LLVM API Documentation

X86ISelLowering.h
Go to the documentation of this file.
00001 //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file defines the interfaces that X86 uses to lower LLVM code into a
00011 // selection DAG.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #ifndef LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
00016 #define LLVM_LIB_TARGET_X86_X86ISELLOWERING_H
00017 
00018 #include "llvm/CodeGen/CallingConvLower.h"
00019 #include "llvm/CodeGen/SelectionDAG.h"
00020 #include "llvm/Target/TargetLowering.h"
00021 #include "llvm/Target/TargetOptions.h"
00022 
00023 namespace llvm {
00024   class X86Subtarget;
00025   class X86TargetMachine;
00026 
00027   namespace X86ISD {
00028     // X86 Specific DAG Nodes
00029     enum NodeType {
00030       // Start the numbering where the builtin ops leave off.
00031       FIRST_NUMBER = ISD::BUILTIN_OP_END,
00032 
00033       /// BSF - Bit scan forward.
00034       /// BSR - Bit scan reverse.
00035       BSF,
00036       BSR,
00037 
00038       /// SHLD, SHRD - Double shift instructions. These correspond to
00039       /// X86::SHLDxx and X86::SHRDxx instructions.
00040       SHLD,
00041       SHRD,
00042 
00043       /// FAND - Bitwise logical AND of floating point values. This corresponds
00044       /// to X86::ANDPS or X86::ANDPD.
00045       FAND,
00046 
00047       /// FOR - Bitwise logical OR of floating point values. This corresponds
00048       /// to X86::ORPS or X86::ORPD.
00049       FOR,
00050 
00051       /// FXOR - Bitwise logical XOR of floating point values. This corresponds
00052       /// to X86::XORPS or X86::XORPD.
00053       FXOR,
00054 
00055       /// FANDN - Bitwise logical ANDNOT of floating point values. This
00056       /// corresponds to X86::ANDNPS or X86::ANDNPD.
00057       FANDN,
00058 
00059       /// FSRL - Bitwise logical right shift of floating point values. These
00060       /// corresponds to X86::PSRLDQ.
00061       FSRL,
00062 
00063       /// CALL - These operations represent an abstract X86 call
00064       /// instruction, which includes a bunch of information.  In particular the
00065       /// operands of these node are:
00066       ///
00067       ///     #0 - The incoming token chain
00068       ///     #1 - The callee
00069       ///     #2 - The number of arg bytes the caller pushes on the stack.
00070       ///     #3 - The number of arg bytes the callee pops off the stack.
00071       ///     #4 - The value to pass in AL/AX/EAX (optional)
00072       ///     #5 - The value to pass in DL/DX/EDX (optional)
00073       ///
00074       /// The result values of these nodes are:
00075       ///
00076       ///     #0 - The outgoing token chain
00077       ///     #1 - The first register result value (optional)
00078       ///     #2 - The second register result value (optional)
00079       ///
00080       CALL,
00081 
00082       /// RDTSC_DAG - This operation implements the lowering for
00083       /// readcyclecounter
00084       RDTSC_DAG,
00085 
00086       /// X86 Read Time-Stamp Counter and Processor ID.
00087       RDTSCP_DAG,
00088 
00089       /// X86 Read Performance Monitoring Counters.
00090       RDPMC_DAG,
00091 
00092       /// X86 compare and logical compare instructions.
00093       CMP, COMI, UCOMI,
00094 
00095       /// X86 bit-test instructions.
00096       BT,
00097 
00098       /// X86 SetCC. Operand 0 is condition code, and operand 1 is the EFLAGS
00099       /// operand, usually produced by a CMP instruction.
00100       SETCC,
00101 
00102       /// X86 Select
00103       SELECT,
00104 
00105       // Same as SETCC except it's materialized with a sbb and the value is all
00106       // one's or all zero's.
00107       SETCC_CARRY,  // R = carry_bit ? ~0 : 0
00108 
00109       /// X86 FP SETCC, implemented with CMP{cc}SS/CMP{cc}SD.
00110       /// Operands are two FP values to compare; result is a mask of
00111       /// 0s or 1s.  Generally DTRT for C/C++ with NaNs.
00112       FSETCC,
00113 
00114       /// X86 MOVMSK{pd|ps}, extracts sign bits of two or four FP values,
00115       /// result in an integer GPR.  Needs masking for scalar result.
00116       FGETSIGNx86,
00117 
00118       /// X86 conditional moves. Operand 0 and operand 1 are the two values
00119       /// to select from. Operand 2 is the condition code, and operand 3 is the
00120       /// flag operand produced by a CMP or TEST instruction. It also writes a
00121       /// flag result.
00122       CMOV,
00123 
00124       /// X86 conditional branches. Operand 0 is the chain operand, operand 1
00125       /// is the block to branch if condition is true, operand 2 is the
00126       /// condition code, and operand 3 is the flag operand produced by a CMP
00127       /// or TEST instruction.
00128       BRCOND,
00129 
00130       /// Return with a flag operand. Operand 0 is the chain operand, operand
00131       /// 1 is the number of bytes of stack to pop.
00132       RET_FLAG,
00133 
00134       /// REP_STOS - Repeat fill, corresponds to X86::REP_STOSx.
00135       REP_STOS,
00136 
00137       /// REP_MOVS - Repeat move, corresponds to X86::REP_MOVSx.
00138       REP_MOVS,
00139 
00140       /// GlobalBaseReg - On Darwin, this node represents the result of the popl
00141       /// at function entry, used for PIC code.
00142       GlobalBaseReg,
00143 
00144       /// Wrapper - A wrapper node for TargetConstantPool,
00145       /// TargetExternalSymbol, and TargetGlobalAddress.
00146       Wrapper,
00147 
00148       /// WrapperRIP - Special wrapper used under X86-64 PIC mode for RIP
00149       /// relative displacements.
