#include "postgres.h"#include <math.h>#include "access/skey.h"#include "access/sysattr.h"#include "catalog/pg_am.h"#include "catalog/pg_collation.h"#include "catalog/pg_operator.h"#include "catalog/pg_opfamily.h"#include "catalog/pg_type.h"#include "nodes/makefuncs.h"#include "optimizer/clauses.h"#include "optimizer/cost.h"#include "optimizer/pathnode.h"#include "optimizer/paths.h"#include "optimizer/predtest.h"#include "optimizer/restrictinfo.h"#include "optimizer/var.h"#include "utils/builtins.h"#include "utils/bytea.h"#include "utils/lsyscache.h"#include "utils/pg_locale.h"#include "utils/selfuncs.h"
Go to the source code of this file.
| #define IndexCollMatchesExprColl | ( | idxcollation, | ||
| exprcollation | ||||
| ) | ((idxcollation) == InvalidOid || (idxcollation) == (exprcollation)) |
Definition at line 45 of file indxpath.c.
Referenced by adjust_rowcompare_for_index(), ec_member_matches_indexcol(), match_clause_to_indexcol(), match_clause_to_ordering_op(), and match_rowcompare_to_indexcol().
| #define IsBooleanOpfamily | ( | opfamily | ) | ((opfamily) == BOOL_BTREE_FAM_OID || (opfamily) == BOOL_HASH_FAM_OID) |
Definition at line 42 of file indxpath.c.
Referenced by expand_indexqual_conditions(), and match_clause_to_indexcol().
| enum SaOpControl |
Definition at line 49 of file indxpath.c.
{
SAOP_PER_AM, /* Use ScalarArrayOpExpr if amsearcharray */
SAOP_ALLOW, /* Use ScalarArrayOpExpr for all indexes */
SAOP_REQUIRE /* Require ScalarArrayOpExpr to be used */
} SaOpControl;
| enum ScanTypeControl |
Definition at line 57 of file indxpath.c.
{
ST_INDEXSCAN, /* must support amgettuple */
ST_BITMAPSCAN, /* must support amgetbitmap */
ST_ANYSCAN /* either is okay */
} ScanTypeControl;
| Expr* adjust_rowcompare_for_index | ( | RowCompareExpr * | clause, | |
| IndexOptInfo * | index, | |||
| int | indexcol, | |||
| List ** | indexcolnos, | |||
| bool * | var_on_left_p | |||
| ) |
Definition at line 3576 of file indxpath.c.
References Assert, bms_is_member(), BOOLOID, BTGreaterEqualStrategyNumber, BTGreaterStrategyNumber, BTLessEqualStrategyNumber, BTLessStrategyNumber, contain_volatile_functions(), copyObject(), elog, ERROR, get_commutator(), get_op_opfamily_properties(), get_op_opfamily_strategy(), get_opfamily_member(), i, IndexOptInfo::indexcollations, IndexCollMatchesExprColl, RowCompareExpr::inputcollids, InvalidOid, lappend_int(), lappend_oid(), RowCompareExpr::largs, lfirst, lfirst_oid, linitial, linitial_oid, list_copy(), list_head(), list_length(), list_make1_int, list_make1_oid, list_truncate(), lnext, make_opclause(), makeNode, match_index_to_operand(), IndexOptInfo::ncolumns, NULL, OidIsValid, RowCompareExpr::opfamilies, IndexOptInfo::opfamily, RowCompareExpr::opnos, pull_varnos(), RowCompareExpr::rargs, RowCompareExpr::rctype, IndexOptInfo::rel, RelOptInfo::relid, ROWCOMPARE_GE, and ROWCOMPARE_LE.
Referenced by expand_indexqual_rowcompare(), and fix_indexqual_references().
{
bool var_on_left;
int op_strategy;
Oid op_lefttype;
Oid op_righttype;
int matching_cols;
Oid expr_op;
List *opfamilies;
List *lefttypes;
List *righttypes;
List *new_ops;
ListCell *largs_cell;
ListCell *rargs_cell;
ListCell *opnos_cell;
ListCell *collids_cell;
/* We have to figure out (again) how the first col matches */
var_on_left = match_index_to_operand((Node *) linitial(clause->largs),
indexcol, index);
Assert(var_on_left ||
match_index_to_operand((Node *) linitial(clause->rargs),
indexcol, index));
*var_on_left_p = var_on_left;
expr_op = linitial_oid(clause->opnos);
if (!var_on_left)
expr_op = get_commutator(expr_op);
get_op_opfamily_properties(expr_op, index->opfamily[indexcol], false,
&op_strategy,
&op_lefttype,
&op_righttype);
/* Initialize returned list of which index columns are used */
*indexcolnos = list_make1_int(indexcol);
/* Build lists of the opfamilies and operator datatypes in case needed */
opfamilies = list_make1_oid(index->opfamily[indexcol]);
lefttypes = list_make1_oid(op_lefttype);
righttypes = list_make1_oid(op_righttype);
/*
* See how many of the remaining columns match some index column in the
* same way. As in match_clause_to_indexcol(), the "other" side of any
* potential index condition is OK as long as it doesn't use Vars from the
* indexed relation.
