           // Fallthrough
00686         case ARM::B:
00687           Bits = 24;
00688           Scale = 4;
00689           break;
00690         case ARM::tBcc:
00691           isCond = true;
00692           UOpc = ARM::tB;
00693           Bits = 8;
00694           Scale = 2;
00695           break;
00696         case ARM::tB:
00697           Bits = 11;
00698           Scale = 2;
00699           break;
00700         case ARM::t2Bcc:
00701           isCond = true;
00702           UOpc = ARM::t2B;
00703           Bits = 20;
00704           Scale = 2;
00705           break;
00706         case ARM::t2B:
00707           Bits = 24;
00708           Scale = 2;
00709           break;
00710         }
00711 
00712         // Record this immediate branch.
00713         unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
00714         ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
00715       }
00716 
00717       if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
00718         PushPopMIs.push_back(I);
00719 
00720       if (Opc == ARM::CONSTPOOL_ENTRY)
00721         continue;
00722 
00723       // Scan the instructions for constant pool operands.
00724       for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
00725         if (I->getOperand(op).isCPI()) {
00726           // We found one.  The addressing mode tells us the max displacement
00727           // from the PC that this instruction permits.
00728 
00729           // Basic size info comes from the TSFlags field.
00730           unsigned Bits = 0;
00731           unsigned Scale = 1;
00732           bool NegOk = false;
00733           bool IsSoImm = false;
00734 
00735           switch (Opc) {
00736           default:
00737             llvm_unreachable("Unknown addressing mode for CP reference!");
00738 
00739           // Taking the address of a CP entry.
00740           case ARM::LEApcrel:
00741             // This takes a SoImm, which is 8 bit immediate rotated. We'll
00742             // pretend the maximum offset is 255 * 4. Since each instruction
00743             // 4 byte wide, this is always correct. We'll check for other
00744             // displacements that fits in a SoImm as well.
00745             Bits = 8;
00746             Scale = 4;
00747             NegOk = true;
00748             IsSoImm = true;
00749             break;
00750           case ARM::t2LEApcrel:
00751             Bits = 12;
00752             NegOk = true;
00753             break;
00754           case ARM::tLEApcrel:
00755             Bits = 8;
00756             Scale = 4;
00757             break;
00758 
00759           case ARM::LDRBi12:
00760           case ARM::LDRi12:
00761           case ARM::LDRcp:
00762           case ARM::t2LDRpci:
00763             Bits = 12;  // +-offset_12
00764             NegOk = true;
00765             break;
00766 
00767           case ARM::tLDRpci:
00768             Bits = 8;
00769             Scale = 4;  // +(offset_8*4)
00770             break;
00771 
00772           case ARM::VLDRD:
00773           case ARM::VLDRS:
00774             Bits = 8;
00775             Scale = 4;  // +-(offset_8*4)
00776             NegOk = true;
00777             break;
00778           }
00779 
00780           // Remember that this is a user of a CP entry.
00781           unsigned CPI = I->getOperand(op).getIndex();
00782           MachineInstr *CPEMI = CPEMIs[CPI];
00783           unsigned MaxOffs = ((1 << Bits)-1) * Scale;
00784           CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
00785 
00786           // Increment corresponding CPEntry reference count.
00787           CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
00788           assert(CPE && "Cannot find a corresponding CPEntry!");
00789           CPE->RefCount++;
00790 
00791           // Instructions can only use one CP entry, don't bother scanning the
00792           // rest of the operands.
00793           break;
00794         }
00795     }
00796   }
00797 }
00798 
00799 /// computeBlockSize - Compute the size and some alignment information for MBB.
00800 /// This function updates BBInfo directly.
00801 void ARMConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
00802   BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
00803   BBI.Size = 0;
00804   BBI.Unalign = 0;
00805   BBI.PostAlign = 0;
00806 
00807   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
00808        ++I) {
00809     BBI.Size += TII->GetInstSizeInBytes(I);
00810     // For inline asm, GetInstSizeInBytes returns a conservative estimate.
00811     // The actual size may be smaller, but still a multiple of the instr size.
00812     if (I->isInlineAsm())
00813       BBI.Unalign = isThumb ? 1 : 2;
00814     // Also consider instructions that may be shrunk later.
00815     else if (isThumb && mayOptimizeThumb2Instruction(I))
00816       BBI.Unalign = 1;
00817   }
00818 
00819   // tBR_JTr contains a .align 2 directive.
00820   if (!MBB->empty() && MBB->back().getOpcode() == ARM::tBR_JTr) {
00821     BBI.PostAlign = 2;
00822     MBB->getParent()->ensureAlignment(2);
00823   }
00824 }
00825 
00826 /// getOffsetOf - Return the current offset of the specified machine instruction
00827 /// from the start of the function.  This offset changes as stuff is moved
00828 /// around inside the function.
00829 unsigned ARMConstantIslands::getOffsetOf(MachineInstr *MI) const {
00830   MachineBasicBlock *MBB = MI->getParent();
00831 
00832   // The offset is composed of two things: the sum of the sizes of all MBB's
00833   // before this instruction's block, and the offset from the start of the block
00834   // it is in.
00835   unsigned Offset = BBInfo[MBB->getNumber()].Offset;
00836 
00837   // Sum instructions before MI in MBB.
00838   for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
00839     assert(I != MBB->end() && "Didn't find MI in its own basic block?");
00840     Offset += TII->GetInstSizeInBytes(I);
00841   }
00842   return Offset;
00843 }
00844 
00845 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
00846 /// ID.
00847 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
00848                               const MachineBasicBlock *RHS) {
00849   return LHS->getNumber() < RHS->getNumber();
00850 }
00851 
00852 /// updateForInsertedWaterBlock - When a block is newly inserted into the
00853 /// machine function, it upsets all of the block numbers.  Renumber the blocks
00854 /// and update the arrays that parallel this numbering.
00855 void ARMConstantIslands::updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
00856   // Renumber the MBB's to keep them consecutive.
00857   NewBB->getParent()->RenumberBlocks(NewBB);
00858 
00859   // Insert an entry into BBInfo to align it properly with the (newly
00860   // renumbered) block numbers.
00861   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
00862 
00863   // Next, update WaterList.  Specifically, we need to add NewMBB as having
00864   // available water after it.
00865   water_iterator IP =
00866     std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
00867                      CompareMBBNumbers);
00868   WaterList.insert(IP, NewBB);
00869 }
00870 
00871 
00872 /// Split the basic block containing MI into two blocks, which are joined by
00873 /// an unconditional branch.  Update data structures and renumber blocks to
00874 /// account for this change and returns the newly created block.
00875 MachineBasicBlock *ARMConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
00876   MachineBasicBlock *OrigBB = MI->getParent();
00877 
00878   // Create a new MBB for the code after the OrigBB.
00879   MachineBasicBlock *NewBB =
00880     MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
00881   MachineFunction::iterator MBBI = OrigBB; ++MBBI;
00882   MF->insert(MBBI, NewBB);
00883 
00884   // Splice the instructions starting with MI over to NewBB.
