#include "postgres.h"
#include <math.h>
#include "catalog/pg_class.h"
#include "foreign/fdwapi.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/geqo.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/var.h"
#include "parser/parse_clause.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
#include "utils/lsyscache.h"
Go to the source code of this file.
Definition at line 974 of file allpaths.c.
References IsA, lappend(), list_concat(), list_copy(), and AppendPath::subpaths.
Referenced by generate_mergeappend_paths(), and set_append_rel_pathlist().
{ if (IsA(path, AppendPath)) { AppendPath *apath = (AppendPath *) path; /* list_copy is important here to avoid sharing list substructure */ return list_concat(subpaths, list_copy(apath->subpaths)); } else return lappend(subpaths, path); }
static void compare_tlist_datatypes | ( | List * | tlist, | |
List * | colTypes, | |||
bool * | differentTypes | |||
) | [static] |
Definition at line 1651 of file allpaths.c.
References elog, ERROR, TargetEntry::expr, exprType(), lfirst, lfirst_oid, list_head(), lnext, NULL, TargetEntry::resjunk, and TargetEntry::resno.
Referenced by subquery_is_pushdown_safe().
{ ListCell *l; ListCell *colType = list_head(colTypes); foreach(l, tlist) { TargetEntry *tle = (TargetEntry *) lfirst(l); if (tle->resjunk) continue; /* ignore resjunk columns */ if (colType == NULL) elog(ERROR, "wrong number of tlist entries"); if (exprType((Node *) tle->expr) != lfirst_oid(colType)) differentTypes[tle->resno] = true; colType = lnext(colType); } if (colType != NULL) elog(ERROR, "wrong number of tlist entries"); }
static void generate_mergeappend_paths | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
List * | live_childrels, | |||
List * | all_child_pathkeys | |||
) | [static] |
Definition at line 890 of file allpaths.c.
References accumulate_append_subpath(), add_path(), Assert, RelOptInfo::cheapest_total_path, create_merge_append_path(), get_cheapest_path_for_pathkeys(), lfirst, NULL, Path::param_info, RelOptInfo::pathlist, STARTUP_COST, and TOTAL_COST.
Referenced by set_append_rel_pathlist().
{ ListCell *lcp; foreach(lcp, all_child_pathkeys) { List *pathkeys = (List *) lfirst(lcp); List *startup_subpaths = NIL; List *total_subpaths = NIL; bool startup_neq_total = false; ListCell *lcr; /* Select the child paths for this ordering... */ foreach(lcr, live_childrels) { RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr); Path *cheapest_startup, *cheapest_total; /* Locate the right paths, if they are available. */ cheapest_startup = get_cheapest_path_for_pathkeys(childrel->pathlist, pathkeys, NULL, STARTUP_COST); cheapest_total = get_cheapest_path_for_pathkeys(childrel->pathlist, pathkeys, NULL, TOTAL_COST); /* * If we can't find any paths with the right order just use the * cheapest-total path; we'll have to sort it later. */ if (cheapest_startup == NULL || cheapest_total == NULL) { cheapest_startup = cheapest_total = childrel->cheapest_total_path; /* Assert we do have an unparameterized path for this child */ Assert(cheapest_total->param_info == NULL); } /* * Notice whether we actually have different paths for the * "cheapest" and "total" cases; frequently there will be no point * in two create_merge_append_path() calls. */ if (cheapest_startup != cheapest_total) startup_neq_total = true; startup_subpaths = accumulate_append_subpath(startup_subpaths, cheapest_startup); total_subpaths = accumulate_append_subpath(total_subpaths, cheapest_total); } /* ... and build the MergeAppend paths */ add_path(rel, (Path *) create_merge_append_path(root, rel, startup_subpaths, pathkeys, NULL)); if (startup_neq_total) add_path(rel, (Path *) create_merge_append_path(root, rel, total_subpaths, pathkeys, NULL)); } }
static bool has_multiple_baserels | ( | PlannerInfo * | root | ) | [static] |
Definition at line 1012 of file allpaths.c.
References NULL, RELOPT_BASEREL, RelOptInfo::reloptkind, PlannerInfo::simple_rel_array, and PlannerInfo::simple_rel_array_size.
Referenced by set_subquery_pathlist().
{ int num_base_rels = 0; Index rti; for (rti = 1; rti < root->simple_rel_array_size; rti++) { RelOptInfo *brel = root->simple_rel_array[rti]; if (brel == NULL) continue; /* ignore RTEs that are "other rels" */ if (brel->reloptkind == RELOPT_BASEREL) if (++num_base_rels > 1) return true; } return false; }
RelOptInfo* make_one_rel | ( | PlannerInfo * | root, | |
List * | joinlist | |||
) |
Definition at line 104 of file allpaths.c.
References PlannerInfo::all_baserels, Assert, bms_add_member(), bms_equal(), make_rel_from_joinlist(), NULL, RelOptInfo::relid, RelOptInfo::relids, RELOPT_BASEREL, RelOptInfo::reloptkind, set_base_rel_pathlists(), set_base_rel_sizes(), PlannerInfo::simple_rel_array, and PlannerInfo::simple_rel_array_size.
Referenced by query_planner().
{ RelOptInfo *rel; Index rti; /* * Construct the all_baserels Relids set. */ root->all_baserels = NULL; for (rti = 1; rti < root->simple_rel_array_size; rti++) { RelOptInfo *brel = root->simple_rel_array[rti]; /* there may be empty slots corresponding to non-baserel RTEs */ if (brel == NULL) continue; Assert(brel->relid == rti); /* sanity check on array */ /* ignore RTEs that are "other rels" */ if (brel->reloptkind != RELOPT_BASEREL) continue; root->all_baserels = bms_add_member(root->all_baserels, brel->relid); } /* * Generate access paths for the base rels. */ set_base_rel_sizes(root); set_base_rel_pathlists(root); /* * Generate access paths for the entire join tree. */ rel = make_rel_from_joinlist(root, joinlist); /* * The result should join all and only the query's base rels. */ Assert(bms_equal(rel->relids, root->all_baserels)); return rel; }
static RelOptInfo * make_rel_from_joinlist | ( | PlannerInfo * | root, | |
List * | joinlist | |||
) | [static] |
Definition at line 1364 of file allpaths.c.
References elog, enable_geqo, ERROR, find_base_rel(), geqo(), geqo_threshold, PlannerInfo::initial_rels, IsA, join_search_hook, lappend(), lfirst, linitial, list_length(), nodeTag, and standard_join_search().