*/
matching_cols = 1;
largs_cell = lnext(list_head(clause->largs));
rargs_cell = lnext(list_head(clause->rargs));
opnos_cell = lnext(list_head(clause->opnos));
collids_cell = lnext(list_head(clause->inputcollids));
while (largs_cell != NULL)
{
Node *varop;
Node *constop;
int i;
expr_op = lfirst_oid(opnos_cell);
if (var_on_left)
{
varop = (Node *) lfirst(largs_cell);
constop = (Node *) lfirst(rargs_cell);
}
else
{
varop = (Node *) lfirst(rargs_cell);
constop = (Node *) lfirst(largs_cell);
/* indexkey is on right, so commute the operator */
expr_op = get_commutator(expr_op);
if (expr_op == InvalidOid)
break; /* operator is not usable */
}
if (bms_is_member(index->rel->relid, pull_varnos(constop)))
break; /* no good, Var on wrong side */
if (contain_volatile_functions(constop))
break; /* no good, volatile comparison value */
/*
* The Var side can match any column of the index.
*/
for (i = 0; i < index->ncolumns; i++)
{
if (match_index_to_operand(varop, i, index) &&
get_op_opfamily_strategy(expr_op,
index->opfamily[i]) == op_strategy &&
IndexCollMatchesExprColl(index->indexcollations[i],
lfirst_oid(collids_cell)))
break;
}
if (i >= index->ncolumns)
break; /* no match found */
/* Add column number to returned list */
*indexcolnos = lappend_int(*indexcolnos, i);
/* Add opfamily and datatypes to lists */
get_op_opfamily_properties(expr_op, index->opfamily[i], false,
&op_strategy,
&op_lefttype,
&op_righttype);
opfamilies = lappend_oid(opfamilies, index->opfamily[i]);
lefttypes = lappend_oid(lefttypes, op_lefttype);
righttypes = lappend_oid(righttypes, op_righttype);
/* This column matches, keep scanning */
matching_cols++;
largs_cell = lnext(largs_cell);
rargs_cell = lnext(rargs_cell);
opnos_cell = lnext(opnos_cell);
collids_cell = lnext(collids_cell);
}
/* Return clause as-is if it's all usable as index quals */
if (matching_cols == list_length(clause->opnos))
return (Expr *) clause;
/*
* We have to generate a subset rowcompare (possibly just one OpExpr). The
* painful part of this is changing < to <= or > to >=, so deal with that
* first.
*/
if (op_strategy == BTLessEqualStrategyNumber ||
op_strategy == BTGreaterEqualStrategyNumber)
{
/* easy, just use the same operators */
new_ops = list_truncate(list_copy(clause->opnos), matching_cols);
}
else
{
ListCell *opfamilies_cell;
ListCell *lefttypes_cell;
ListCell *righttypes_cell;
if (op_strategy == BTLessStrategyNumber)
op_strategy = BTLessEqualStrategyNumber;
else if (op_strategy == BTGreaterStrategyNumber)
op_strategy = BTGreaterEqualStrategyNumber;
else
elog(ERROR, "unexpected strategy number %d", op_strategy);
new_ops = NIL;
lefttypes_cell = list_head(lefttypes);
righttypes_cell = list_head(righttypes);
foreach(opfamilies_cell, opfamilies)
{
Oid opfam = lfirst_oid(opfamilies_cell);
Oid lefttype = lfirst_oid(lefttypes_cell);
Oid righttype = lfirst_oid(righttypes_cell);
expr_op = get_opfamily_member(opfam, lefttype, righttype,
op_strategy);
if (!OidIsValid(expr_op)) /* should not happen */
elog(ERROR, "could not find member %d(%u,%u) of opfamily %u",
op_strategy, lefttype, righttype, opfam);
if (!var_on_left)
{
expr_op = get_commutator(expr_op);
if (!OidIsValid(expr_op)) /* should not happen */
elog(ERROR, "could not find commutator of member %d(%u,%u) of opfamily %u",
op_strategy, lefttype, righttype, opfam);
}
new_ops = lappend_oid(new_ops, expr_op);
lefttypes_cell = lnext(lefttypes_cell);
righttypes_cell = lnext(righttypes_cell);
}
}
/* If we have more than one matching col, create a subset rowcompare */
if (matching_cols > 1)
{
RowCompareExpr *rc = makeNode(RowCompareExpr);
if (var_on_left)
rc->rctype = (RowCompareType) op_strategy;
else
rc->rctype = (op_strategy == BTLessEqualStrategyNumber) ?