00885   NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
00886 
00887   // Add an unconditional branch from OrigBB to NewBB.
00888   // Note the new unconditional branch is not being recorded.
00889   // There doesn't seem to be meaningful DebugInfo available; this doesn't
00890   // correspond to anything in the source.
00891   unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
00892   if (!isThumb)
00893     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB);
00894   else
00895     BuildMI(OrigBB, DebugLoc(), TII->get(Opc)).addMBB(NewBB)
00896             .addImm(ARMCC::AL).addReg(0);
00897   ++NumSplit;
00898 
00899   // Update the CFG.  All succs of OrigBB are now succs of NewBB.
00900   NewBB->transferSuccessors(OrigBB);
00901 
00902   // OrigBB branches to NewBB.
00903   OrigBB->addSuccessor(NewBB);
00904 
00905   // Update internal data structures to account for the newly inserted MBB.
00906   // This is almost the same as updateForInsertedWaterBlock, except that
00907   // the Water goes after OrigBB, not NewBB.
00908   MF->RenumberBlocks(NewBB);
00909 
00910   // Insert an entry into BBInfo to align it properly with the (newly
00911   // renumbered) block numbers.
00912   BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
00913 
00914   // Next, update WaterList.  Specifically, we need to add OrigMBB as having
00915   // available water after it (but not if it's already there, which happens
00916   // when splitting before a conditional branch that is followed by an
00917   // unconditional branch - in that case we want to insert NewBB).
00918   water_iterator IP =
00919     std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
00920                      CompareMBBNumbers);
00921   MachineBasicBlock* WaterBB = *IP;
00922   if (WaterBB == OrigBB)
00923     WaterList.insert(std::next(IP), NewBB);
00924   else
00925     WaterList.insert(IP, OrigBB);
00926   NewWaterList.insert(OrigBB);
00927 
00928   // Figure out how large the OrigBB is.  As the first half of the original
00929   // block, it cannot contain a tablejump.  The size includes
00930   // the new jump we added.  (It should be possible to do this without
00931   // recounting everything, but it's very confusing, and this is rarely
00932   // executed.)
00933   computeBlockSize(OrigBB);
00934 
00935   // Figure out how large the NewMBB is.  As the second half of the original
00936   // block, it may contain a tablejump.
00937   computeBlockSize(NewBB);
00938 
00939   // All BBOffsets following these blocks must be modified.
00940   adjustBBOffsetsAfter(OrigBB);
00941 
00942   return NewBB;
00943 }
00944 
00945 /// getUserOffset - Compute the offset of U.MI as seen by the hardware
00946 /// displacement computation.  Update U.KnownAlignment to match its current
00947 /// basic block location.
00948 unsigned ARMConstantIslands::getUserOffset(CPUser &U) const {
00949   unsigned UserOffset = getOffsetOf(U.MI);
00950   const BasicBlockInfo &BBI = BBInfo[U.MI->getParent()->getNumber()];
00951   unsigned KnownBits = BBI.internalKnownBits();
00952 
00953   // The value read from PC is offset from the actual instruction address.
00954   UserOffset += (isThumb ? 4 : 8);
00955 
00956   // Because of inline assembly, we may not know the alignment (mod 4) of U.MI.
00957   // Make sure U.getMaxDisp() returns a constrained range.
00958   U.KnownAlignment = (KnownBits >= 2);
00959 
00960   // On Thumb, offsets==2 mod 4 are rounded down by the hardware for
00961   // purposes of the displacement computation; compensate for that here.
00962   // For unknown alignments, getMaxDisp() constrains the range instead.
00963   if (isThumb && U.KnownAlignment)
00964     UserOffset &= ~3u;
00965 
00966   return UserOffset;
00967 }
00968 
00969 /// isOffsetInRange - Checks whether UserOffset (the location of a constant pool
00970 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
00971 /// constant pool entry).
00972 /// UserOffset is computed by getUserOffset above to include PC adjustments. If
00973 /// the mod 4 alignment of UserOffset is not known, the uncertainty must be
00974 /// subtracted from MaxDisp instead. CPUser::getMaxDisp() does that.
00975 bool ARMConstantIslands::isOffsetInRange(unsigned UserOffset,
00976                                          unsigned TrialOffset, unsigned MaxDisp,
00977                                          bool NegativeOK, bool IsSoImm) {
00978   if (UserOffset <= TrialOffset) {
00979     // User before the Trial.
00980     if (TrialOffset - UserOffset <= MaxDisp)
00981       return true;
00982     // FIXME: Make use full range of soimm values.
00983   } else if (NegativeOK) {
00984     if (UserOffset - TrialOffset <= MaxDisp)
00985       return true;
00986     // FIXME: Make use full range of soimm values.
00987   }
00988   return false;
00989 }
00990 
00991 /// isWaterInRange - Returns true if a CPE placed after the specified
00992 /// Water (a basic block) will be in range for the specific MI.
00993 ///
00994 /// Compute how much the function will grow by inserting a CPE after Water.
00995 bool ARMConstantIslands::isWaterInRange(unsigned UserOffset,
00996                                         MachineBasicBlock* Water, CPUser &U,
00997                                         unsigned &Growth) {
00998   unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
00999   unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
01000   unsigned NextBlockOffset, NextBlockAlignment;
01001   MachineFunction::const_iterator NextBlock = Water;
01002   if (++NextBlock == MF->end()) {
01003     NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
01004     NextBlockAlignment = 0;
01005   } else {
01006     NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
01007     NextBlockAlignment = NextBlock->getAlignment();
01008   }
01009   unsigned Size = U.CPEMI->getOperand(2).getImm();
01010   unsigned CPEEnd = CPEOffset + Size;
01011 
01012   // The CPE may be able to hide in the alignment padding before the next
01013   // block. It may also cause more padding to be required if it is more aligned
01014   // that the next block.
01015   if (CPEEnd > NextBlockOffset) {
01016     Growth = CPEEnd - NextBlockOffset;
01017     // Compute the padding that would go at the end of the CPE to align the next
01018     // block.
01019     Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
01020 
01021     // If the CPE is to be inserted before the instruction, that will raise
01022     // the offset of the instruction. Also account for unknown alignment padding
01023     // in blocks between CPE and the user.
01024     if (CPEOffset < UserOffset)
01025       UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
01026   } else
01027     // CPE fits in existing padding.
01028     Growth = 0;
01029 
01030   return isOffsetInRange(UserOffset, CPEOffset, U);
01031 }
01032 
01033 /// isCPEntryInRange - Returns true if the distance between specific MI and
01034 /// specific ConstPool entry instruction can fit in MI's displacement field.
01035 bool ARMConstantIslands::isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
01036                                       MachineInstr *CPEMI, unsigned MaxDisp,
01037                                       bool NegOk, bool DoDump) {
01038   unsigned CPEOffset  = getOffsetOf(CPEMI);
01039 
01040   if (DoDump) {
01041     DEBUG({
01042       unsigned Block = MI->getParent()->getNumber();
01043       const BasicBlockInfo &BBI = BBInfo[Block];
01044       dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
01045              << " max delta=" << MaxDisp
01046              << format(" insn address=%#x", UserOffset)
01047              << " in BB#" << Block << ": "
01048              << format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
01049              << format("CPE address=%#x offset=%+d: ", CPEOffset,
01050                        int(CPEOffset-UserOffset));
01051     });
01052   }
01053 
01054   return isOffsetInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
01055 }
01056 
01057 #ifndef NDEBUG
01058 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
01059 /// unconditionally branches to its only successor.