Referenced by make_one_rel().
{ int levels_needed; List *initial_rels; ListCell *jl; /* * Count the number of child joinlist nodes. This is the depth of the * dynamic-programming algorithm we must employ to consider all ways of * joining the child nodes. */ levels_needed = list_length(joinlist); if (levels_needed <= 0) return NULL; /* nothing to do? */ /* * Construct a list of rels corresponding to the child joinlist nodes. * This may contain both base rels and rels constructed according to * sub-joinlists. */ initial_rels = NIL; foreach(jl, joinlist) { Node *jlnode = (Node *) lfirst(jl); RelOptInfo *thisrel; if (IsA(jlnode, RangeTblRef)) { int varno = ((RangeTblRef *) jlnode)->rtindex; thisrel = find_base_rel(root, varno); } else if (IsA(jlnode, List)) { /* Recurse to handle subproblem */ thisrel = make_rel_from_joinlist(root, (List *) jlnode); } else { elog(ERROR, "unrecognized joinlist node type: %d", (int) nodeTag(jlnode)); thisrel = NULL; /* keep compiler quiet */ } initial_rels = lappend(initial_rels, thisrel); } if (levels_needed == 1) { /* * Single joinlist node, so we're done. */ return (RelOptInfo *) linitial(initial_rels); } else { /* * Consider the different orders in which we could join the rels, * using a plugin, GEQO, or the regular join search code. * * We put the initial_rels list into a PlannerInfo field because * has_legal_joinclause() needs to look at it (ugly :-(). */ root->initial_rels = initial_rels; if (join_search_hook) return (*join_search_hook) (root, levels_needed, initial_rels); else if (enable_geqo && levels_needed >= geqo_threshold) return geqo(root, levels_needed, initial_rels); else return standard_join_search(root, levels_needed, initial_rels); } }
static bool qual_is_pushdown_safe | ( | Query * | subquery, | |
Index | rti, | |||
Node * | qual, | |||
bool * | differentTypes | |||
) | [static] |
Definition at line 1710 of file allpaths.c.
References Assert, bms_add_member(), bms_free(), bms_is_member(), contain_subplans(), contain_volatile_functions(), contain_window_function(), Query::distinctClause, TargetEntry::expr, expression_returns_set(), get_tle_by_resno(), Query::hasDistinctOn, InvalidOid, IsA, lfirst, list_free(), NULL, pull_var_clause(), PVC_INCLUDE_PLACEHOLDERS, PVC_REJECT_AGGREGATES, TargetEntry::resjunk, targetIsInSortList(), Query::targetList, Var::varattno, and Var::varno.
Referenced by set_subquery_pathlist().
{ bool safe = true; List *vars; ListCell *vl; Bitmapset *tested = NULL; /* Refuse subselects (point 1) */ if (contain_subplans(qual)) return false; /* * It would be unsafe to push down window function calls, but at least for * the moment we could never see any in a qual anyhow. (The same applies * to aggregates, which we check for in pull_var_clause below.) */ Assert(!contain_window_function(qual)); /* * Examine all Vars used in clause; since it's a restriction clause, all * such Vars must refer to subselect output columns. */ vars = pull_var_clause(qual, PVC_REJECT_AGGREGATES, PVC_INCLUDE_PLACEHOLDERS); foreach(vl, vars) { Var *var = (Var *) lfirst(vl); TargetEntry *tle; /* * XXX Punt if we find any PlaceHolderVars in the restriction clause. * It's not clear whether a PHV could safely be pushed down, and even * less clear whether such a situation could arise in any cases of * practical interest anyway. So for the moment, just refuse to push * down. */ if (!IsA(var, Var)) { safe = false; break; } Assert(var->varno == rti); /* Check point 2 */ if (var->varattno == 0) { safe = false; break; } /* * We use a bitmapset to avoid testing the same attno more than once. * (NB: this only works because subquery outputs can't have negative * attnos.) */ if (bms_is_member(var->varattno, tested)) continue; tested = bms_add_member(tested, var->varattno); /* Check point 3 */ if (differentTypes[var->varattno]) { safe = false; break; } /* Must find the tlist element referenced by the Var */ tle = get_tle_by_resno(subquery->targetList, var->varattno); Assert(tle != NULL); Assert(!tle->resjunk); /* If subquery uses DISTINCT ON, check point 4 */ if (subquery->hasDistinctOn && !targetIsInSortList(tle, InvalidOid, subquery->distinctClause)) { /* non-DISTINCT column, so fail */ safe = false; break; } /* Refuse functions returning sets (point 5) */ if (expression_returns_set((Node *) tle->expr)) { safe = false; break; } /* Refuse volatile functions (point 6) */ if (contain_volatile_functions((Node *) tle->expr)) { safe = false; break; } } list_free(vars); bms_free(tested); return safe; }
static void recurse_push_qual | ( | Node * | setOp, | |
Query * | topquery, | |||
RangeTblEntry * | rte, | |||
Index | rti, | |||
Node * | qual | |||
) | [static] |
Definition at line 1865 of file allpaths.c.
References Assert, elog, ERROR, IsA, SetOperationStmt::larg, nodeTag, NULL, SetOperationStmt::rarg, rt_fetch, Query::rtable, RangeTblRef::rtindex, RangeTblEntry::subquery, and subquery_push_qual().
Referenced by subquery_push_qual().
{ if (IsA(setOp, RangeTblRef)) { RangeTblRef *rtr = (RangeTblRef *) setOp; RangeTblEntry *subrte = rt_fetch(rtr->rtindex, topquery->rtable); Query *subquery = subrte->subquery; Assert(subquery != NULL); subquery_push_qual(subquery, rte, rti, qual); } else if (IsA(setOp, SetOperationStmt)) { SetOperationStmt *op = (SetOperationStmt *) setOp; recurse_push_qual(op->larg, topquery, rte, rti, qual); recurse_push_qual(op->rarg, topquery, rte, rti, qual); } else { elog(ERROR, "unrecognized node type: %d", (int) nodeTag(setOp)); } }
static bool recurse_pushdown_safe | ( | Node * | setOp, | |
Query * | topquery, | |||
bool * | differentTypes | |||
) | [static] |
Definition at line 1608 of file allpaths.c.
References Assert, elog, ERROR, IsA, SetOperationStmt::larg, nodeTag, NULL, SetOperationStmt::op, SetOperationStmt::rarg, rt_fetch, Query::rtable, RangeTblRef::rtindex, SETOP_EXCEPT, RangeTblEntry::subquery, and subquery_is_pushdown_safe().