00150       WrapperRIP,
00151 
00152       /// MOVDQ2Q - Copies a 64-bit value from the low word of an XMM vector
00153       /// to an MMX vector.  If you think this is too close to the previous
00154       /// mnemonic, so do I; blame Intel.
00155       MOVDQ2Q,
00156 
00157       /// MMX_MOVD2W - Copies a 32-bit value from the low word of a MMX
00158       /// vector to a GPR.
00159       MMX_MOVD2W,
00160 
00161       /// PEXTRB - Extract an 8-bit value from a vector and zero extend it to
00162       /// i32, corresponds to X86::PEXTRB.
00163       PEXTRB,
00164 
00165       /// PEXTRW - Extract a 16-bit value from a vector and zero extend it to
00166       /// i32, corresponds to X86::PEXTRW.
00167       PEXTRW,
00168 
00169       /// INSERTPS - Insert any element of a 4 x float vector into any element
00170       /// of a destination 4 x floatvector.
00171       INSERTPS,
00172 
00173       /// PINSRB - Insert the lower 8-bits of a 32-bit value to a vector,
00174       /// corresponds to X86::PINSRB.
00175       PINSRB,
00176 
00177       /// PINSRW - Insert the lower 16-bits of a 32-bit value to a vector,
00178       /// corresponds to X86::PINSRW.
00179       PINSRW, MMX_PINSRW,
00180 
00181       /// PSHUFB - Shuffle 16 8-bit values within a vector.
00182       PSHUFB,
00183 
00184       /// ANDNP - Bitwise Logical AND NOT of Packed FP values.
00185       ANDNP,
00186 
00187       /// PSIGN - Copy integer sign.
00188       PSIGN,
00189 
00190       /// BLENDV - Blend where the selector is a register.
00191       BLENDV,
00192 
00193       /// BLENDI - Blend where the selector is an immediate.
00194       BLENDI,
00195 
00196       /// ADDSUB - Combined add and sub on an FP vector.
00197       ADDSUB,
00198 
00199       // SUBUS - Integer sub with unsigned saturation.
00200       SUBUS,
00201 
00202       /// HADD - Integer horizontal add.
00203       HADD,
00204 
00205       /// HSUB - Integer horizontal sub.
00206       HSUB,
00207 
00208       /// FHADD - Floating point horizontal add.
00209       FHADD,
00210 
00211       /// FHSUB - Floating point horizontal sub.
00212       FHSUB,
00213 
00214       /// UMAX, UMIN - Unsigned integer max and min.
00215       UMAX, UMIN,
00216 
00217       /// SMAX, SMIN - Signed integer max and min.
00218       SMAX, SMIN,
00219 
00220       /// FMAX, FMIN - Floating point max and min.
00221       ///
00222       FMAX, FMIN,
00223 
00224       /// FMAXC, FMINC - Commutative FMIN and FMAX.
00225       FMAXC, FMINC,
00226 
00227       /// FRSQRT, FRCP - Floating point reciprocal-sqrt and reciprocal
00228       /// approximation.  Note that these typically require refinement
00229       /// in order to obtain suitable precision.
00230       FRSQRT, FRCP,
00231 
00232       // TLSADDR - Thread Local Storage.
00233       TLSADDR,
00234 
00235       // TLSBASEADDR - Thread Local Storage. A call to get the start address
00236       // of the TLS block for the current module.
00237       TLSBASEADDR,
00238 
00239       // TLSCALL - Thread Local Storage.  When calling to an OS provided
00240       // thunk at the address from an earlier relocation.
00241       TLSCALL,
00242 
00243       // EH_RETURN - Exception Handling helpers.
00244       EH_RETURN,
00245 
00246       // EH_SJLJ_SETJMP - SjLj exception handling setjmp.
00247       EH_SJLJ_SETJMP,
00248 
00249       // EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
00250       EH_SJLJ_LONGJMP,
00251 
00252       /// TC_RETURN - Tail call return. See X86TargetLowering::LowerCall for
00253       /// the list of operands.
00254       TC_RETURN,
00255 
00256       // VZEXT_MOVL - Vector move to low scalar and zero higher vector elements.
00257       VZEXT_MOVL,
00258 
00259       // VZEXT - Vector integer zero-extend.
00260       VZEXT,
00261 
00262       // VSEXT - Vector integer signed-extend.
00263       VSEXT,
00264 
00265       // VTRUNC - Vector integer truncate.
00266       VTRUNC,
00267 
00268       // VTRUNC - Vector integer truncate with mask.
00269       VTRUNCM,
00270 
00271       // VFPEXT - Vector FP extend.
00272       VFPEXT,
00273 
00274       // VFPROUND - Vector FP round.
00275       VFPROUND,
00276 
00277       // VSHL, VSRL - 128-bit vector logical left / right shift
00278       VSHLDQ, VSRLDQ,
00279 
00280       // VSHL, VSRL, VSRA - Vector shift elements
00281       VSHL, VSRL, VSRA,
00282 
00283       // VSHLI, VSRLI, VSRAI - Vector shift elements by immediate
00284       VSHLI, VSRLI, VSRAI,
00285 
00286       // CMPP - Vector packed double/float comparison.
00287       CMPP,
00288 
00289       // PCMP* - Vector integer comparisons.
00290       PCMPEQ, PCMPGT,
00291       // PCMP*M - Vector integer comparisons, the result is in a mask vector.
00292       PCMPEQM, PCMPGTM,
00293 
00294       /// CMPM, CMPMU - Vector comparison generating mask bits for fp and
00295       /// integer signed and unsigned data types.
00296       CMPM,
00297       CMPMU,
00298 
00299       // ADD, SUB, SMUL, etc. - Arithmetic operations with FLAGS results.