ROWCOMPARE_GE : ROWCOMPARE_LE;
rc->opnos = new_ops;
rc->opfamilies = list_truncate(list_copy(clause->opfamilies),
matching_cols);
rc->inputcollids = list_truncate(list_copy(clause->inputcollids),
matching_cols);
rc->largs = list_truncate((List *) copyObject(clause->largs),
matching_cols);
rc->rargs = list_truncate((List *) copyObject(clause->rargs),
matching_cols);
return (Expr *) rc;
}
else
{
return make_opclause(linitial_oid(new_ops), BOOLOID, false,
copyObject(linitial(clause->largs)),
copyObject(linitial(clause->rargs)),
InvalidOid,
linitial_oid(clause->inputcollids));
}
}
| static Cost bitmap_and_cost_est | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| List * | paths | |||
| ) | [static] |
Definition at line 1591 of file indxpath.c.
References BitmapHeapPath::bitmapqual, BitmapAndPath::bitmapquals, cost_bitmap_and_node(), cost_bitmap_heap_scan(), get_baserel_parampathinfo(), get_bitmap_tree_required_outer(), get_loop_count(), Path::param_info, Path::parent, BitmapHeapPath::path, BitmapAndPath::path, Path::pathkeys, Path::pathtype, Path::total_cost, and Path::type.
Referenced by choose_bitmap_and().
{
BitmapAndPath apath;
BitmapHeapPath bpath;
Relids required_outer;
/* Set up a dummy BitmapAndPath */
apath.path.type = T_BitmapAndPath;
apath.path.pathtype = T_BitmapAnd;
apath.path.parent = rel;
apath.path.param_info = NULL; /* not used in bitmap trees */
apath.path.pathkeys = NIL;
apath.bitmapquals = paths;
cost_bitmap_and_node(&apath, root);
/* Identify required outer rels, in case it's a parameterized scan */
required_outer = get_bitmap_tree_required_outer((Path *) &apath);
/* Set up a dummy BitmapHeapPath */
bpath.path.type = T_BitmapHeapPath;
bpath.path.pathtype = T_BitmapHeapScan;
bpath.path.parent = rel;
bpath.path.param_info = get_baserel_parampathinfo(root, rel,
required_outer);
bpath.path.pathkeys = NIL;
bpath.bitmapqual = (Path *) &apath;
/* Now we can do cost_bitmap_heap_scan */
cost_bitmap_heap_scan(&bpath.path, root, rel,
bpath.path.param_info,
(Path *) &apath,
get_loop_count(root, required_outer));
return bpath.path.total_cost;
}
| static Cost bitmap_scan_cost_est | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| Path * | ipath | |||
| ) | [static] |
Definition at line 1561 of file indxpath.c.
References BitmapHeapPath::bitmapqual, cost_bitmap_heap_scan(), get_baserel_parampathinfo(), get_bitmap_tree_required_outer(), get_loop_count(), Path::param_info, Path::parent, BitmapHeapPath::path, Path::pathkeys, Path::pathtype, Path::total_cost, and Path::type.
Referenced by choose_bitmap_and().
{
BitmapHeapPath bpath;
Relids required_outer;
/* Identify required outer rels, in case it's a parameterized scan */
required_outer = get_bitmap_tree_required_outer(ipath);
/* Set up a dummy BitmapHeapPath */
bpath.path.type = T_BitmapHeapPath;
bpath.path.pathtype = T_BitmapHeapScan;
bpath.path.parent = rel;
bpath.path.param_info = get_baserel_parampathinfo(root, rel,
required_outer);
bpath.path.pathkeys = NIL;
bpath.bitmapqual = ipath;
cost_bitmap_heap_scan(&bpath.path, root, rel,
bpath.path.param_info,
ipath,
get_loop_count(root, required_outer));
return bpath.path.total_cost;
}
Definition at line 725 of file indxpath.c.