01060 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
01061   if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
01062     return false;
01063 
01064   MachineBasicBlock *Succ = *MBB->succ_begin();
01065   MachineBasicBlock *Pred = *MBB->pred_begin();
01066   MachineInstr *PredMI = &Pred->back();
01067   if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
01068       || PredMI->getOpcode() == ARM::t2B)
01069     return PredMI->getOperand(0).getMBB() == Succ;
01070   return false;
01071 }
01072 #endif // NDEBUG
01073 
01074 void ARMConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
01075   unsigned BBNum = BB->getNumber();
01076   for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
01077     // Get the offset and known bits at the end of the layout predecessor.
01078     // Include the alignment of the current block.
01079     unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
01080     unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
01081     unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
01082 
01083     // This is where block i begins.  Stop if the offset is already correct,
01084     // and we have updated 2 blocks.  This is the maximum number of blocks
01085     // changed before calling this function.
01086     if (i > BBNum + 2 &&
01087         BBInfo[i].Offset == Offset &&
01088         BBInfo[i].KnownBits == KnownBits)
01089       break;
01090 
01091     BBInfo[i].Offset = Offset;
01092     BBInfo[i].KnownBits = KnownBits;
01093   }
01094 }
01095 
01096 /// decrementCPEReferenceCount - find the constant pool entry with index CPI
01097 /// and instruction CPEMI, and decrement its refcount.  If the refcount
01098 /// becomes 0 remove the entry and instruction.  Returns true if we removed
01099 /// the entry, false if we didn't.
01100 
01101 bool ARMConstantIslands::decrementCPEReferenceCount(unsigned CPI,
01102                                                     MachineInstr *CPEMI) {
01103   // Find the old entry. Eliminate it if it is no longer used.
01104   CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
01105   assert(CPE && "Unexpected!");
01106   if (--CPE->RefCount == 0) {
01107     removeDeadCPEMI(CPEMI);
01108     CPE->CPEMI = nullptr;
01109     --NumCPEs;
01110     return true;
01111   }
01112   return false;
01113 }
01114 
01115 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
01116 /// if not, see if an in-range clone of the CPE is in range, and if so,
01117 /// change the data structures so the user references the clone.  Returns:
01118 /// 0 = no existing entry found
01119 /// 1 = entry found, and there were no code insertions or deletions
01120 /// 2 = entry found, and there were code insertions or deletions
01121 int ARMConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
01122 {
01123   MachineInstr *UserMI = U.MI;
01124   MachineInstr *CPEMI  = U.CPEMI;
01125 
01126   // Check to see if the CPE is already in-range.
01127   if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getMaxDisp(), U.NegOk,
01128                        true)) {
01129     DEBUG(dbgs() << "In range\n");
01130     return 1;
01131   }
01132 
01133   // No.  Look for previously created clones of the CPE that are in range.
01134   unsigned CPI = CPEMI->getOperand(1).getIndex();
01135   std::vector<CPEntry> &CPEs = CPEntries[CPI];
01136   for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
01137     // We already tried this one
01138     if (CPEs[i].CPEMI == CPEMI)
01139       continue;
01140     // Removing CPEs can leave empty entries, skip
01141     if (CPEs[i].CPEMI == nullptr)
01142       continue;
01143     if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.getMaxDisp(),
01144                      U.NegOk)) {
01145       DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
01146                    << CPEs[i].CPI << "\n");
01147       // Point the CPUser node to the replacement
01148       U.CPEMI = CPEs[i].CPEMI;
01149       // Change the CPI in the instruction operand to refer to the clone.
01150       for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
01151         if (UserMI->getOperand(j).isCPI()) {
01152           UserMI->getOperand(j).setIndex(CPEs[i].CPI);
01153           break;
01154         }
01155       // Adjust the refcount of the clone...
01156       CPEs[i].RefCount++;
01157       // ...and the original.  If we didn't remove the old entry, none of the
01158       // addresses changed, so we don't need another pass.
01159       return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
01160     }
01161   }
01162   return 0;
01163 }
01164 
01165 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
01166 /// the specific unconditional branch instruction.
01167 static inline unsigned getUnconditionalBrDisp(int Opc) {
01168   switch (Opc) {
01169   case ARM::tB:
01170     return ((1<<10)-1)*2;
01171   case ARM::t2B:
01172     return ((1<<23)-1)*2;
01173   default:
01174     break;
01175   }
01176 
01177   return ((1<<23)-1)*4;
01178 }
01179 
01180 /// findAvailableWater - Look for an existing entry in the WaterList in which
01181 /// we can place the CPE referenced from U so it's within range of U's MI.
01182 /// Returns true if found, false if not.  If it returns true, WaterIter
01183 /// is set to the WaterList entry.  For Thumb, prefer water that will not
01184 /// introduce padding to water that will.  To ensure that this pass
01185 /// terminates, the CPE location for a particular CPUser is only allowed to
01186 /// move to a lower address, so search backward from the end of the list and
01187 /// prefer the first water that is in range.
01188 bool ARMConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
01189                                       water_iterator &WaterIter) {
01190   if (WaterList.empty())
01191     return false;
01192 
01193   unsigned BestGrowth = ~0u;
01194   for (water_iterator IP = std::prev(WaterList.end()), B = WaterList.begin();;
01195        --IP) {
01196     MachineBasicBlock* WaterBB = *IP;
01197     // Check if water is in range and is either at a lower address than the
01198     // current "high water mark" or a new water block that was created since
01199     // the previous iteration by inserting an unconditional branch.  In the
01200     // latter case, we want to allow resetting the high water mark back to
01201     // this new water since we haven't seen it before.  Inserting branches
01202     // should be relatively uncommon and when it does happen, we want to be
01203     // sure to take advantage of it for all the CPEs near that block, so that
01204     // we don't insert more branches than necessary.
01205     unsigned Growth;
01206     if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
01207         (WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
01208          NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
01209       // This is the least amount of required padding seen so far.
01210       BestGrowth = Growth;
01211       WaterIter = IP;
01212       DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
01213                    << " Growth=" << Growth << '\n');
01214 
01215       // Keep looking unless it is perfect.
01216       if (BestGrowth == 0)
01217         return true;
01218     }
01219     if (IP == B)
01220       break;
01221   }
01222   return BestGrowth != ~0u;
01223 }
01224 
01225 /// createNewWater - No existing WaterList entry will work for
01226 /// CPUsers[CPUserIndex], so create a place to put the CPE.  The end of the
01227 /// block is used if in range, and the conditional branch munged so control
01228 /// flow is correct.  Otherwise the block is split to create a hole with an
01229 /// unconditional branch around it.  In either case NewMBB is set to a
01230 /// block following which the new island can be inserted (the WaterList
01231 /// is not adjusted).