00300       ADD, SUB, ADC, SBB, SMUL,
00301       INC, DEC, OR, XOR, AND,
00302 
00303       BEXTR,  // BEXTR - Bit field extract
00304 
00305       UMUL, // LOW, HI, FLAGS = umul LHS, RHS
00306 
00307       // MUL_IMM - X86 specific multiply by immediate.
00308       MUL_IMM,
00309 
00310       // PTEST - Vector bitwise comparisons.
00311       PTEST,
00312 
00313       // TESTP - Vector packed fp sign bitwise comparisons.
00314       TESTP,
00315 
00316       // TESTM, TESTNM - Vector "test" in AVX-512, the result is in a mask vector.
00317       TESTM,
00318       TESTNM,
00319 
00320       // OR/AND test for masks
00321       KORTEST,
00322 
00323       // Several flavors of instructions with vector shuffle behaviors.
00324       PACKSS,
00325       PACKUS,
00326       // Intra-lane alignr
00327       PALIGNR,
00328       // AVX512 inter-lane alignr
00329       VALIGN,
00330       PSHUFD,
00331       PSHUFHW,
00332       PSHUFLW,
00333       SHUFP,
00334       MOVDDUP,
00335       MOVSHDUP,
00336       MOVSLDUP,
00337       MOVLHPS,
00338       MOVLHPD,
00339       MOVHLPS,
00340       MOVLPS,
00341       MOVLPD,
00342       MOVSD,
00343       MOVSS,
00344       UNPCKL,
00345       UNPCKH,
00346       VPERMILP,
00347       VPERMV,
00348       VPERMV3,
00349       VPERMIV3,
00350       VPERMI,
00351       VPERM2X128,
00352       VBROADCAST,
00353       // masked broadcast
00354       VBROADCASTM,
00355       // Insert/Extract vector element
00356       VINSERT,
00357       VEXTRACT,
00358 
00359       // PMULUDQ - Vector multiply packed unsigned doubleword integers
00360       PMULUDQ,
00361       // PMULUDQ - Vector multiply packed signed doubleword integers
00362       PMULDQ,
00363 
00364       // FMA nodes
00365       FMADD,
00366       FNMADD,
00367       FMSUB,
00368       FNMSUB,
00369       FMADDSUB,
00370       FMSUBADD,
00371 
00372       // VASTART_SAVE_XMM_REGS - Save xmm argument registers to the stack,
00373       // according to %al. An operator is needed so that this can be expanded
00374       // with control flow.
00375       VASTART_SAVE_XMM_REGS,
00376 
00377       // WIN_ALLOCA - Windows's _chkstk call to do stack probing.
00378       WIN_ALLOCA,
00379 
00380       // SEG_ALLOCA - For allocating variable amounts of stack space when using
00381       // segmented stacks. Check if the current stacklet has enough space, and
00382       // falls back to heap allocation if not.
00383       SEG_ALLOCA,
00384 
00385       // WIN_FTOL - Windows's _ftol2 runtime routine to do fptoui.
00386       WIN_FTOL,
00387 
00388       // Memory barrier
00389       MEMBARRIER,
00390       MFENCE,
00391       SFENCE,
00392       LFENCE,
00393 
00394       // FNSTSW16r - Store FP status word into i16 register.
00395       FNSTSW16r,
00396 
00397       // SAHF - Store contents of %ah into %eflags.
00398       SAHF,
00399 
00400       // RDRAND - Get a random integer and indicate whether it is valid in CF.
00401       RDRAND,
00402 
00403       // RDSEED - Get a NIST SP800-90B & C compliant random integer and
00404       // indicate whether it is valid in CF.
00405       RDSEED,
00406 
00407       // PCMP*STRI
00408       PCMPISTRI,
00409       PCMPESTRI,
00410 
00411       // XTEST - Test if in transactional execution.
00412       XTEST,
00413 
00414       // LCMPXCHG_DAG, LCMPXCHG8_DAG, LCMPXCHG16_DAG - Compare and swap.
00415       LCMPXCHG_DAG = ISD::FIRST_TARGET_MEMORY_OPCODE,
00416       LCMPXCHG8_DAG,
00417       LCMPXCHG16_DAG,
00418 
00419       // VZEXT_LOAD - Load, scalar_to_vector, and zero extend.
00420       VZEXT_LOAD,
00421 
00422       // FNSTCW16m - Store FP control world into i16 memory.
00423       FNSTCW16m,
00424 
00425       /// FP_TO_INT*_IN_MEM - This instruction implements FP_TO_SINT with the
00426       /// integer destination in memory and a FP reg source.  This corresponds
00427       /// to the X86::FIST*m instructions and the rounding mode change stuff. It
00428       /// has two inputs (token chain and address) and two outputs (int value
00429       /// and token chain).
00430       FP_TO_INT16_IN_MEM,
00431       FP_TO_INT32_IN_MEM,
00432       FP_TO_INT64_IN_MEM,
00433 
00434       /// FILD, FILD_FLAG - This instruction implements SINT_TO_FP with the
00435       /// integer source in memory and FP reg result.  This corresponds to the
00436       /// X86::FILD*m instructions. It has three inputs (token chain, address,
00437       /// and source type) and two outputs (FP value and token chain). FILD_FLAG
00438       /// also produces a flag).
00439       FILD,
00440       FILD_FLAG,
00441 
00442       /// FLD - This instruction implements an extending load to FP stack slots.
00443       /// This corresponds to the X86::FLD32m / X86::FLD64m. It takes a chain
00444       /// operand, ptr to load from, and a ValueType node indicating the type
00445       /// to load to.
00446       FLD,
00447 
00448       /// FST - This instruction implements a truncating store to FP stack
00449       /// slots. This corresponds to the X86::FST32m / X86::FST64m. It takes a
00450       /// chain operand, value to store, address, and a ValueType to store it
00451       /// as.