References bms_equal(), and lfirst.
Referenced by consider_index_join_outer_rels(), create_index_paths(), and get_join_index_paths().
| static List * build_index_paths | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| IndexOptInfo * | index, | |||
| IndexClauseSet * | clauses, | |||
| bool | useful_predicate, | |||
| SaOpControl | saop_control, | |||
| ScanTypeControl | scantype | |||
| ) | [static] |
Definition at line 842 of file indxpath.c.
References IndexOptInfo::amcanorderbyop, IndexOptInfo::amhasgetbitmap, IndexOptInfo::amhasgettuple, IndexOptInfo::amoptionalkey, IndexOptInfo::amsearcharray, BackwardScanDirection, bms_add_members(), bms_copy(), bms_del_member(), bms_is_empty(), build_index_pathkeys(), check_index_only(), RestrictInfo::clause, RestrictInfo::clause_relids, create_index_path(), ForwardScanDirection, get_loop_count(), has_useful_pathkeys(), IndexClauseSet::indexclauses, IsA, lappend(), lappend_int(), RelOptInfo::lateral_relids, lfirst, match_pathkeys_to_index(), IndexOptInfo::ncolumns, NIL, NoMovementScanDirection, PlannerInfo::query_pathkeys, RelOptInfo::relid, SAOP_PER_AM, SAOP_REQUIRE, IndexOptInfo::sortopfamily, ST_ANYSCAN, ST_BITMAPSCAN, ST_INDEXSCAN, and truncate_useless_pathkeys().
Referenced by build_paths_for_OR(), and get_index_paths().
{
List *result = NIL;
IndexPath *ipath;
List *index_clauses;
List *clause_columns;
Relids outer_relids;
double loop_count;
List *orderbyclauses;
List *orderbyclausecols;
List *index_pathkeys;
List *useful_pathkeys;
bool found_clause;
bool found_lower_saop_clause;
bool pathkeys_possibly_useful;
bool index_is_ordered;
bool index_only_scan;
int indexcol;
/*
* Check that index supports the desired scan type(s)
*/
switch (scantype)
{
case ST_INDEXSCAN:
if (!index->amhasgettuple)
return NIL;
break;
case ST_BITMAPSCAN:
if (!index->amhasgetbitmap)
return NIL;
break;
case ST_ANYSCAN:
/* either or both are OK */
break;
}
/*
* 1. Collect the index clauses into a single list.
*
* We build a list of RestrictInfo nodes for clauses to be used with this
* index, along with an integer list of the index column numbers (zero
* based) that each clause should be used with. The clauses are ordered
* by index key, so that the column numbers form a nondecreasing sequence.
* (This order is depended on by btree and possibly other places.) The
* lists can be empty, if the index AM allows that.
*
* found_clause is set true only if there's at least one index clause; and
* if saop_control is SAOP_REQUIRE, it has to be a ScalarArrayOpExpr
* clause.
*
* found_lower_saop_clause is set true if there's a ScalarArrayOpExpr
* index clause for a non-first index column. This prevents us from
* assuming that the scan result is ordered. (Actually, the result is
* still ordered if there are equality constraints for all earlier
* columns, but it seems too expensive and non-modular for this code to be
* aware of that refinement.)
*
* We also build a Relids set showing which outer rels are required by the
* selected clauses. Any lateral_relids are included in that, but not
* otherwise accounted for.
*/
index_clauses = NIL;
clause_columns = NIL;
found_clause = false;
found_lower_saop_clause = false;
outer_relids = bms_copy(rel->lateral_relids);
for (indexcol = 0; indexcol < index->ncolumns; indexcol++)
{
ListCell *lc;
foreach(lc, clauses->indexclauses[indexcol])
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
if (IsA(rinfo->clause, ScalarArrayOpExpr))
{
/* Ignore if not supported by index */
if (saop_control == SAOP_PER_AM && !index->amsearcharray)
continue;
found_clause = true;
if (indexcol > 0)
found_lower_saop_clause = true;
}
else
{
if (saop_control != SAOP_REQUIRE)
found_clause = true;
}
index_clauses = lappend(index_clauses, rinfo);
clause_columns = lappend_int(clause_columns, indexcol);
outer_relids = bms_add_members(outer_relids,
rinfo->clause_relids);
}
/*
* If no clauses match the first index column, check for amoptionalkey
* restriction. We can't generate a scan over an index with
* amoptionalkey = false unless there's at least one index clause.