01232 void ARMConstantIslands::createNewWater(unsigned CPUserIndex,
01233                                         unsigned UserOffset,
01234                                         MachineBasicBlock *&NewMBB) {
01235   CPUser &U = CPUsers[CPUserIndex];
01236   MachineInstr *UserMI = U.MI;
01237   MachineInstr *CPEMI  = U.CPEMI;
01238   unsigned CPELogAlign = getCPELogAlign(CPEMI);
01239   MachineBasicBlock *UserMBB = UserMI->getParent();
01240   const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
01241 
01242   // If the block does not end in an unconditional branch already, and if the
01243   // end of the block is within range, make new water there.  (The addition
01244   // below is for the unconditional branch we will be adding: 4 bytes on ARM +
01245   // Thumb2, 2 on Thumb1.
01246   if (BBHasFallthrough(UserMBB)) {
01247     // Size of branch to insert.
01248     unsigned Delta = isThumb1 ? 2 : 4;
01249     // Compute the offset where the CPE will begin.
01250     unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + Delta;
01251 
01252     if (isOffsetInRange(UserOffset, CPEOffset, U)) {
01253       DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
01254             << format(", expected CPE offset %#x\n", CPEOffset));
01255       NewMBB = std::next(MachineFunction::iterator(UserMBB));
01256       // Add an unconditional branch from UserMBB to fallthrough block.  Record
01257       // it for branch lengthening; this new branch will not get out of range,
01258       // but if the preceding conditional branch is out of range, the targets
01259       // will be exchanged, and the altered branch may be out of range, so the
01260       // machinery has to know about it.
01261       int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
01262       if (!isThumb)
01263         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB);
01264       else
01265         BuildMI(UserMBB, DebugLoc(), TII->get(UncondBr)).addMBB(NewMBB)
01266           .addImm(ARMCC::AL).addReg(0);
01267       unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
01268       ImmBranches.push_back(ImmBranch(&UserMBB->back(),
01269                                       MaxDisp, false, UncondBr));
01270       BBInfo[UserMBB->getNumber()].Size += Delta;
01271       adjustBBOffsetsAfter(UserMBB);
01272       return;
01273     }
01274   }
01275 
01276   // What a big block.  Find a place within the block to split it.  This is a
01277   // little tricky on Thumb1 since instructions are 2 bytes and constant pool
01278   // entries are 4 bytes: if instruction I references island CPE, and
01279   // instruction I+1 references CPE', it will not work well to put CPE as far
01280   // forward as possible, since then CPE' cannot immediately follow it (that
01281   // location is 2 bytes farther away from I+1 than CPE was from I) and we'd
01282   // need to create a new island.  So, we make a first guess, then walk through
01283   // the instructions between the one currently being looked at and the
01284   // possible insertion point, and make sure any other instructions that
01285   // reference CPEs will be able to use the same island area; if not, we back
01286   // up the insertion point.
01287 
01288   // Try to split the block so it's fully aligned.  Compute the latest split
01289   // point where we can add a 4-byte branch instruction, and then align to
01290   // LogAlign which is the largest possible alignment in the function.
01291   unsigned LogAlign = MF->getAlignment();
01292   assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
01293   unsigned KnownBits = UserBBI.internalKnownBits();
01294   unsigned UPad = UnknownPadding(LogAlign, KnownBits);
01295   unsigned BaseInsertOffset = UserOffset + U.getMaxDisp() - UPad;
01296   DEBUG(dbgs() << format("Split in middle of big block before %#x",
01297                          BaseInsertOffset));
01298 
01299   // The 4 in the following is for the unconditional branch we'll be inserting
01300   // (allows for long branch on Thumb1).  Alignment of the island is handled
01301   // inside isOffsetInRange.
01302   BaseInsertOffset -= 4;
01303 
01304   DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
01305                << " la=" << LogAlign
01306                << " kb=" << KnownBits
01307                << " up=" << UPad << '\n');
01308 
01309   // This could point off the end of the block if we've already got constant
01310   // pool entries following this block; only the last one is in the water list.
01311   // Back past any possible branches (allow for a conditional and a maximally
01312   // long unconditional).
01313   if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
01314     BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
01315     DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
01316   }
01317   unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
01318     CPEMI->getOperand(2).getImm();
01319   MachineBasicBlock::iterator MI = UserMI;
01320   ++MI;
01321   unsigned CPUIndex = CPUserIndex+1;
01322   unsigned NumCPUsers = CPUsers.size();
01323   MachineInstr *LastIT = nullptr;
01324   for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
01325        Offset < BaseInsertOffset;
01326        Offset += TII->GetInstSizeInBytes(MI), MI = std::next(MI)) {
01327     assert(MI != UserMBB->end() && "Fell off end of block");
01328     if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
01329       CPUser &U = CPUsers[CPUIndex];
01330       if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
01331         // Shift intertion point by one unit of alignment so it is within reach.
01332         BaseInsertOffset -= 1u << LogAlign;
01333         EndInsertOffset  -= 1u << LogAlign;
01334       }
01335       // This is overly conservative, as we don't account for CPEMIs being
01336       // reused within the block, but it doesn't matter much.  Also assume CPEs
01337       // are added in order with alignment padding.  We may eventually be able
01338       // to pack the aligned CPEs better.
01339       EndInsertOffset += U.CPEMI->getOperand(2).getImm();
01340       CPUIndex++;
01341     }
01342 
01343     // Remember the last IT instruction.
01344     if (MI->getOpcode() == ARM::t2IT)
01345       LastIT = MI;
01346   }
01347 
01348   --MI;
01349 
01350   // Avoid splitting an IT block.
01351   if (LastIT) {
01352     unsigned PredReg = 0;
01353     ARMCC::CondCodes CC = getITInstrPredicate(MI, PredReg);
01354     if (CC != ARMCC::AL)
01355       MI = LastIT;
01356   }
01357   NewMBB = splitBlockBeforeInstr(MI);
01358 }
01359 
01360 /// handleConstantPoolUser - Analyze the specified user, checking to see if it
01361 /// is out-of-range.  If so, pick up the constant pool value and move it some
01362 /// place in-range.  Return true if we changed any addresses (thus must run
01363 /// another pass of branch lengthening), false otherwise.
01364 bool ARMConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
01365   CPUser &U = CPUsers[CPUserIndex];
01366   MachineInstr *UserMI = U.MI;
01367   MachineInstr *CPEMI  = U.CPEMI;
01368   unsigned CPI = CPEMI->getOperand(1).getIndex();
01369   unsigned Size = CPEMI->getOperand(2).getImm();
01370   // Compute this only once, it's expensive.
01371   unsigned UserOffset = getUserOffset(U);
01372 
01373   // See if the current entry is within range, or there is a clone of it
01374   // in range.
01375   int result = findInRangeCPEntry(U, UserOffset);
01376   if (result==1) return false;
01377   else if (result==2) return true;
01378 
01379   // No existing clone of this CPE is within range.
01380   // We will be generating a new clone.  Get a UID for it.