00452       FST,
00453 
00454       /// VAARG_64 - This instruction grabs the address of the next argument
00455       /// from a va_list. (reads and modifies the va_list in memory)
00456       VAARG_64
00457 
00458       // WARNING: Do not add anything in the end unless you want the node to
00459       // have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
00460       // thought as target memory ops!
00461     };
00462   }
00463 
00464   /// Define some predicates that are used for node matching.
00465   namespace X86 {
00466     /// isVEXTRACT128Index - Return true if the specified
00467     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
00468     /// suitable for input to VEXTRACTF128, VEXTRACTI128 instructions.
00469     bool isVEXTRACT128Index(SDNode *N);
00470 
00471     /// isVINSERT128Index - Return true if the specified
00472     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
00473     /// suitable for input to VINSERTF128, VINSERTI128 instructions.
00474     bool isVINSERT128Index(SDNode *N);
00475 
00476     /// isVEXTRACT256Index - Return true if the specified
00477     /// EXTRACT_SUBVECTOR operand specifies a vector extract that is
00478     /// suitable for input to VEXTRACTF64X4, VEXTRACTI64X4 instructions.
00479     bool isVEXTRACT256Index(SDNode *N);
00480 
00481     /// isVINSERT256Index - Return true if the specified
00482     /// INSERT_SUBVECTOR operand specifies a subvector insert that is
00483     /// suitable for input to VINSERTF64X4, VINSERTI64X4 instructions.
00484     bool isVINSERT256Index(SDNode *N);
00485 
00486     /// getExtractVEXTRACT128Immediate - Return the appropriate
00487     /// immediate to extract the specified EXTRACT_SUBVECTOR index
00488     /// with VEXTRACTF128, VEXTRACTI128 instructions.
00489     unsigned getExtractVEXTRACT128Immediate(SDNode *N);
00490 
00491     /// getInsertVINSERT128Immediate - Return the appropriate
00492     /// immediate to insert at the specified INSERT_SUBVECTOR index
00493     /// with VINSERTF128, VINSERT128 instructions.
00494     unsigned getInsertVINSERT128Immediate(SDNode *N);
00495 
00496     /// getExtractVEXTRACT256Immediate - Return the appropriate
00497     /// immediate to extract the specified EXTRACT_SUBVECTOR index
00498     /// with VEXTRACTF64X4, VEXTRACTI64x4 instructions.
00499     unsigned getExtractVEXTRACT256Immediate(SDNode *N);
00500 
00501     /// getInsertVINSERT256Immediate - Return the appropriate
00502     /// immediate to insert at the specified INSERT_SUBVECTOR index
00503     /// with VINSERTF64x4, VINSERTI64x4 instructions.
00504     unsigned getInsertVINSERT256Immediate(SDNode *N);
00505 
00506     /// isZeroNode - Returns true if Elt is a constant zero or a floating point
00507     /// constant +0.0.
00508     bool isZeroNode(SDValue Elt);
00509 
00510     /// isOffsetSuitableForCodeModel - Returns true of the given offset can be
00511     /// fit into displacement field of the instruction.
00512     bool isOffsetSuitableForCodeModel(int64_t Offset, CodeModel::Model M,
00513                                       bool hasSymbolicDisplacement = true);
00514 
00515 
00516     /// isCalleePop - Determines whether the callee is required to pop its
00517     /// own arguments. Callee pop is necessary to support tail calls.
00518     bool isCalleePop(CallingConv::ID CallingConv,
00519                      bool is64Bit, bool IsVarArg, bool TailCallOpt);
00520 
00521     /// AVX512 static rounding constants.  These need to match the values in
00522     /// avx512fintrin.h.
00523     enum STATIC_ROUNDING {
00524       TO_NEAREST_INT = 0,
00525       TO_NEG_INF = 1,
00526       TO_POS_INF = 2,
00527       TO_ZERO = 3,
00528       CUR_DIRECTION = 4
00529     };
00530   }
00531 
00532   //===--------------------------------------------------------------------===//
00533   //  X86TargetLowering - X86 Implementation of the TargetLowering interface
00534   class X86TargetLowering final : public TargetLowering {
00535   public:
00536     explicit X86TargetLowering(X86TargetMachine &TM);
00537 
00538     unsigned getJumpTableEncoding() const override;
00539 
00540     MVT getScalarShiftAmountTy(EVT LHSTy) const override { return MVT::i8; }
00541 
00542     const MCExpr *
00543     LowerCustomJumpTableEntry(const MachineJumpTableInfo *MJTI,
00544                               const MachineBasicBlock *MBB, unsigned uid,
00545                               MCContext &Ctx) const override;
00546 
00547     /// getPICJumpTableRelocaBase - Returns relocation base for the given PIC
00548     /// jumptable.
00549     SDValue getPICJumpTableRelocBase(SDValue Table,
00550                                      SelectionDAG &DAG) const override;
00551     const MCExpr *
00552     getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
00553                                  unsigned JTI, MCContext &Ctx) const override;
00554 
00555     /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
00556     /// function arguments in the caller parameter area. For X86, aggregates
00557     /// that contains are placed at 16-byte boundaries while the rest are at
00558     /// 4-byte boundaries.
00559     unsigned getByValTypeAlignment(Type *Ty) const override;
00560 
00561     /// getOptimalMemOpType - Returns the target specific optimal type for load
00562     /// and store operations as a result of memset, memcpy, and memmove
00563     /// lowering. If DstAlign is zero that means it's safe to destination
00564     /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
00565     /// means there isn't a need to check it against alignment requirement,
00566     /// probably because the source does not need to be loaded. If 'IsMemset' is
00567     /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
00568     /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
00569     /// source is constant so it does not need to be loaded.
00570     /// It returns EVT::Other if the type should be determined using generic
00571     /// target-independent logic.