* (When working on columns after the first, this test cannot fail. It
* is always okay for columns after the first to not have any
* clauses.)
*/
if (index_clauses == NIL && !index->amoptionalkey)
return NIL;
}
/* We do not want the index's rel itself listed in outer_relids */
outer_relids = bms_del_member(outer_relids, rel->relid);
/* Enforce convention that outer_relids is exactly NULL if empty */
if (bms_is_empty(outer_relids))
outer_relids = NULL;
/* Compute loop_count for cost estimation purposes */
loop_count = get_loop_count(root, outer_relids);
/*
* 2. Compute pathkeys describing index's ordering, if any, then see how
* many of them are actually useful for this query. This is not relevant
* if we are only trying to build bitmap indexscans, nor if we have to
* assume the scan is unordered.
*/
pathkeys_possibly_useful = (scantype != ST_BITMAPSCAN &&
!found_lower_saop_clause &&
has_useful_pathkeys(root, rel));
index_is_ordered = (index->sortopfamily != NULL);
if (index_is_ordered && pathkeys_possibly_useful)
{
index_pathkeys = build_index_pathkeys(root, index,
ForwardScanDirection);
useful_pathkeys = truncate_useless_pathkeys(root, rel,
index_pathkeys);
orderbyclauses = NIL;
orderbyclausecols = NIL;
}
else if (index->amcanorderbyop && pathkeys_possibly_useful)
{
/* see if we can generate ordering operators for query_pathkeys */
match_pathkeys_to_index(index, root->query_pathkeys,
&orderbyclauses,
&orderbyclausecols);
if (orderbyclauses)
useful_pathkeys = root->query_pathkeys;
else
useful_pathkeys = NIL;
}
else
{
useful_pathkeys = NIL;
orderbyclauses = NIL;
orderbyclausecols = NIL;
}
/*
* 3. Check if an index-only scan is possible. If we're not building
* plain indexscans, this isn't relevant since bitmap scans don't support
* index data retrieval anyway.
*/
index_only_scan = (scantype != ST_BITMAPSCAN &&
check_index_only(rel, index));
/*
* 4. Generate an indexscan path if there are relevant restriction clauses
* in the current clauses, OR the index ordering is potentially useful for
* later merging or final output ordering, OR the index has a useful
* predicate, OR an index-only scan is possible.
*/
if (found_clause || useful_pathkeys != NIL || useful_predicate ||
index_only_scan)
{
ipath = create_index_path(root, index,
index_clauses,
clause_columns,
orderbyclauses,
orderbyclausecols,
useful_pathkeys,
index_is_ordered ?
ForwardScanDirection :
NoMovementScanDirection,
index_only_scan,
outer_relids,
loop_count);
result = lappend(result, ipath);
}
/*
* 5. If the index is ordered, a backwards scan might be interesting.
*/
if (index_is_ordered && pathkeys_possibly_useful)
{
index_pathkeys = build_index_pathkeys(root, index,
BackwardScanDirection);
useful_pathkeys = truncate_useless_pathkeys(root, rel,
index_pathkeys);
if (useful_pathkeys != NIL)
{
ipath = create_index_path(root, index,
index_clauses,
clause_columns,
NIL,
NIL,
useful_pathkeys,
BackwardScanDirection,
index_only_scan,
outer_relids,
loop_count);
result = lappend(result, ipath);
}
}
return result;
}
| static List * build_paths_for_OR | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| List * | clauses, | |||
| List * | other_clauses | |||
| ) | [static] |
Definition at line 1085 of file indxpath.c.
References IndexOptInfo::amhasgetbitmap, build_index_paths(), RelOptInfo::indexlist, IndexOptInfo::indpred, lfirst, list_concat(), list_copy(), match_clauses_to_index(), MemSet, NIL, IndexClauseSet::nonempty, predicate_implied_by(), IndexOptInfo::predOK, SAOP_ALLOW, and ST_BITMAPSCAN.
Referenced by generate_bitmap_or_paths().
{
List *result = NIL;
List *all_clauses = NIL; /* not computed till needed */
ListCell *lc;
foreach(lc, rel->indexlist)
{
IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
IndexClauseSet clauseset;
List *indexpaths;
bool useful_predicate;
/* Ignore index if it doesn't support bitmap scans */
if (!index->amhasgetbitmap)
continue;
/*
* Ignore partial indexes that do not match the query. If a partial
* index is marked predOK then we know it's OK. Otherwise, we have to
* test whether the added clauses are sufficient to imply the
* predicate. If so, we can use the index in the current context.