01381   unsigned ID = AFI->createPICLabelUId();
01382 
01383   // Look for water where we can place this CPE.
01384   MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
01385   MachineBasicBlock *NewMBB;
01386   water_iterator IP;
01387   if (findAvailableWater(U, UserOffset, IP)) {
01388     DEBUG(dbgs() << "Found water in range\n");
01389     MachineBasicBlock *WaterBB = *IP;
01390 
01391     // If the original WaterList entry was "new water" on this iteration,
01392     // propagate that to the new island.  This is just keeping NewWaterList
01393     // updated to match the WaterList, which will be updated below.
01394     if (NewWaterList.erase(WaterBB))
01395       NewWaterList.insert(NewIsland);
01396 
01397     // The new CPE goes before the following block (NewMBB).
01398     NewMBB = std::next(MachineFunction::iterator(WaterBB));
01399 
01400   } else {
01401     // No water found.
01402     DEBUG(dbgs() << "No water found\n");
01403     createNewWater(CPUserIndex, UserOffset, NewMBB);
01404 
01405     // splitBlockBeforeInstr adds to WaterList, which is important when it is
01406     // called while handling branches so that the water will be seen on the
01407     // next iteration for constant pools, but in this context, we don't want
01408     // it.  Check for this so it will be removed from the WaterList.
01409     // Also remove any entry from NewWaterList.
01410     MachineBasicBlock *WaterBB = std::prev(MachineFunction::iterator(NewMBB));
01411     IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
01412     if (IP != WaterList.end())
01413       NewWaterList.erase(WaterBB);
01414 
01415     // We are adding new water.  Update NewWaterList.
01416     NewWaterList.insert(NewIsland);
01417   }
01418 
01419   // Remove the original WaterList entry; we want subsequent insertions in
01420   // this vicinity to go after the one we're about to insert.  This
01421   // considerably reduces the number of times we have to move the same CPE
01422   // more than once and is also important to ensure the algorithm terminates.
01423   if (IP != WaterList.end())
01424     WaterList.erase(IP);
01425 
01426   // Okay, we know we can put an island before NewMBB now, do it!
01427   MF->insert(NewMBB, NewIsland);
01428 
01429   // Update internal data structures to account for the newly inserted MBB.
01430   updateForInsertedWaterBlock(NewIsland);
01431 
01432   // Decrement the old entry, and remove it if refcount becomes 0.
01433   decrementCPEReferenceCount(CPI, CPEMI);
01434 
01435   // Now that we have an island to add the CPE to, clone the original CPE and
01436   // add it to the island.
01437   U.HighWaterMark = NewIsland;
01438   U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
01439                 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
01440   CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
01441   ++NumCPEs;
01442 
01443   // Mark the basic block as aligned as required by the const-pool entry.
01444   NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
01445 
01446   // Increase the size of the island block to account for the new entry.
01447   BBInfo[NewIsland->getNumber()].Size += Size;
01448   adjustBBOffsetsAfter(std::prev(MachineFunction::iterator(NewIsland)));
01449 
01450   // Finally, change the CPI in the instruction operand to be ID.
01451   for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
01452     if (UserMI->getOperand(i).isCPI()) {
01453       UserMI->getOperand(i).setIndex(ID);
01454       break;
01455     }
01456 
01457   DEBUG(dbgs() << "  Moved CPE to #" << ID << " CPI=" << CPI
01458         << format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
01459 
01460   return true;
01461 }
01462 
01463 /// removeDeadCPEMI - Remove a dead constant pool entry instruction. Update
01464 /// sizes and offsets of impacted basic blocks.
01465 void ARMConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
01466   MachineBasicBlock *CPEBB = CPEMI->getParent();
01467   unsigned Size = CPEMI->getOperand(2).getImm();
01468   CPEMI->eraseFromParent();
01469   BBInfo[CPEBB->getNumber()].Size -= Size;
01470   // All succeeding offsets have the current size value added in, fix this.
01471   if (CPEBB->empty()) {
01472     BBInfo[CPEBB->getNumber()].Size = 0;
01473 
01474     // This block no longer needs to be aligned.
01475     CPEBB->setAlignment(0);
01476   } else
01477     // Entries are sorted by descending alignment, so realign from the front.
01478     CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
01479 
01480   adjustBBOffsetsAfter(CPEBB);
01481   // An island has only one predecessor BB and one successor BB. Check if
01482   // this BB's predecessor jumps directly to this BB's successor. This
01483   // shouldn't happen currently.
01484   assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
01485   // FIXME: remove the empty blocks after all the work is done?
01486 }
01487 
01488 /// removeUnusedCPEntries - Remove constant pool entries whose refcounts
01489 /// are zero.
01490 bool ARMConstantIslands::removeUnusedCPEntries() {
01491   unsigned MadeChange = false;
01492   for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
01493       std::vector<CPEntry> &CPEs = CPEntries[i];
01494       for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
01495         if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
01496           removeDeadCPEMI(CPEs[j].CPEMI);
01497           CPEs[j].CPEMI = nullptr;
01498           MadeChange = true;
01499         }
01500       }
01501   }
01502   return MadeChange;
01503 }
01504 
01505 /// isBBInRange - Returns true if the distance between specific MI and
01506 /// specific BB can fit in MI's displacement field.
01507 bool ARMConstantIslands::isBBInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
01508                                      unsigned MaxDisp) {
01509   unsigned PCAdj      = isThumb ? 4 : 8;
01510   unsigned BrOffset   = getOffsetOf(MI) + PCAdj;
01511   unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
01512 
01513   DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
01514                << " from BB#" << MI->getParent()->getNumber()
01515                << " max delta=" << MaxDisp
01516                << " from " << getOffsetOf(MI) << " to " << DestOffset
01517                << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
01518 
01519   if (BrOffset <= DestOffset) {
01520     // Branch before the Dest.
01521     if (DestOffset-BrOffset <= MaxDisp)
01522       return true;
01523   } else {
01524     if (BrOffset-DestOffset <= MaxDisp)
01525       return true;
01526   }
01527   return false;
01528 }
01529 
01530 /// fixupImmediateBr - Fix up an immediate branch whose destination is too far
01531 /// away to fit in its displacement field.
01532 bool ARMConstantIslands::fixupImmediateBr(ImmBranch &Br) {
01533   MachineInstr *MI = Br.MI;
01534   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
01535 
01536   // Check to see if the DestBB is already in-range.
01537   if (isBBInRange(MI, DestBB, Br.MaxDisp))
01538     return false;
01539 
01540   if (!Br.isCond)
01541     return fixupUnconditionalBr(Br);
01542   return fixupConditionalBr(Br);
01543 }
01544 
01545 /// fixupUnconditionalBr - Fix up an unconditional branch whose destination is
01546 /// too far away to fit in its displacement field. If the LR register has been
01547 /// spilled in the epilogue, then we can use BL to implement a far jump.
01548 /// Otherwise, add an intermediate branch instruction to a branch.