Referenced by subquery_is_pushdown_safe().
{ if (IsA(setOp, RangeTblRef)) { RangeTblRef *rtr = (RangeTblRef *) setOp; RangeTblEntry *rte = rt_fetch(rtr->rtindex, topquery->rtable); Query *subquery = rte->subquery; Assert(subquery != NULL); return subquery_is_pushdown_safe(subquery, topquery, differentTypes); } else if (IsA(setOp, SetOperationStmt)) { SetOperationStmt *op = (SetOperationStmt *) setOp; /* EXCEPT is no good */ if (op->op == SETOP_EXCEPT) return false; /* Else recurse */ if (!recurse_pushdown_safe(op->larg, topquery, differentTypes)) return false; if (!recurse_pushdown_safe(op->rarg, topquery, differentTypes)) return false; } else { elog(ERROR, "unrecognized node type: %d", (int) nodeTag(setOp)); } return true; }
static void set_append_rel_pathlist | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
Index | rti, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 667 of file allpaths.c.
References accumulate_append_subpath(), add_path(), PlannerInfo::append_rel_list, Assert, bms_equal(), RelOptInfo::cheapest_total_path, AppendRelInfo::child_relid, compare_pathkeys(), create_append_path(), generate_mergeappend_paths(), get_cheapest_path_for_pathkeys(), IS_DUMMY_REL, lappend(), lfirst, NIL, NULL, Path::param_info, AppendRelInfo::parent_relid, PATH_REQ_OUTER, Path::pathkeys, RelOptInfo::pathlist, reparameterize_path(), set_cheapest(), set_rel_pathlist(), PlannerInfo::simple_rel_array, PlannerInfo::simple_rte_array, and TOTAL_COST.
Referenced by set_rel_pathlist().
{ int parentRTindex = rti; List *live_childrels = NIL; List *subpaths = NIL; bool subpaths_valid = true; List *all_child_pathkeys = NIL; List *all_child_outers = NIL; ListCell *l; /* * Generate access paths for each member relation, and remember the * cheapest path for each one. Also, identify all pathkeys (orderings) * and parameterizations (required_outer sets) available for the member * relations. */ foreach(l, root->append_rel_list) { AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l); int childRTindex; RangeTblEntry *childRTE; RelOptInfo *childrel; ListCell *lcp; /* append_rel_list contains all append rels; ignore others */ if (appinfo->parent_relid != parentRTindex) continue; /* Re-locate the child RTE and RelOptInfo */ childRTindex = appinfo->child_relid; childRTE = root->simple_rte_array[childRTindex]; childrel = root->simple_rel_array[childRTindex]; /* * Compute the child's access paths. */ set_rel_pathlist(root, childrel, childRTindex, childRTE); /* * If child is dummy, ignore it. */ if (IS_DUMMY_REL(childrel)) continue; /* * Child is live, so add it to the live_childrels list for use below. */ live_childrels = lappend(live_childrels, childrel); /* * If child has an unparameterized cheapest-total path, add that to * the unparameterized Append path we are constructing for the parent. * If not, there's no workable unparameterized path. */ if (childrel->cheapest_total_path->param_info == NULL) subpaths = accumulate_append_subpath(subpaths, childrel->cheapest_total_path); else subpaths_valid = false; /* * Collect lists of all the available path orderings and * parameterizations for all the children. We use these as a * heuristic to indicate which sort orderings and parameterizations we * should build Append and MergeAppend paths for. */ foreach(lcp, childrel->pathlist) { Path *childpath = (Path *) lfirst(lcp); List *childkeys = childpath->pathkeys; Relids childouter = PATH_REQ_OUTER(childpath); /* Unsorted paths don't contribute to pathkey list */ if (childkeys != NIL) { ListCell *lpk; bool found = false; /* Have we already seen this ordering? */ foreach(lpk, all_child_pathkeys) { List *existing_pathkeys = (List *) lfirst(lpk); if (compare_pathkeys(existing_pathkeys, childkeys) == PATHKEYS_EQUAL) { found = true; break; } } if (!found) { /* No, so add it to all_child_pathkeys */ all_child_pathkeys = lappend(all_child_pathkeys, childkeys); } } /* Unparameterized paths don't contribute to param-set list */ if (childouter) { ListCell *lco; bool found = false; /* Have we already seen this param set? */ foreach(lco, all_child_outers) { Relids existing_outers = (Relids) lfirst(lco); if (bms_equal(existing_outers, childouter)) { found = true; break; } } if (!found) { /* No, so add it to all_child_outers */ all_child_outers = lappend(all_child_outers, childouter); } } } } /* * If we found unparameterized paths for all children, build an unordered, * unparameterized Append path for the rel. (Note: this is correct even * if we have zero or one live subpath due to constraint exclusion.) */ if (subpaths_valid) add_path(rel, (Path *) create_append_path(rel, subpaths, NULL)); /* * Also build unparameterized MergeAppend paths based on the collected * list of child pathkeys. */ if (subpaths_valid) generate_mergeappend_paths(root, rel, live_childrels, all_child_pathkeys); /* * Build Append paths for each parameterization seen among the child rels. * (This may look pretty expensive, but in most cases of practical * interest, the child rels will expose mostly the same parameterizations, * so that not that many cases actually get considered here.) * * The Append node itself cannot enforce quals, so all qual checking must * be done in the child paths. This means that to have a parameterized * Append path, we must have the exact same parameterization for each * child path; otherwise some children might be failing to check the * moved-down quals. To make them match up, we can try to increase the * parameterization of lesser-parameterized paths. */ foreach(l, all_child_outers) { Relids required_outer = (Relids) lfirst(l); ListCell *lcr; /* Select the child paths for an Append with this parameterization */ subpaths = NIL; subpaths_valid = true; foreach(lcr, live_childrels) { RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr); Path *cheapest_total; cheapest_total = get_cheapest_path_for_pathkeys(childrel->pathlist, NIL, required_outer, TOTAL_COST); Assert(cheapest_total != NULL); /* Children must have exactly the desired parameterization */ if (!bms_equal(PATH_REQ_OUTER(cheapest_total), required_outer)) { cheapest_total = reparameterize_path(root, cheapest_total, required_outer, 1.0); if (cheapest_total == NULL) { subpaths_valid = false; break; } } subpaths = accumulate_append_subpath(subpaths, cheapest_total); } if (subpaths_valid) add_path(rel, (Path *) create_append_path(rel, subpaths, required_outer)); } /* Select cheapest paths */ set_cheapest(rel); }
static void set_append_rel_size | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
Index | rti, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 443 of file allpaths.c.