00572     EVT getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
00573                             bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
00574                             MachineFunction &MF) const override;
00575 
00576     /// isSafeMemOpType - Returns true if it's safe to use load / store of the
00577     /// specified type to expand memcpy / memset inline. This is mostly true
00578     /// for all types except for some special cases. For example, on X86
00579     /// targets without SSE2 f64 load / store are done with fldl / fstpl which
00580     /// also does type conversion. Note the specified type doesn't have to be
00581     /// legal as the hook is used before type legalization.
00582     bool isSafeMemOpType(MVT VT) const override;
00583 
00584     /// allowsMisalignedMemoryAccesses - Returns true if the target allows
00585     /// unaligned memory accesses. of the specified type. Returns whether it
00586     /// is "fast" by reference in the second argument.
00587     bool allowsMisalignedMemoryAccesses(EVT VT, unsigned AS, unsigned Align,
00588                                        bool *Fast) const override;
00589 
00590     /// LowerOperation - Provide custom lowering hooks for some operations.
00591     ///
00592     SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const override;
00593 
00594     /// ReplaceNodeResults - Replace the results of node with an illegal result
00595     /// type with new values built out of custom code.
00596     ///
00597     void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
00598                             SelectionDAG &DAG) const override;
00599 
00600 
00601     SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const override;
00602 
00603     /// isTypeDesirableForOp - Return true if the target has native support for
00604     /// the specified value type and it is 'desirable' to use the type for the
00605     /// given node type. e.g. On x86 i16 is legal, but undesirable since i16
00606     /// instruction encodings are longer and some i16 instructions are slow.
00607     bool isTypeDesirableForOp(unsigned Opc, EVT VT) const override;
00608 
00609     /// isTypeDesirable - Return true if the target has native support for the
00610     /// specified value type and it is 'desirable' to use the type. e.g. On x86
00611     /// i16 is legal, but undesirable since i16 instruction encodings are longer
00612     /// and some i16 instructions are slow.
00613     bool IsDesirableToPromoteOp(SDValue Op, EVT &PVT) const override;
00614 
00615     MachineBasicBlock *
00616       EmitInstrWithCustomInserter(MachineInstr *MI,
00617                                   MachineBasicBlock *MBB) const override;
00618 
00619 
00620     /// getTargetNodeName - This method returns the name of a target specific
00621     /// DAG node.
00622     const char *getTargetNodeName(unsigned Opcode) const override;
00623 
00624     /// getSetCCResultType - Return the value type to use for ISD::SETCC.
00625     EVT getSetCCResultType(LLVMContext &Context, EVT VT) const override;
00626 
00627     /// computeKnownBitsForTargetNode - Determine which of the bits specified
00628     /// in Mask are known to be either zero or one and return them in the
00629     /// KnownZero/KnownOne bitsets.
00630     void computeKnownBitsForTargetNode(const SDValue Op,
00631                                        APInt &KnownZero,
00632                                        APInt &KnownOne,
00633                                        const SelectionDAG &DAG,
00634                                        unsigned Depth = 0) const override;
00635 
00636     // ComputeNumSignBitsForTargetNode - Determine the number of bits in the
00637     // operation that are sign bits.
00638     unsigned ComputeNumSignBitsForTargetNode(SDValue Op,
00639                                              const SelectionDAG &DAG,
00640                                              unsigned Depth) const override;
00641 
00642     bool isGAPlusOffset(SDNode *N, const GlobalValue* &GA,
00643                         int64_t &Offset) const override;
00644 
00645     SDValue getReturnAddressFrameIndex(SelectionDAG &DAG) const;
00646 
00647     bool ExpandInlineAsm(CallInst *CI) const override;
00648 
00649     ConstraintType
00650       getConstraintType(const std::string &Constraint) const override;
00651 
00652     /// Examine constraint string and operand type and determine a weight value.
00653     /// The operand object must already have been set up with the operand type.
00654     ConstraintWeight
00655       getSingleConstraintMatchWeight(AsmOperandInfo &info,
00656                                      const char *constraint) const override;
00657 
00658     const char *LowerXConstraint(EVT ConstraintVT) const override;
00659 
00660     /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
00661     /// vector.  If it is invalid, don't add anything to Ops. If hasMemory is
00662     /// true it means one of the asm constraint of the inline asm instruction
00663     /// being processed is 'm'.
00664     void LowerAsmOperandForConstraint(SDValue Op,
00665                                       std::string &Constraint,
00666                                       std::vector<SDValue> &Ops,
00667                                       SelectionDAG &DAG) const override;
00668 
00669     /// getRegForInlineAsmConstraint - Given a physical register constraint
00670     /// (e.g. {edx}), return the register number and the register class for the
00671     /// register.  This should only be used for C_Register constraints.  On
00672     /// error, this returns a register number of 0.
00673     std::pair<unsigned, const TargetRegisterClass*>
00674       getRegForInlineAsmConstraint(const std::string &Constraint,
00675                                    MVT VT) const override;
00676 
00677     /// isLegalAddressingMode - Return true if the addressing mode represented
00678     /// by AM is legal for this target, for a load/store of the specified type.
00679     bool isLegalAddressingMode(const AddrMode &AM, Type *Ty) const override;
00680 
00681     /// isLegalICmpImmediate - Return true if the specified immediate is legal
00682     /// icmp immediate, that is the target has icmp instructions which can
00683     /// compare a register against the immediate without having to materialize
00684     /// the immediate into a register.
00685     bool isLegalICmpImmediate(int64_t Imm) const override;
00686 
00687     /// isLegalAddImmediate - Return true if the specified immediate is legal
00688     /// add immediate, that is the target has add instructions which can
00689     /// add a register and the immediate without having to materialize
00690     /// the immediate into a register.
00691     bool isLegalAddImmediate(int64_t Imm) const override;
00692 
00693     /// \brief Return the cost of the scaling factor used in the addressing
00694     /// mode represented by AM for this target, for a load/store
00695     /// of the specified type.