01549 bool
01550 ARMConstantIslands::fixupUnconditionalBr(ImmBranch &Br) {
01551   MachineInstr *MI = Br.MI;
01552   MachineBasicBlock *MBB = MI->getParent();
01553   if (!isThumb1)
01554     llvm_unreachable("fixupUnconditionalBr is Thumb1 only!");
01555 
01556   // Use BL to implement far jump.
01557   Br.MaxDisp = (1 << 21) * 2;
01558   MI->setDesc(TII->get(ARM::tBfar));
01559   BBInfo[MBB->getNumber()].Size += 2;
01560   adjustBBOffsetsAfter(MBB);
01561   HasFarJump = true;
01562   ++NumUBrFixed;
01563 
01564   DEBUG(dbgs() << "  Changed B to long jump " << *MI);
01565 
01566   return true;
01567 }
01568 
01569 /// fixupConditionalBr - Fix up a conditional branch whose destination is too
01570 /// far away to fit in its displacement field. It is converted to an inverse
01571 /// conditional branch + an unconditional branch to the destination.
01572 bool
01573 ARMConstantIslands::fixupConditionalBr(ImmBranch &Br) {
01574   MachineInstr *MI = Br.MI;
01575   MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
01576 
01577   // Add an unconditional branch to the destination and invert the branch
01578   // condition to jump over it:
01579   // blt L1
01580   // =>
01581   // bge L2
01582   // b   L1
01583   // L2:
01584   ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
01585   CC = ARMCC::getOppositeCondition(CC);
01586   unsigned CCReg = MI->getOperand(2).getReg();
01587 
01588   // If the branch is at the end of its MBB and that has a fall-through block,
01589   // direct the updated conditional branch to the fall-through block. Otherwise,
01590   // split the MBB before the next instruction.
01591   MachineBasicBlock *MBB = MI->getParent();
01592   MachineInstr *BMI = &MBB->back();
01593   bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
01594 
01595   ++NumCBrFixed;
01596   if (BMI != MI) {
01597     if (std::next(MachineBasicBlock::iterator(MI)) == std::prev(MBB->end()) &&
01598         BMI->getOpcode() == Br.UncondBr) {
01599       // Last MI in the BB is an unconditional branch. Can we simply invert the
01600       // condition and swap destinations:
01601       // beq L1
01602       // b   L2
01603       // =>
01604       // bne L2
01605       // b   L1
01606       MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
01607       if (isBBInRange(MI, NewDest, Br.MaxDisp)) {
01608         DEBUG(dbgs() << "  Invert Bcc condition and swap its destination with "
01609                      << *BMI);
01610         BMI->getOperand(0).setMBB(DestBB);
01611         MI->getOperand(0).setMBB(NewDest);
01612         MI->getOperand(1).setImm(CC);
01613         return true;
01614       }
01615     }
01616   }
01617 
01618   if (NeedSplit) {
01619     splitBlockBeforeInstr(MI);
01620     // No need for the branch to the next block. We're adding an unconditional
01621     // branch to the destination.
01622     int delta = TII->GetInstSizeInBytes(&MBB->back());
01623     BBInfo[MBB->getNumber()].Size -= delta;
01624     MBB->back().eraseFromParent();
01625     // BBInfo[SplitBB].Offset is wrong temporarily, fixed below
01626   }
01627   MachineBasicBlock *NextBB = std::next(MachineFunction::iterator(MBB));
01628 
01629   DEBUG(dbgs() << "  Insert B to BB#" << DestBB->getNumber()
01630                << " also invert condition and change dest. to BB#"
01631                << NextBB->getNumber() << "\n");
01632 
01633   // Insert a new conditional branch and a new unconditional branch.
01634   // Also update the ImmBranch as well as adding a new entry for the new branch.
01635   BuildMI(MBB, DebugLoc(), TII->get(MI->getOpcode()))
01636     .addMBB(NextBB).addImm(CC).addReg(CCReg);
01637   Br.MI = &MBB->back();
01638   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
01639   if (isThumb)
01640     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB)
01641             .addImm(ARMCC::AL).addReg(0);
01642   else
01643     BuildMI(MBB, DebugLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
01644   BBInfo[MBB->getNumber()].Size += TII->GetInstSizeInBytes(&MBB->back());
01645   unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
01646   ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
01647 
01648   // Remove the old conditional branch.  It may or may not still be in MBB.
01649   BBInfo[MI->getParent()->getNumber()].Size -= TII->GetInstSizeInBytes(MI);
01650   MI->eraseFromParent();
01651   adjustBBOffsetsAfter(MBB);
01652   return true;
01653 }
01654 
01655 /// undoLRSpillRestore - Remove Thumb push / pop instructions that only spills
01656 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
01657 /// to do this if tBfar is not used.
01658 bool ARMConstantIslands::undoLRSpillRestore() {
01659   bool MadeChange = false;
01660   for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
01661     MachineInstr *MI = PushPopMIs[i];
01662     // First two operands are predicates.
01663     if (MI->getOpcode() == ARM::tPOP_RET &&
01664         MI->getOperand(2).getReg() == ARM::PC &&
01665         MI->getNumExplicitOperands() == 3) {
01666       // Create the new insn and copy the predicate from the old.
01667       BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET))
01668         .addOperand(MI->getOperand(0))
01669         .addOperand(MI->getOperand(1));
01670       MI->eraseFromParent();
01671       MadeChange = true;
01672     }
01673   }
01674   return MadeChange;
01675 }
01676 
01677 // mayOptimizeThumb2Instruction - Returns true if optimizeThumb2Instructions
01678 // below may shrink MI.
01679 bool
01680 ARMConstantIslands::mayOptimizeThumb2Instruction(const MachineInstr *MI) const {
01681   switch(MI->getOpcode()) {
01682     // optimizeThumb2Instructions.
01683     case ARM::t2LEApcrel:
01684     case ARM::t2LDRpci:
01685     // optimizeThumb2Branches.
01686     case ARM::t2B:
01687     case ARM::t2Bcc:
01688     case ARM::tBcc:
01689     // optimizeThumb2JumpTables.
01690     case ARM::t2BR_JT:
01691       return true;
01692   }
01693   return false;
01694 }
01695 
01696 bool ARMConstantIslands::optimizeThumb2Instructions() {
01697   bool MadeChange = false;
01698 
01699   // Shrink ADR and LDR from constantpool.
01700   for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
01701     CPUser &U = CPUsers[i];
01702     unsigned Opcode = U.MI->getOpcode();
01703     unsigned NewOpc = 0;
01704     unsigned Scale = 1;
01705     unsigned Bits = 0;
01706     switch (Opcode) {
01707     default: break;
01708     case ARM::t2LEApcrel:
01709       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
01710         NewOpc = ARM::tLEApcrel;
01711         Bits = 8;
01712         Scale = 4;
01713       }
01714       break;
01715     case ARM::t2LDRpci:
01716       if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
01717         NewOpc = ARM::tLDRpci;
01718         Bits = 8;
01719         Scale = 4;
01720       }
01721       break;
01722     }
01723 
01724     if (!NewOpc)
01725       continue;
01726 
01727     unsigned UserOffset = getUserOffset(U);
01728     unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
01729 
01730     // Be conservative with inline asm.