References add_child_rel_equivalences(), adjust_appendrel_attrs(), PlannerInfo::append_rel_list, Assert, RelOptInfo::attr_widths, RelOptInfo::baserestrictinfo, AppendRelInfo::child_relid, DatumGetBool, eval_const_expressions(), exprType(), exprTypmod(), find_base_rel(), forboth, get_all_actual_clauses(), get_typavgwidth(), RelOptInfo::has_eclass_joins, has_useful_pathkeys(), i, IS_DUMMY_REL, IsA, RelOptInfo::joininfo, lfirst, make_ands_explicit(), make_ands_implicit(), make_restrictinfos_from_actual_clauses(), RelOptInfo::max_attr, RelOptInfo::min_attr, palloc0(), AppendRelInfo::parent_relid, pfree(), relation_excluded_by_constraints(), RelOptInfo::relid, RELOPT_OTHER_MEMBER_REL, RelOptInfo::reloptkind, RelOptInfo::reltargetlist, rint(), RelOptInfo::rows, set_dummy_rel_pathlist(), set_rel_size(), PlannerInfo::simple_rte_array, RelOptInfo::tuples, Var::varattno, and RelOptInfo::width.
Referenced by set_rel_size().
{ int parentRTindex = rti; double parent_rows; double parent_size; double *parent_attrsizes; int nattrs; ListCell *l; /* * Initialize to compute size estimates for whole append relation. * * We handle width estimates by weighting the widths of different child * rels proportionally to their number of rows. This is sensible because * the use of width estimates is mainly to compute the total relation * "footprint" if we have to sort or hash it. To do this, we sum the * total equivalent size (in "double" arithmetic) and then divide by the * total rowcount estimate. This is done separately for the total rel * width and each attribute. * * Note: if you consider changing this logic, beware that child rels could * have zero rows and/or width, if they were excluded by constraints. */ parent_rows = 0; parent_size = 0; nattrs = rel->max_attr - rel->min_attr + 1; parent_attrsizes = (double *) palloc0(nattrs * sizeof(double)); foreach(l, root->append_rel_list) { AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l); int childRTindex; RangeTblEntry *childRTE; RelOptInfo *childrel; List *childquals; Node *childqual; ListCell *parentvars; ListCell *childvars; /* append_rel_list contains all append rels; ignore others */ if (appinfo->parent_relid != parentRTindex) continue; childRTindex = appinfo->child_relid; childRTE = root->simple_rte_array[childRTindex]; /* * The child rel's RelOptInfo was already created during * add_base_rels_to_query. */ childrel = find_base_rel(root, childRTindex); Assert(childrel->reloptkind == RELOPT_OTHER_MEMBER_REL); /* * We have to copy the parent's targetlist and quals to the child, * with appropriate substitution of variables. However, only the * baserestrictinfo quals are needed before we can check for * constraint exclusion; so do that first and then check to see if we * can disregard this child. * * As of 8.4, the child rel's targetlist might contain non-Var * expressions, which means that substitution into the quals could * produce opportunities for const-simplification, and perhaps even * pseudoconstant quals. To deal with this, we strip the RestrictInfo * nodes, do the substitution, do const-simplification, and then * reconstitute the RestrictInfo layer. */ childquals = get_all_actual_clauses(rel->baserestrictinfo); childquals = (List *) adjust_appendrel_attrs(root, (Node *) childquals, appinfo); childqual = eval_const_expressions(root, (Node *) make_ands_explicit(childquals)); if (childqual && IsA(childqual, Const) && (((Const *) childqual)->constisnull || !DatumGetBool(((Const *) childqual)->constvalue))) { /* * Restriction reduces to constant FALSE or constant NULL after * substitution, so this child need not be scanned. */ set_dummy_rel_pathlist(childrel); continue; } childquals = make_ands_implicit((Expr *) childqual); childquals = make_restrictinfos_from_actual_clauses(root, childquals); childrel->baserestrictinfo = childquals; if (relation_excluded_by_constraints(root, childrel, childRTE)) { /* * This child need not be scanned, so we can omit it from the * appendrel. */ set_dummy_rel_pathlist(childrel); continue; } /* * CE failed, so finish copying/modifying targetlist and join quals. * * Note: the resulting childrel->reltargetlist may contain arbitrary * expressions, which otherwise would not occur in a reltargetlist. * Code that might be looking at an appendrel child must cope with * such. Note in particular that "arbitrary expression" can include * "Var belonging to another relation", due to LATERAL references. */ childrel->joininfo = (List *) adjust_appendrel_attrs(root, (Node *) rel->joininfo, appinfo); childrel->reltargetlist = (List *) adjust_appendrel_attrs(root, (Node *) rel->reltargetlist, appinfo); /* * We have to make child entries in the EquivalenceClass data * structures as well. This is needed either if the parent * participates in some eclass joins (because we will want to consider * inner-indexscan joins on the individual children) or if the parent * has useful pathkeys (because we should try to build MergeAppend * paths that produce those sort orderings). */ if (rel->has_eclass_joins || has_useful_pathkeys(root, rel)) add_child_rel_equivalences(root, appinfo, rel, childrel); childrel->has_eclass_joins = rel->has_eclass_joins; /* * Note: we could compute appropriate attr_needed data for the child's * variables, by transforming the parent's attr_needed through the * translated_vars mapping. However, currently there's no need * because attr_needed is only examined for base relations not * otherrels. So we just leave the child's attr_needed empty. */ /* * Compute the child's size. */ set_rel_size(root, childrel, childRTindex, childRTE); /* * It is possible that constraint exclusion detected a contradiction * within a child subquery, even though we didn't prove one above. If * so, we can skip this child. */ if (IS_DUMMY_REL(childrel)) continue; /* * Accumulate size information from each live child. */ if (childrel->rows > 0) { parent_rows += childrel->rows; parent_size += childrel->width * childrel->rows; /* * Accumulate per-column estimates too. We need not do anything * for PlaceHolderVars in the parent list. If child expression * isn't a Var, or we didn't record a width estimate for it, we * have to fall back on a datatype-based estimate. * * By construction, child's reltargetlist is 1-to-1 with parent's. */ forboth(parentvars, rel->reltargetlist, childvars, childrel->reltargetlist) { Var *parentvar = (Var *) lfirst(parentvars); Node *childvar = (Node *) lfirst(childvars); if (IsA(parentvar, Var)) { int pndx = parentvar->varattno - rel->min_attr; int32 child_width = 0; if (IsA(childvar, Var) && ((Var *) childvar)->varno == childrel->relid) { int cndx = ((Var *) childvar)->varattno - childrel->min_attr; child_width = childrel->attr_widths[cndx]; } if (child_width <= 0) child_width = get_typavgwidth(exprType(childvar), exprTypmod(childvar)); Assert(child_width > 0); parent_attrsizes[pndx] += child_width * childrel->rows; } } } } /* * Save the finished size estimates. */ rel->rows = parent_rows; if (parent_rows > 0) { int i; rel->width = rint(parent_size / parent_rows); for (i = 0; i < nattrs; i++) rel->attr_widths[i] = rint(parent_attrsizes[i] / parent_rows); } else rel->width = 0; /* attr_widths should be zero already */ /* * Set "raw tuples" count equal to "rows" for the appendrel; needed * because some places assume rel->tuples is valid for any baserel. */ rel->tuples = parent_rows; pfree(parent_attrsizes); }
static void set_base_rel_pathlists | ( | PlannerInfo * | root | ) | [static] |
Definition at line 186 of file allpaths.c.