00696     /// If the AM is supported, the return value must be >= 0.
00697     /// If the AM is not supported, it returns a negative value.
00698     int getScalingFactorCost(const AddrMode &AM, Type *Ty) const override;
00699 
00700     bool isVectorShiftByScalarCheap(Type *Ty) const override;
00701 
00702     /// isTruncateFree - Return true if it's free to truncate a value of
00703     /// type Ty1 to type Ty2. e.g. On x86 it's free to truncate a i32 value in
00704     /// register EAX to i16 by referencing its sub-register AX.
00705     bool isTruncateFree(Type *Ty1, Type *Ty2) const override;
00706     bool isTruncateFree(EVT VT1, EVT VT2) const override;
00707 
00708     bool allowTruncateForTailCall(Type *Ty1, Type *Ty2) const override;
00709 
00710     /// isZExtFree - Return true if any actual instruction that defines a
00711     /// value of type Ty1 implicit zero-extends the value to Ty2 in the result
00712     /// register. This does not necessarily include registers defined in
00713     /// unknown ways, such as incoming arguments, or copies from unknown
00714     /// virtual registers. Also, if isTruncateFree(Ty2, Ty1) is true, this
00715     /// does not necessarily apply to truncate instructions. e.g. on x86-64,
00716     /// all instructions that define 32-bit values implicit zero-extend the
00717     /// result out to 64 bits.
00718     bool isZExtFree(Type *Ty1, Type *Ty2) const override;
00719     bool isZExtFree(EVT VT1, EVT VT2) const override;
00720     bool isZExtFree(SDValue Val, EVT VT2) const override;
00721 
00722     /// isFMAFasterThanFMulAndFAdd - Return true if an FMA operation is faster
00723     /// than a pair of fmul and fadd instructions. fmuladd intrinsics will be
00724     /// expanded to FMAs when this method returns true, otherwise fmuladd is
00725     /// expanded to fmul + fadd.
00726     bool isFMAFasterThanFMulAndFAdd(EVT VT) const override;
00727 
00728     /// isNarrowingProfitable - Return true if it's profitable to narrow
00729     /// operations of type VT1 to VT2. e.g. on x86, it's profitable to narrow
00730     /// from i32 to i8 but not from i32 to i16.
00731     bool isNarrowingProfitable(EVT VT1, EVT VT2) const override;
00732 
00733     /// isFPImmLegal - Returns true if the target can instruction select the
00734     /// specified FP immediate natively. If false, the legalizer will
00735     /// materialize the FP immediate as a load from a constant pool.
00736     bool isFPImmLegal(const APFloat &Imm, EVT VT) const override;
00737 
00738     /// isShuffleMaskLegal - Targets can use this to indicate that they only
00739     /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
00740     /// By default, if a target supports the VECTOR_SHUFFLE node, all mask
00741     /// values are assumed to be legal.
00742     bool isShuffleMaskLegal(const SmallVectorImpl<int> &Mask,
00743                             EVT VT) const override;
00744 
00745     /// isVectorClearMaskLegal - Similar to isShuffleMaskLegal. This is
00746     /// used by Targets can use this to indicate if there is a suitable
00747     /// VECTOR_SHUFFLE that can be used to replace a VAND with a constant
00748     /// pool entry.
00749     bool isVectorClearMaskLegal(const SmallVectorImpl<int> &Mask,
00750                                 EVT VT) const override;
00751 
00752     /// ShouldShrinkFPConstant - If true, then instruction selection should
00753     /// seek to shrink the FP constant of the specified type to a smaller type
00754     /// in order to save space and / or reduce runtime.
00755     bool ShouldShrinkFPConstant(EVT VT) const override {
00756       // Don't shrink FP constpool if SSE2 is available since cvtss2sd is more
00757       // expensive than a straight movsd. On the other hand, it's important to
00758       // shrink long double fp constant since fldt is very slow.
00759       return !X86ScalarSSEf64 || VT == MVT::f80;
00760     }
00761 
00762     const X86Subtarget* getSubtarget() const {
00763       return Subtarget;
00764     }
00765 
00766     /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is
00767     /// computed in an SSE register, not on the X87 floating point stack.
00768     bool isScalarFPTypeInSSEReg(EVT VT) const {
00769       return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2
00770       (VT == MVT::f32 && X86ScalarSSEf32);   // f32 is when SSE1
00771     }
00772 
00773     /// isTargetFTOL - Return true if the target uses the MSVC _ftol2 routine
00774     /// for fptoui.
00775     bool isTargetFTOL() const;
00776 
00777     /// isIntegerTypeFTOL - Return true if the MSVC _ftol2 routine should be
00778     /// used for fptoui to the given type.
00779     bool isIntegerTypeFTOL(EVT VT) const {
00780       return isTargetFTOL() && VT == MVT::i64;
00781     }
00782 
00783     /// \brief Returns true if it is beneficial to convert a load of a constant
00784     /// to just the constant itself.
00785     bool shouldConvertConstantLoadToIntImm(const APInt &Imm,
00786                                            Type *Ty) const override;
00787 
00788     /// Intel processors have a unified instruction and data cache
00789     const char * getClearCacheBuiltinName() const override {
00790       return nullptr; // nothing to do, move along.
00791     }
00792 
00793     unsigned getRegisterByName(const char* RegName, EVT VT) const override;
00794 
00795     /// createFastISel - This method returns a target specific FastISel object,
00796     /// or null if the target does not support "fast" ISel.
00797     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
00798                              const TargetLibraryInfo *libInfo) const override;
00799 
00800     /// getStackCookieLocation - Return true if the target stores stack
00801     /// protector cookies at a fixed offset in some non-standard address
00802     /// space, and populates the address space and offset as
00803     /// appropriate.