01731     if (!U.KnownAlignment)
01732       MaxOffs -= 2;
01733 
01734     // FIXME: Check if offset is multiple of scale if scale is not 4.
01735     if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
01736       DEBUG(dbgs() << "Shrink: " << *U.MI);
01737       U.MI->setDesc(TII->get(NewOpc));
01738       MachineBasicBlock *MBB = U.MI->getParent();
01739       BBInfo[MBB->getNumber()].Size -= 2;
01740       adjustBBOffsetsAfter(MBB);
01741       ++NumT2CPShrunk;
01742       MadeChange = true;
01743     }
01744   }
01745 
01746   MadeChange |= optimizeThumb2Branches();
01747   MadeChange |= optimizeThumb2JumpTables();
01748   return MadeChange;
01749 }
01750 
01751 bool ARMConstantIslands::optimizeThumb2Branches() {
01752   bool MadeChange = false;
01753 
01754   for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
01755     ImmBranch &Br = ImmBranches[i];
01756     unsigned Opcode = Br.MI->getOpcode();
01757     unsigned NewOpc = 0;
01758     unsigned Scale = 1;
01759     unsigned Bits = 0;
01760     switch (Opcode) {
01761     default: break;
01762     case ARM::t2B:
01763       NewOpc = ARM::tB;
01764       Bits = 11;
01765       Scale = 2;
01766       break;
01767     case ARM::t2Bcc: {
01768       NewOpc = ARM::tBcc;
01769       Bits = 8;
01770       Scale = 2;
01771       break;
01772     }
01773     }
01774     if (NewOpc) {
01775       unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
01776       MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
01777       if (isBBInRange(Br.MI, DestBB, MaxOffs)) {
01778         DEBUG(dbgs() << "Shrink branch: " << *Br.MI);
01779         Br.MI->setDesc(TII->get(NewOpc));
01780         MachineBasicBlock *MBB = Br.MI->getParent();
01781         BBInfo[MBB->getNumber()].Size -= 2;
01782         adjustBBOffsetsAfter(MBB);
01783         ++NumT2BrShrunk;
01784         MadeChange = true;
01785       }
01786     }
01787 
01788     Opcode = Br.MI->getOpcode();
01789     if (Opcode != ARM::tBcc)
01790       continue;
01791 
01792     // If the conditional branch doesn't kill CPSR, then CPSR can be liveout
01793     // so this transformation is not safe.
01794     if (!Br.MI->killsRegister(ARM::CPSR))
01795       continue;
01796 
01797     NewOpc = 0;
01798     unsigned PredReg = 0;
01799     ARMCC::CondCodes Pred = getInstrPredicate(Br.MI, PredReg);
01800     if (Pred == ARMCC::EQ)
01801       NewOpc = ARM::tCBZ;
01802     else if (Pred == ARMCC::NE)
01803       NewOpc = ARM::tCBNZ;
01804     if (!NewOpc)
01805       continue;
01806     MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
01807     // Check if the distance is within 126. Subtract starting offset by 2
01808     // because the cmp will be eliminated.
01809     unsigned BrOffset = getOffsetOf(Br.MI) + 4 - 2;
01810     unsigned DestOffset = BBInfo[DestBB->getNumber()].Offset;
01811     if (BrOffset < DestOffset && (DestOffset - BrOffset) <= 126) {
01812       MachineBasicBlock::iterator CmpMI = Br.MI;
01813       if (CmpMI != Br.MI->getParent()->begin()) {
01814         --CmpMI;
01815         if (CmpMI->getOpcode() == ARM::tCMPi8) {
01816           unsigned Reg = CmpMI->getOperand(0).getReg();
01817           Pred = getInstrPredicate(CmpMI, PredReg);
01818           if (Pred == ARMCC::AL &&
01819               CmpMI->getOperand(1).getImm() == 0 &&
01820               isARMLowRegister(Reg)) {
01821             MachineBasicBlock *MBB = Br.MI->getParent();
01822             DEBUG(dbgs() << "Fold: " << *CmpMI << " and: " << *Br.MI);
01823             MachineInstr *NewBR =
01824               BuildMI(*MBB, CmpMI, Br.MI->getDebugLoc(), TII->get(NewOpc))
01825               .addReg(Reg).addMBB(DestBB,Br.MI->getOperand(0).getTargetFlags());
01826             CmpMI->eraseFromParent();
01827             Br.MI->eraseFromParent();
01828             Br.MI = NewBR;
01829             BBInfo[MBB->getNumber()].Size -= 2;
01830             adjustBBOffsetsAfter(MBB);
01831             ++NumCBZ;
01832             MadeChange = true;
01833           }
01834         }
01835       }
01836     }
01837   }
01838 
01839   return MadeChange;
01840 }
01841 
01842 /// optimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
01843 /// jumptables when it's possible.
01844 bool ARMConstantIslands::optimizeThumb2JumpTables() {
01845   bool MadeChange = false;
01846 
01847   // FIXME: After the tables are shrunk, can we get rid some of the
01848   // constantpool tables?
01849   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
01850   if (!MJTI) return false;
01851 
01852   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
01853   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
01854     MachineInstr *MI = T2JumpTables[i];
01855     const MCInstrDesc &MCID = MI->getDesc();
01856     unsigned NumOps = MCID.getNumOperands();
01857     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
01858     MachineOperand JTOP = MI->getOperand(JTOpIdx);
01859     unsigned JTI = JTOP.getIndex();
01860     assert(JTI < JT.size());
01861 
01862     bool ByteOk = true;
01863     bool HalfWordOk = true;
01864     unsigned JTOffset = getOffsetOf(MI) + 4;
01865     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
01866     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
01867       MachineBasicBlock *MBB = JTBBs[j];
01868       unsigned DstOffset = BBInfo[MBB->getNumber()].Offset;
01869       // Negative offset is not ok. FIXME: We should change BB layout to make
01870       // sure all the branches are forward.
01871       if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
01872         ByteOk = false;
01873       unsigned TBHLimit = ((1<<16)-1)*2;
01874       if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
01875         HalfWordOk = false;
01876       if (!ByteOk && !HalfWordOk)
01877         break;
01878     }
01879 
01880     if (ByteOk || HalfWordOk) {
01881       MachineBasicBlock *MBB = MI->getParent();
01882       unsigned BaseReg = MI->getOperand(0).getReg();
01883       bool BaseRegKill = MI->getOperand(0).isKill();
01884       if (!BaseRegKill)
01885         continue;
01886       unsigned IdxReg = MI->getOperand(1).getReg();
01887       bool IdxRegKill = MI->getOperand(1).isKill();
01888 
01889       // Scan backwards to find the instruction that defines the base
01890       // register. Due to post-RA scheduling, we can't count on it
01891       // immediately preceding the branch instruction.
01892       MachineBasicBlock::iterator PrevI = MI;
01893       MachineBasicBlock::iterator B = MBB->begin();
01894       while (PrevI != B && !PrevI->definesRegister(BaseReg))
01895         --PrevI;
01896 
01897       // If for some reason we didn't find it, we can't do anything, so
01898       // just skip this one.