References Assert, NULL, RelOptInfo::relid, RELOPT_BASEREL, RelOptInfo::reloptkind, set_rel_pathlist(), PlannerInfo::simple_rel_array, PlannerInfo::simple_rel_array_size, and PlannerInfo::simple_rte_array.
Referenced by make_one_rel().
{ Index rti; for (rti = 1; rti < root->simple_rel_array_size; rti++) { RelOptInfo *rel = root->simple_rel_array[rti]; /* there may be empty slots corresponding to non-baserel RTEs */ if (rel == NULL) continue; Assert(rel->relid == rti); /* sanity check on array */ /* ignore RTEs that are "other rels" */ if (rel->reloptkind != RELOPT_BASEREL) continue; set_rel_pathlist(root, rel, rti, root->simple_rte_array[rti]); } }
static void set_base_rel_sizes | ( | PlannerInfo * | root | ) | [static] |
Definition at line 157 of file allpaths.c.
References Assert, NULL, RelOptInfo::relid, RELOPT_BASEREL, RelOptInfo::reloptkind, set_rel_size(), PlannerInfo::simple_rel_array, PlannerInfo::simple_rel_array_size, and PlannerInfo::simple_rte_array.
Referenced by make_one_rel().
{ Index rti; for (rti = 1; rti < root->simple_rel_array_size; rti++) { RelOptInfo *rel = root->simple_rel_array[rti]; /* there may be empty slots corresponding to non-baserel RTEs */ if (rel == NULL) continue; Assert(rel->relid == rti); /* sanity check on array */ /* ignore RTEs that are "other rels" */ if (rel->reloptkind != RELOPT_BASEREL) continue; set_rel_size(root, rel, rti, root->simple_rte_array[rti]); } }
static void set_cte_pathlist | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 1239 of file allpaths.c.
References add_path(), Assert, create_ctescan_path(), PlannerInfo::cte_plan_ids, RangeTblEntry::ctelevelsup, Query::cteList, CommonTableExpr::ctename, RangeTblEntry::ctename, elog, ERROR, PlannerInfo::glob, RelOptInfo::lateral_relids, lfirst, list_length(), list_nth(), list_nth_int(), NULL, PlannerInfo::parent_root, PlannerInfo::parse, set_cheapest(), set_cte_size_estimates(), and PlannerGlobal::subplans.
Referenced by set_rel_size().
{ Plan *cteplan; PlannerInfo *cteroot; Index levelsup; int ndx; ListCell *lc; int plan_id; Relids required_outer; /* * Find the referenced CTE, and locate the plan previously made for it. */ levelsup = rte->ctelevelsup; cteroot = root; while (levelsup-- > 0) { cteroot = cteroot->parent_root; if (!cteroot) /* shouldn't happen */ elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename); } /* * Note: cte_plan_ids can be shorter than cteList, if we are still working * on planning the CTEs (ie, this is a side-reference from another CTE). * So we mustn't use forboth here. */ ndx = 0; foreach(lc, cteroot->parse->cteList) { CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc); if (strcmp(cte->ctename, rte->ctename) == 0) break; ndx++; } if (lc == NULL) /* shouldn't happen */ elog(ERROR, "could not find CTE \"%s\"", rte->ctename); if (ndx >= list_length(cteroot->cte_plan_ids)) elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename); plan_id = list_nth_int(cteroot->cte_plan_ids, ndx); Assert(plan_id > 0); cteplan = (Plan *) list_nth(root->glob->subplans, plan_id - 1); /* Mark rel with estimated output rows, width, etc */ set_cte_size_estimates(root, rel, cteplan); /* * We don't support pushing join clauses into the quals of a CTE scan, but * it could still have required parameterization due to LATERAL refs in * its tlist. (That can only happen if the CTE scan is on a relation * pulled up out of a UNION ALL appendrel.) */ required_outer = rel->lateral_relids; /* Generate appropriate path */ add_path(rel, create_ctescan_path(root, rel, required_outer)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); }
static void set_dummy_rel_pathlist | ( | RelOptInfo * | rel | ) | [static] |
Definition at line 995 of file allpaths.c.
References add_path(), create_append_path(), NIL, NULL, RelOptInfo::pathlist, RelOptInfo::rows, set_cheapest(), and RelOptInfo::width.
Referenced by set_append_rel_size(), set_rel_size(), and set_subquery_pathlist().
{ /* Set dummy size estimates --- we leave attr_widths[] as zeroes */ rel->rows = 0; rel->width = 0; /* Discard any pre-existing paths; no further need for them */ rel->pathlist = NIL; add_path(rel, (Path *) create_append_path(rel, NIL, NULL)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); }
static void set_foreign_pathlist | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 422 of file allpaths.c.
References RelOptInfo::fdwroutine, FdwRoutine::GetForeignPaths, RangeTblEntry::relid, and set_cheapest().
Referenced by set_rel_pathlist().
{ /* Call the FDW's GetForeignPaths function to generate path(s) */ rel->fdwroutine->GetForeignPaths(root, rel, rte->relid); /* Select cheapest path */ set_cheapest(rel); }
static void set_foreign_size | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 408 of file allpaths.c.