00804     bool getStackCookieLocation(unsigned &AddressSpace,
00805                                 unsigned &Offset) const override;
00806 
00807     SDValue BuildFILD(SDValue Op, EVT SrcVT, SDValue Chain, SDValue StackSlot,
00808                       SelectionDAG &DAG) const;
00809 
00810     bool isNoopAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const override;
00811 
00812     /// \brief Reset the operation actions based on target options.
00813     void resetOperationActions() override;
00814 
00815     bool useLoadStackGuardNode() const override;
00816     /// \brief Customize the preferred legalization strategy for certain types.
00817     LegalizeTypeAction getPreferredVectorAction(EVT VT) const override;
00818 
00819   protected:
00820     std::pair<const TargetRegisterClass*, uint8_t>
00821     findRepresentativeClass(MVT VT) const override;
00822 
00823   private:
00824     /// Subtarget - Keep a pointer to the X86Subtarget around so that we can
00825     /// make the right decision when generating code for different targets.
00826     const X86Subtarget *Subtarget;
00827     const DataLayout *TD;
00828 
00829     /// Used to store the TargetOptions so that we don't waste time resetting
00830     /// the operation actions unless we have to.
00831     TargetOptions TO;
00832 
00833     /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87
00834     /// floating point ops.
00835     /// When SSE is available, use it for f32 operations.
00836     /// When SSE2 is available, use it for f64 operations.
00837     bool X86ScalarSSEf32;
00838     bool X86ScalarSSEf64;
00839 
00840     /// LegalFPImmediates - A list of legal fp immediates.
00841     std::vector<APFloat> LegalFPImmediates;
00842 
00843     /// addLegalFPImmediate - Indicate that this x86 target can instruction
00844     /// select the specified FP immediate natively.
00845     void addLegalFPImmediate(const APFloat& Imm) {
00846       LegalFPImmediates.push_back(Imm);
00847     }
00848 
00849     SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
00850                             CallingConv::ID CallConv, bool isVarArg,
00851                             const SmallVectorImpl<ISD::InputArg> &Ins,
00852                             SDLoc dl, SelectionDAG &DAG,
00853                             SmallVectorImpl<SDValue> &InVals) const;
00854     SDValue LowerMemArgument(SDValue Chain,
00855                              CallingConv::ID CallConv,
00856                              const SmallVectorImpl<ISD::InputArg> &ArgInfo,
00857                              SDLoc dl, SelectionDAG &DAG,
00858                              const CCValAssign &VA,  MachineFrameInfo *MFI,
00859                               unsigned i) const;
00860     SDValue LowerMemOpCallTo(SDValue Chain, SDValue StackPtr, SDValue Arg,
00861                              SDLoc dl, SelectionDAG &DAG,
00862                              const CCValAssign &VA,
00863                              ISD::ArgFlagsTy Flags) const;
00864 
00865     // Call lowering helpers.
00866 
00867     /// IsEligibleForTailCallOptimization - Check whether the call is eligible
00868     /// for tail call optimization. Targets which want to do tail call
00869     /// optimization should implement this function.
00870     bool IsEligibleForTailCallOptimization(SDValue Callee,
00871                                            CallingConv::ID CalleeCC,
00872                                            bool isVarArg,
00873                                            bool isCalleeStructRet,
00874                                            bool isCallerStructRet,
00875                                            Type *RetTy,
00876                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
00877                                     const SmallVectorImpl<SDValue> &OutVals,
00878                                     const SmallVectorImpl<ISD::InputArg> &Ins,
00879                                            SelectionDAG& DAG) const;
00880     bool IsCalleePop(bool isVarArg, CallingConv::ID CallConv) const;
00881     SDValue EmitTailCallLoadRetAddr(SelectionDAG &DAG, SDValue &OutRetAddr,
00882                                 SDValue Chain, bool IsTailCall, bool Is64Bit,
00883                                 int FPDiff, SDLoc dl) const;
00884 
00885     unsigned GetAlignedArgumentStackSize(unsigned StackSize,
00886                                          SelectionDAG &DAG) const;
00887 
00888     std::pair<SDValue,SDValue> FP_TO_INTHelper(SDValue Op, SelectionDAG &DAG,
00889                                                bool isSigned,
00890                                                bool isReplace) const;
00891 
00892     SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
00893     SDValue LowerBUILD_VECTORvXi1(SDValue Op, SelectionDAG &DAG) const;
00894     SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
00895     SDValue LowerVSELECT(SDValue Op, SelectionDAG &DAG) const;
00896     SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
00897     SDValue ExtractBitFromMaskVector(SDValue Op, SelectionDAG &DAG) const;
00898     SDValue InsertBitToMaskVector(SDValue Op, SelectionDAG &DAG) const;
00899 
00900     SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const;
00901     SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
00902     SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
00903     SDValue LowerGlobalAddress(const GlobalValue *GV, SDLoc dl,
00904                                int64_t Offset, SelectionDAG &DAG) const;
00905     SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
00906     SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
00907     SDValue LowerExternalSymbol(SDValue Op, SelectionDAG &DAG) const;
00908     SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
00909     SDValue LowerUINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
00910     SDValue LowerUINT_TO_FP_i64(SDValue Op, SelectionDAG &DAG) const;
00911     SDValue LowerUINT_TO_FP_i32(SDValue Op, SelectionDAG &DAG) const;
00912     SDValue lowerUINT_TO_FP_vec(SDValue Op, SelectionDAG &DAG) const;
00913     SDValue LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const;
00914     SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) const;
00915     SDValue LowerFP_TO_UINT(SDValue Op, SelectionDAG &DAG) const;
00916     SDValue LowerToBT(SDValue And, ISD::CondCode CC,
00917                       SDLoc dl, SelectionDAG &DAG) const;
00918     SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