01899       if (!PrevI->definesRegister(BaseReg))
01900         continue;
01901 
01902       MachineInstr *AddrMI = PrevI;
01903       bool OptOk = true;
01904       // Examine the instruction that calculates the jumptable entry address.
01905       // Make sure it only defines the base register and kills any uses
01906       // other than the index register.
01907       for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
01908         const MachineOperand &MO = AddrMI->getOperand(k);
01909         if (!MO.isReg() || !MO.getReg())
01910           continue;
01911         if (MO.isDef() && MO.getReg() != BaseReg) {
01912           OptOk = false;
01913           break;
01914         }
01915         if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
01916           OptOk = false;
01917           break;
01918         }
01919       }
01920       if (!OptOk)
01921         continue;
01922 
01923       // Now scan back again to find the tLEApcrel or t2LEApcrelJT instruction
01924       // that gave us the initial base register definition.
01925       for (--PrevI; PrevI != B && !PrevI->definesRegister(BaseReg); --PrevI)
01926         ;
01927 
01928       // The instruction should be a tLEApcrel or t2LEApcrelJT; we want
01929       // to delete it as well.
01930       MachineInstr *LeaMI = PrevI;
01931       if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
01932            LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
01933           LeaMI->getOperand(0).getReg() != BaseReg)
01934         OptOk = false;
01935 
01936       if (!OptOk)
01937         continue;
01938 
01939       DEBUG(dbgs() << "Shrink JT: " << *MI << "     addr: " << *AddrMI
01940                    << "      lea: " << *LeaMI);
01941       unsigned Opc = ByteOk ? ARM::t2TBB_JT : ARM::t2TBH_JT;
01942       MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
01943         .addReg(IdxReg, getKillRegState(IdxRegKill))
01944         .addJumpTableIndex(JTI, JTOP.getTargetFlags())
01945         .addImm(MI->getOperand(JTOpIdx+1).getImm());
01946       DEBUG(dbgs() << "BB#" << MBB->getNumber() << ": " << *NewJTMI);
01947       // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
01948       // is 2-byte aligned. For now, asm printer will fix it up.
01949       unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
01950       unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
01951       OrigSize += TII->GetInstSizeInBytes(LeaMI);
01952       OrigSize += TII->GetInstSizeInBytes(MI);
01953 
01954       AddrMI->eraseFromParent();
01955       LeaMI->eraseFromParent();
01956       MI->eraseFromParent();
01957 
01958       int delta = OrigSize - NewSize;
01959       BBInfo[MBB->getNumber()].Size -= delta;
01960       adjustBBOffsetsAfter(MBB);
01961 
01962       ++NumTBs;
01963       MadeChange = true;
01964     }
01965   }
01966 
01967   return MadeChange;
01968 }
01969 
01970 /// reorderThumb2JumpTables - Adjust the function's block layout to ensure that
01971 /// jump tables always branch forwards, since that's what tbb and tbh need.
01972 bool ARMConstantIslands::reorderThumb2JumpTables() {
01973   bool MadeChange = false;
01974 
01975   MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
01976   if (!MJTI) return false;
01977 
01978   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
01979   for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
01980     MachineInstr *MI = T2JumpTables[i];
01981     const MCInstrDesc &MCID = MI->getDesc();
01982     unsigned NumOps = MCID.getNumOperands();
01983     unsigned JTOpIdx = NumOps - (MI->isPredicable() ? 3 : 2);
01984     MachineOperand JTOP = MI->getOperand(JTOpIdx);
01985     unsigned JTI = JTOP.getIndex();
01986     assert(JTI < JT.size());
01987 
01988     // We prefer if target blocks for the jump table come after the jump
01989     // instruction so we can use TB[BH]. Loop through the target blocks
01990     // and try to adjust them such that that's true.
01991     int JTNumber = MI->getParent()->getNumber();
01992     const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
01993     for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
01994       MachineBasicBlock *MBB = JTBBs[j];
01995       int DTNumber = MBB->getNumber();
01996 
01997       if (DTNumber < JTNumber) {
01998         // The destination precedes the switch. Try to move the block forward
01999         // so we have a positive offset.
02000         MachineBasicBlock *NewBB =
02001           adjustJTTargetBlockForward(MBB, MI->getParent());
02002         if (NewBB)
02003           MJTI->ReplaceMBBInJumpTable(JTI, JTBBs[j], NewBB);
02004         MadeChange = true;
02005       }
02006     }
02007   }
02008 
02009   return MadeChange;
02010 }
02011 
02012 MachineBasicBlock *ARMConstantIslands::
02013 adjustJTTargetBlockForward(MachineBasicBlock *BB, MachineBasicBlock *JTBB) {
02014   // If the destination block is terminated by an unconditional branch,
02015   // try to move it; otherwise, create a new block following the jump
02016   // table that branches back to the actual target. This is a very simple
02017   // heuristic. FIXME: We can definitely improve it.
02018   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
02019   SmallVector<MachineOperand, 4> Cond;
02020   SmallVector<MachineOperand, 4> CondPrior;
02021   MachineFunction::iterator BBi = BB;
02022   MachineFunction::iterator OldPrior = std::prev(BBi);
02023 
02024   // If the block terminator isn't analyzable, don't try to move the block
02025   bool B = TII->AnalyzeBranch(*BB, TBB, FBB, Cond);
02026 
02027   // If the block ends in an unconditional branch, move it. The prior block
02028   // has to have an analyzable terminator for us to move this one. Be paranoid
02029   // and make sure we're not trying to move the entry block of the function.
02030   if (!B && Cond.empty() && BB != MF->begin() &&
02031       !TII->AnalyzeBranch(*OldPrior, TBB, FBB, CondPrior)) {
02032     BB->moveAfter(JTBB);
02033     OldPrior->updateTerminator();
02034     BB->updateTerminator();
02035     // Update numbering to account for the block being moved.
02036     MF->RenumberBlocks();
02037     ++NumJTMoved;
02038     return nullptr;
02039   }
02040 
02041   // Create a new MBB for the code after the jump BB.
02042   MachineBasicBlock *NewBB =
02043     MF->CreateMachineBasicBlock(JTBB->getBasicBlock());
02044   MachineFunction::iterator MBBI = JTBB; ++MBBI;
02045   MF->insert(MBBI, NewBB);
02046 
02047   // Add an unconditional branch from NewBB to BB.
02048   // There doesn't seem to be meaningful DebugInfo available; this doesn't
02049   // correspond directly to anything in the source.
02050   assert (isThumb2 && "Adjusting for TB[BH] but not in Thumb2?");
02051   BuildMI(NewBB, DebugLoc(), TII->get(ARM::t2B)).addMBB(BB)
02052           .addImm(ARMCC::AL).addReg(0);
02053 
02054   // Update internal data structures to account for the newly inserted MBB.
02055   MF->RenumberBlocks(NewBB);
02056 
02057   // Update the CFG.
02058   NewBB->addSuccessor(BB);
02059   JTBB->removeSuccessor(BB);
02060   JTBB->addSuccessor(NewBB);
02061 
02062   ++NumJTInserted;
02063   return NewBB;
02064 }