References RelOptInfo::fdwroutine, FdwRoutine::GetForeignRelSize, RangeTblEntry::relid, and set_foreign_size_estimates().
Referenced by set_rel_size().
{ /* Mark rel with estimated output rows, width, etc */ set_foreign_size_estimates(root, rel); /* Let FDW adjust the size estimates, if it can */ rel->fdwroutine->GetForeignRelSize(root, rel, rte->relid); }
static void set_function_pathlist | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 1190 of file allpaths.c.
References add_path(), create_functionscan_path(), RelOptInfo::lateral_relids, and set_cheapest().
Referenced by set_rel_pathlist().
{ Relids required_outer; /* * We don't support pushing join clauses into the quals of a function * scan, but it could still have required parameterization due to LATERAL * refs in the function expression. */ required_outer = rel->lateral_relids; /* Generate appropriate path */ add_path(rel, create_functionscan_path(root, rel, required_outer)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); }
static void set_plain_rel_pathlist | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 378 of file allpaths.c.
References add_path(), create_index_paths(), create_seqscan_path(), create_tidscan_paths(), RelOptInfo::lateral_relids, and set_cheapest().
Referenced by set_rel_pathlist().
{ Relids required_outer; /* * We don't support pushing join clauses into the quals of a seqscan, but * it could still have required parameterization due to LATERAL refs in * its tlist. (That can only happen if the seqscan is on a relation * pulled up out of a UNION ALL appendrel.) */ required_outer = rel->lateral_relids; /* Consider sequential scan */ add_path(rel, create_seqscan_path(root, rel, required_outer)); /* Consider index scans */ create_index_paths(root, rel); /* Consider TID scans */ create_tidscan_paths(root, rel); /* Now find the cheapest of the paths for this rel */ set_cheapest(rel); }
static void set_plain_rel_size | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 350 of file allpaths.c.
References check_partial_indexes(), create_or_index_quals(), and set_baserel_size_estimates().
Referenced by set_rel_size().
{ /* * Test any partial indexes of rel for applicability. We must do this * first since partial unique indexes can affect size estimates. */ check_partial_indexes(root, rel); /* Mark rel with estimated output rows, width, etc */ set_baserel_size_estimates(root, rel); /* * Check to see if we can extract any restriction conditions from join * quals that are OR-of-AND structures. If so, add them to the rel's * restriction list, and redo the above steps. */ if (create_or_index_quals(root, rel)) { check_partial_indexes(root, rel); set_baserel_size_estimates(root, rel); } }
static void set_rel_pathlist | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
Index | rti, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 292 of file allpaths.c.
References elog, ERROR, RangeTblEntry::inh, IS_DUMMY_REL, RangeTblEntry::relkind, RELKIND_FOREIGN_TABLE, RTE_CTE, RTE_FUNCTION, RTE_RELATION, RTE_SUBQUERY, RTE_VALUES, RelOptInfo::rtekind, set_append_rel_pathlist(), set_foreign_pathlist(), set_function_pathlist(), set_plain_rel_pathlist(), and set_values_pathlist().
Referenced by set_append_rel_pathlist(), and set_base_rel_pathlists().
{ if (IS_DUMMY_REL(rel)) { /* We already proved the relation empty, so nothing more to do */ } else if (rte->inh) { /* It's an "append relation", process accordingly */ set_append_rel_pathlist(root, rel, rti, rte); } else { switch (rel->rtekind) { case RTE_RELATION: if (rte->relkind == RELKIND_FOREIGN_TABLE) { /* Foreign table */ set_foreign_pathlist(root, rel, rte); } else { /* Plain relation */ set_plain_rel_pathlist(root, rel, rte); } break; case RTE_SUBQUERY: /* Subquery --- fully handled during set_rel_size */ break; case RTE_FUNCTION: /* RangeFunction */ set_function_pathlist(root, rel, rte); break; case RTE_VALUES: /* Values list */ set_values_pathlist(root, rel, rte); break; case RTE_CTE: /* CTE reference --- fully handled during set_rel_size */ break; default: elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind); break; } } #ifdef OPTIMIZER_DEBUG debug_print_rel(root, rel); #endif }
static void set_rel_size | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
Index | rti, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 213 of file allpaths.c.
References elog, ERROR, RangeTblEntry::inh, relation_excluded_by_constraints(), RangeTblEntry::relkind, RELKIND_FOREIGN_TABLE, RELOPT_BASEREL, RelOptInfo::reloptkind, RTE_CTE, RTE_FUNCTION, RTE_RELATION, RTE_SUBQUERY, RTE_VALUES, RelOptInfo::rtekind, RangeTblEntry::self_reference, set_append_rel_size(), set_cte_pathlist(), set_dummy_rel_pathlist(), set_foreign_size(), set_function_size_estimates(), set_plain_rel_size(), set_subquery_pathlist(), set_values_size_estimates(), and set_worktable_pathlist().
Referenced by set_append_rel_size(), and set_base_rel_sizes().
{ if (rel->reloptkind == RELOPT_BASEREL && relation_excluded_by_constraints(root, rel, rte)) { /* * We proved we don't need to scan the rel via constraint exclusion, * so set up a single dummy path for it. Here we only check this for * regular baserels; if it's an otherrel, CE was already checked in * set_append_rel_pathlist(). * * In this case, we go ahead and set up the relation's path right away * instead of leaving it for set_rel_pathlist to do. This is because * we don't have a convention for marking a rel as dummy except by * assigning a dummy path to it. */ set_dummy_rel_pathlist(rel); } else if (rte->inh) { /* It's an "append relation", process accordingly */ set_append_rel_size(root, rel, rti, rte); } else { switch (rel->rtekind) { case RTE_RELATION: if (rte->relkind == RELKIND_FOREIGN_TABLE) { /* Foreign table */ set_foreign_size(root, rel, rte); } else { /* Plain relation */ set_plain_rel_size(root, rel, rte); } break; case RTE_SUBQUERY: /* * Subqueries don't support making a choice between * parameterized and unparameterized paths, so just go ahead * and build their paths immediately. */ set_subquery_pathlist(root, rel, rti, rte); break; case RTE_FUNCTION: set_function_size_estimates(root, rel); break; case RTE_VALUES: set_values_size_estimates(root, rel); break; case RTE_CTE: /* * CTEs don't support making a choice between parameterized * and unparameterized paths, so just go ahead and build their * paths immediately. */ if (rte->self_reference) set_worktable_pathlist(root, rel, rte); else set_cte_pathlist(root, rel, rte); break; default: elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind); break; } } }
static void set_subquery_pathlist | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
Index | rti, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 1045 of file allpaths.c.