00919     SDValue LowerSELECT(SDValue Op, SelectionDAG &DAG) const;
00920     SDValue LowerBRCOND(SDValue Op, SelectionDAG &DAG) const;
00921     SDValue LowerMEMSET(SDValue Op, SelectionDAG &DAG) const;
00922     SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
00923     SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const;
00924     SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) const;
00925     SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) const;
00926     SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
00927     SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
00928     SDValue LowerFRAME_TO_ARGS_OFFSET(SDValue Op, SelectionDAG &DAG) const;
00929     SDValue LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const;
00930     SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
00931     SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
00932     SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
00933     SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
00934     SDValue LowerSIGN_EXTEND_INREG(SDValue Op, SelectionDAG &DAG) const;
00935     SDValue LowerWin64_i128OP(SDValue Op, SelectionDAG &DAG) const;
00936 
00937     SDValue
00938       LowerFormalArguments(SDValue Chain,
00939                            CallingConv::ID CallConv, bool isVarArg,
00940                            const SmallVectorImpl<ISD::InputArg> &Ins,
00941                            SDLoc dl, SelectionDAG &DAG,
00942                            SmallVectorImpl<SDValue> &InVals) const override;
00943     SDValue LowerCall(CallLoweringInfo &CLI,
00944                       SmallVectorImpl<SDValue> &InVals) const override;
00945 
00946     SDValue LowerReturn(SDValue Chain,
00947                         CallingConv::ID CallConv, bool isVarArg,
00948                         const SmallVectorImpl<ISD::OutputArg> &Outs,
00949                         const SmallVectorImpl<SDValue> &OutVals,
00950                         SDLoc dl, SelectionDAG &DAG) const override;
00951 
00952     bool isUsedByReturnOnly(SDNode *N, SDValue &Chain) const override;
00953 
00954     bool mayBeEmittedAsTailCall(CallInst *CI) const override;
00955 
00956     EVT getTypeForExtArgOrReturn(LLVMContext &Context, EVT VT,
00957                                  ISD::NodeType ExtendKind) const override;
00958 
00959     bool CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
00960                         bool isVarArg,
00961                         const SmallVectorImpl<ISD::OutputArg> &Outs,
00962                         LLVMContext &Context) const override;
00963 
00964     const MCPhysReg *getScratchRegisters(CallingConv::ID CC) const override;
00965 
00966     bool shouldExpandAtomicLoadInIR(LoadInst *SI) const override;
00967     bool shouldExpandAtomicStoreInIR(StoreInst *SI) const override;
00968     bool shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const override;
00969 
00970     bool needsCmpXchgNb(const Type *MemType) const;
00971 
00972     /// Utility function to emit atomic-load-arith operations (and, or, xor,
00973     /// nand, max, min, umax, umin). It takes the corresponding instruction to
00974     /// expand, the associated machine basic block, and the associated X86
00975     /// opcodes for reg/reg.
00976     MachineBasicBlock *EmitAtomicLoadArith(MachineInstr *MI,
00977                                            MachineBasicBlock *MBB) const;
00978 
00979     /// Utility function to emit atomic-load-arith operations (and, or, xor,
00980     /// nand, add, sub, swap) for 64-bit operands on 32-bit target.
00981     MachineBasicBlock *EmitAtomicLoadArith6432(MachineInstr *MI,
00982                                                MachineBasicBlock *MBB) const;
00983 
00984     // Utility function to emit the low-level va_arg code for X86-64.
00985     MachineBasicBlock *EmitVAARG64WithCustomInserter(
00986                        MachineInstr *MI,
00987                        MachineBasicBlock *MBB) const;
00988 
00989     /// Utility function to emit the xmm reg save portion of va_start.
00990     MachineBasicBlock *EmitVAStartSaveXMMRegsWithCustomInserter(
00991                                                    MachineInstr *BInstr,
00992                                                    MachineBasicBlock *BB) const;
00993 
00994     MachineBasicBlock *EmitLoweredSelect(MachineInstr *I,
00995                                          MachineBasicBlock *BB) const;
00996 
00997     MachineBasicBlock *EmitLoweredWinAlloca(MachineInstr *MI,
00998                                               MachineBasicBlock *BB) const;
00999 
01000     MachineBasicBlock *EmitLoweredSegAlloca(MachineInstr *MI,
01001                                             MachineBasicBlock *BB,
01002                                             bool Is64Bit) const;
01003 
01004     MachineBasicBlock *EmitLoweredTLSCall(MachineInstr *MI,
01005                                           MachineBasicBlock *BB) const;
01006 
01007     MachineBasicBlock *emitLoweredTLSAddr(MachineInstr *MI,
01008                                           MachineBasicBlock *BB) const;
01009 
01010     MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
01011                                         MachineBasicBlock *MBB) const;
01012 
01013     MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
01014                                          MachineBasicBlock *MBB) const;
01015 
01016     MachineBasicBlock *emitFMA3Instr(MachineInstr *MI,
01017                                      MachineBasicBlock *MBB) const;
01018 
01019     /// Emit nodes that will be selected as "test Op0,Op0", or something
01020     /// equivalent, for use with the given x86 condition code.
01021     SDValue EmitTest(SDValue Op0, unsigned X86CC, SDLoc dl,
01022                      SelectionDAG &DAG) const;
01023 
01024     /// Emit nodes that will be selected as "cmp Op0,Op1", or something
01025     /// equivalent, for use with the given x86 condition code.
01026     SDValue EmitCmp(SDValue Op0, SDValue Op1, unsigned X86CC, SDLoc dl,
01027                     SelectionDAG &DAG) const;
01028 
01029     /// Convert a comparison if required by the subtarget.
01030     SDValue ConvertCmpIfNecessary(SDValue Cmp, SelectionDAG &DAG) const;
01031   };
01032 
01033   namespace X86 {
01034     FastISel *createFastISel(FunctionLoweringInfo &funcInfo,
01035                              const TargetLibraryInfo *libInfo);
01036   }
01037 }
01038 
01039 #endif    // X86ISELLOWERING_H