References add_path(), Assert, RelOptInfo::baserestrictinfo, RestrictInfo::clause, contain_leaky_functions(), convert_subquery_pathkeys(), copyObject(), create_subqueryscan_path(), Query::distinctClause, PlannerInfo::glob, Query::groupClause, has_multiple_baserels(), Query::hasAggs, Query::havingQual, is_dummy_plan(), lappend(), RelOptInfo::lateral_relids, lfirst, list_length(), NIL, palloc0(), PlannerInfo::parse, parse(), pfree(), PlannerInfo::plan_params, RestrictInfo::pseudoconstant, qual_is_pushdown_safe(), PlannerInfo::query_pathkeys, RangeTblEntry::security_barrier, set_cheapest(), set_dummy_rel_pathlist(), set_subquery_size_estimates(), Query::sortClause, RelOptInfo::subplan, RelOptInfo::subplan_params, RangeTblEntry::subquery, subquery_is_pushdown_safe(), subquery_planner(), subquery_push_qual(), RelOptInfo::subroot, Query::targetList, and PlannerInfo::tuple_fraction.
Referenced by set_rel_size().
{ Query *parse = root->parse; Query *subquery = rte->subquery; Relids required_outer; bool *differentTypes; double tuple_fraction; PlannerInfo *subroot; List *pathkeys; /* * Must copy the Query so that planning doesn't mess up the RTE contents * (really really need to fix the planner to not scribble on its input, * someday). */ subquery = copyObject(subquery); /* * If it's a LATERAL subquery, it might contain some Vars of the current * query level, requiring it to be treated as parameterized, even though * we don't support pushing down join quals into subqueries. */ required_outer = rel->lateral_relids; /* We need a workspace for keeping track of set-op type coercions */ differentTypes = (bool *) palloc0((list_length(subquery->targetList) + 1) * sizeof(bool)); /* * If there are any restriction clauses that have been attached to the * subquery relation, consider pushing them down to become WHERE or HAVING * quals of the subquery itself. This transformation is useful because it * may allow us to generate a better plan for the subquery than evaluating * all the subquery output rows and then filtering them. * * There are several cases where we cannot push down clauses. Restrictions * involving the subquery are checked by subquery_is_pushdown_safe(). * Restrictions on individual clauses are checked by * qual_is_pushdown_safe(). Also, we don't want to push down * pseudoconstant clauses; better to have the gating node above the * subquery. * * Also, if the sub-query has the "security_barrier" flag, it means the * sub-query originated from a view that must enforce row-level security. * Then we must not push down quals that contain leaky functions. * * Non-pushed-down clauses will get evaluated as qpquals of the * SubqueryScan node. * * XXX Are there any cases where we want to make a policy decision not to * push down a pushable qual, because it'd result in a worse plan? */ if (rel->baserestrictinfo != NIL && subquery_is_pushdown_safe(subquery, subquery, differentTypes)) { /* OK to consider pushing down individual quals */ List *upperrestrictlist = NIL; ListCell *l; foreach(l, rel->baserestrictinfo) { RestrictInfo *rinfo = (RestrictInfo *) lfirst(l); Node *clause = (Node *) rinfo->clause; if (!rinfo->pseudoconstant && (!rte->security_barrier || !contain_leaky_functions(clause)) && qual_is_pushdown_safe(subquery, rti, clause, differentTypes)) { /* Push it down */ subquery_push_qual(subquery, rte, rti, clause); } else { /* Keep it in the upper query */ upperrestrictlist = lappend(upperrestrictlist, rinfo); } } rel->baserestrictinfo = upperrestrictlist; } pfree(differentTypes); /* * We can safely pass the outer tuple_fraction down to the subquery if the * outer level has no joining, aggregation, or sorting to do. Otherwise * we'd better tell the subquery to plan for full retrieval. (XXX This * could probably be made more intelligent ...) */ if (parse->hasAggs || parse->groupClause || parse->havingQual || parse->distinctClause || parse->sortClause || has_multiple_baserels(root)) tuple_fraction = 0.0; /* default case */ else tuple_fraction = root->tuple_fraction; /* plan_params should not be in use in current query level */ Assert(root->plan_params == NIL); /* Generate the plan for the subquery */ rel->subplan = subquery_planner(root->glob, subquery, root, false, tuple_fraction, &subroot); rel->subroot = subroot; /* Isolate the params needed by this specific subplan */ rel->subplan_params = root->plan_params; root->plan_params = NIL; /* * It's possible that constraint exclusion proved the subquery empty. If * so, it's convenient to turn it back into a dummy path so that we will * recognize appropriate optimizations at this query level. (But see * create_append_plan in createplan.c, which has to reverse this * substitution.) */ if (is_dummy_plan(rel->subplan)) { set_dummy_rel_pathlist(rel); return; } /* Mark rel with estimated output rows, width, etc */ set_subquery_size_estimates(root, rel); /* Convert subquery pathkeys to outer representation */ pathkeys = convert_subquery_pathkeys(root, rel, subroot->query_pathkeys); /* Generate appropriate path */ add_path(rel, create_subqueryscan_path(root, rel, pathkeys, required_outer)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); }
static void set_values_pathlist | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 1213 of file allpaths.c.
References add_path(), create_valuesscan_path(), RelOptInfo::lateral_relids, and set_cheapest().
Referenced by set_rel_pathlist().
{ Relids required_outer; /* * We don't support pushing join clauses into the quals of a values scan, * but it could still have required parameterization due to LATERAL refs * in the values expressions. */ required_outer = rel->lateral_relids; /* Generate appropriate path */ add_path(rel, create_valuesscan_path(root, rel, required_outer)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); }
static void set_worktable_pathlist | ( | PlannerInfo * | root, | |
RelOptInfo * | rel, | |||
RangeTblEntry * | rte | |||
) | [static] |
Definition at line 1309 of file allpaths.c.
References add_path(), create_worktablescan_path(), RangeTblEntry::ctelevelsup, RangeTblEntry::ctename, elog, ERROR, RelOptInfo::lateral_relids, PlannerInfo::non_recursive_plan, PlannerInfo::parent_root, set_cheapest(), and set_cte_size_estimates().
Referenced by set_rel_size().
{ Plan *cteplan; PlannerInfo *cteroot; Index levelsup; Relids required_outer; /* * We need to find the non-recursive term's plan, which is in the plan * level that's processing the recursive UNION, which is one level *below* * where the CTE comes from. */ levelsup = rte->ctelevelsup; if (levelsup == 0) /* shouldn't happen */ elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename); levelsup--; cteroot = root; while (levelsup-- > 0) { cteroot = cteroot->parent_root; if (!cteroot) /* shouldn't happen */ elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename); } cteplan = cteroot->non_recursive_plan; if (!cteplan) /* shouldn't happen */ elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename); /* Mark rel with estimated output rows, width, etc */ set_cte_size_estimates(root, rel, cteplan); /* * We don't support pushing join clauses into the quals of a worktable * scan, but it could still have required parameterization due to LATERAL * refs in its tlist. (That can only happen if the worktable scan is on a * relation pulled up out of a UNION ALL appendrel. I'm not sure this is * actually possible given the restrictions on recursive references, but * it's easy enough to support.) */ required_outer = rel->lateral_relids; /* Generate appropriate path */ add_path(rel, create_worktablescan_path(root, rel, required_outer)); /* Select cheapest path (pretty easy in this case...) */ set_cheapest(rel); }
RelOptInfo* standard_join_search | ( | PlannerInfo * | root, | |
int | levels_needed, | |||
List * | initial_rels | |||
) |
Definition at line 1469 of file allpaths.c.
References Assert, elog, ERROR, PlannerInfo::join_rel_level, join_search_one_level(), lfirst, linitial, list_length(), NIL, NULL, palloc0(), and set_cheapest().
Referenced by make_rel_from_joinlist().
{ int lev; RelOptInfo *rel; /* * This function cannot be invoked recursively within any one planning * problem, so join_rel_level[] can't be in use already. */ Assert(root->join_rel_level == NULL); /* * We employ a simple "dynamic programming" algorithm: we first find all * ways to build joins of two jointree items, then all ways to build joins * of three items (from two-item joins and single items), then four-item * joins, and so on until we have considered all ways to join all the * items into one rel. * * root->join_rel_level[j] is a list of all the j-item rels. Initially we * set root->join_rel_level[1] to represent all the single-jointree-item * relations. */ root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *)); root->join_rel_level[1] = initial_rels; for (lev = 2; lev <= levels_needed; lev++) { ListCell *lc; /* * Determine all possible pairs of relations to be joined at this * level, and build paths for making each one from every available * pair of lower-level relations. */ join_search_one_level(root, lev); /* * Do cleanup work on each just-processed rel. */ foreach(lc, root->join_rel_level[lev]) { rel = (RelOptInfo *) lfirst(lc); /* Find and save the cheapest paths for this rel */ set_cheapest(rel); #ifdef OPTIMIZER_DEBUG debug_print_rel(root, rel); #endif } } /* * We should have a single rel at the final level. */ if (root->join_rel_level[levels_needed] == NIL) elog(ERROR, "failed to build any %d-way joins", levels_needed); Assert(list_length(root->join_rel_level[levels_needed]) == 1); rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]); root->join_rel_level = NULL; return rel; }
static bool subquery_is_pushdown_safe | ( | Query * | subquery, | |
Query * | topquery, | |||
bool * | differentTypes | |||
) | [static] |
Definition at line 1567 of file allpaths.c.
References Assert, SetOperationStmt::colTypes, compare_tlist_datatypes(), Query::hasWindowFuncs, IsA, Query::limitCount, Query::limitOffset, NULL, recurse_pushdown_safe(), Query::setOperations, and Query::targetList.
Referenced by recurse_pushdown_safe(), and set_subquery_pathlist().
{ SetOperationStmt *topop; /* Check point 1 */ if (subquery->limitOffset != NULL || subquery->limitCount != NULL) return false; /* Check point 2 */ if (subquery->hasWindowFuncs) return false; /* Are we at top level, or looking at a setop component? */ if (subquery == topquery) { /* Top level, so check any component queries */ if (subquery->setOperations != NULL) if (!recurse_pushdown_safe(subquery->setOperations, topquery, differentTypes)) return false; } else { /* Setop component must not have more components (too weird) */ if (subquery->setOperations != NULL) return false; /* Check whether setop component output types match top level */ topop = (SetOperationStmt *) topquery->setOperations; Assert(topop && IsA(topop, SetOperationStmt)); compare_tlist_datatypes(subquery->targetList, topop->colTypes, differentTypes); } return true; }
static void subquery_push_qual | ( | Query * | subquery, | |
RangeTblEntry * | rte, | |||
Index | rti, | |||
Node * | qual | |||
) | [static] |
Definition at line 1818 of file allpaths.c.
References Query::groupClause, Query::hasAggs, Query::hasSubLinks, Query::havingQual, Query::jointree, make_and_qual(), NULL, FromExpr::quals, recurse_push_qual(), REPLACEVARS_REPORT_ERROR, ReplaceVarsFromTargetList(), Query::setOperations, and Query::targetList.
Referenced by recurse_push_qual(), and set_subquery_pathlist().
{ if (subquery->setOperations != NULL) { /* Recurse to push it separately to each component query */ recurse_push_qual(subquery->setOperations, subquery, rte, rti, qual); } else { /* * We need to replace Vars in the qual (which must refer to outputs of * the subquery) with copies of the subquery's targetlist expressions. * Note that at this point, any uplevel Vars in the qual should have * been replaced with Params, so they need no work. * * This step also ensures that when we are pushing into a setop tree, * each component query gets its own copy of the qual. */ qual = ReplaceVarsFromTargetList(qual, rti, 0, rte, subquery->targetList, REPLACEVARS_REPORT_ERROR, 0, &subquery->hasSubLinks); /* * Now attach the qual to the proper place: normally WHERE, but if the * subquery uses grouping or aggregation, put it in HAVING (since the * qual really refers to the group-result rows). */ if (subquery->hasAggs || subquery->groupClause || subquery->havingQual) subquery->havingQual = make_and_qual(subquery->havingQual, qual); else subquery->jointree->quals = make_and_qual(subquery->jointree->quals, qual); /* * We need not change the subquery's hasAggs or hasSublinks flags, * since we can't be pushing down any aggregates that weren't there * before, and we don't push down subselects at all. */ } }
bool enable_geqo = false |
Definition at line 43 of file allpaths.c.
Referenced by make_rel_from_joinlist().
int geqo_threshold |
Definition at line 44 of file allpaths.c.
Referenced by make_rel_from_joinlist().
Definition at line 47 of file allpaths.c.
Referenced by make_rel_from_joinlist().