*
* We set useful_predicate to true iff the predicate was proven using
* the current set of clauses. This is needed to prevent matching a
* predOK index to an arm of an OR, which would be a legal but
* pointlessly inefficient plan. (A better plan will be generated by
* just scanning the predOK index alone, no OR.)
*/
useful_predicate = false;
if (index->indpred != NIL)
{
if (index->predOK)
{
/* Usable, but don't set useful_predicate */
}
else
{
/* Form all_clauses if not done already */
if (all_clauses == NIL)
all_clauses = list_concat(list_copy(clauses),
other_clauses);
if (!predicate_implied_by(index->indpred, all_clauses))
continue; /* can't use it at all */
if (!predicate_implied_by(index->indpred, other_clauses))
useful_predicate = true;
}
}
/*
* Identify the restriction clauses that can match the index.
*/
MemSet(&clauseset, 0, sizeof(clauseset));
match_clauses_to_index(index, clauses, &clauseset);
/*
* If no matches so far, and the index predicate isn't useful, we
* don't want it.
*/
if (!clauseset.nonempty && !useful_predicate)
continue;
/*
* Add "other" restriction clauses to the clauseset.
*/
match_clauses_to_index(index, other_clauses, &clauseset);
/*
* Construct paths if possible.
*/
indexpaths = build_index_paths(root, rel,
index, &clauseset,
useful_predicate,
SAOP_ALLOW, ST_BITMAPSCAN);
result = list_concat(result, indexpaths);
}
return result;
}
| static bool check_index_only | ( | RelOptInfo * | rel, | |
| IndexOptInfo * | index | |||
| ) | [static] |
Definition at line 1806 of file indxpath.c.
References RelOptInfo::baserestrictinfo, bms_add_member(), bms_free(), bms_is_subset(), IndexOptInfo::canreturn, RestrictInfo::clause, enable_indexonlyscan, FirstLowInvalidHeapAttributeNumber, i, IndexOptInfo::indexkeys, lfirst, IndexOptInfo::ncolumns, pull_varattnos(), RelOptInfo::relid, and RelOptInfo::reltargetlist.
Referenced by build_index_paths().
{
bool result;
Bitmapset *attrs_used = NULL;
Bitmapset *index_attrs = NULL;
ListCell *lc;
int i;
/* Index-only scans must be enabled, and index must be capable of them */
if (!enable_indexonlyscan)
return false;
if (!index->canreturn)
return false;
/*
* Check that all needed attributes of the relation are available from the
* index.
*
* XXX this is overly conservative for partial indexes, since we will
* consider attributes involved in the index predicate as required even
* though the predicate won't need to be checked at runtime. (The same is
* true for attributes used only in index quals, if we are certain that
* the index is not lossy.) However, it would be quite expensive to
* determine that accurately at this point, so for now we take the easy
* way out.
*/
/*
* Add all the attributes needed for joins or final output. Note: we must
* look at reltargetlist, not the attr_needed data, because attr_needed
* isn't computed for inheritance child rels.
*/
pull_varattnos((Node *) rel->reltargetlist, rel->relid, &attrs_used);
/* Add all the attributes used by restriction clauses. */
foreach(lc, rel->baserestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
pull_varattnos((Node *) rinfo->clause, rel->relid, &attrs_used);
}
/* Construct a bitmapset of columns stored in the index. */
for (i = 0; i < index->ncolumns; i++)
{
int attno = index->indexkeys[i];
/*
* For the moment, we just ignore index expressions. It might be nice
* to do something with them, later.
*/
if (attno == 0)
continue;
index_attrs =
bms_add_member(index_attrs,
attno - FirstLowInvalidHeapAttributeNumber);
}
/* Do we have all the necessary attributes? */
result = bms_is_subset(attrs_used, index_attrs);
bms_free(attrs_used);
bms_free(index_attrs);
return result;
}
| void check_partial_indexes | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel | |||
| ) |
Definition at line 2604 of file indxpath.c.
References PlannerInfo::all_baserels, RelOptInfo::baserestrictinfo, bms_difference(), bms_is_empty(), bms_make_singleton(), bms_union(), find_childrel_appendrelinfo(), generate_join_implied_equalities(), RelOptInfo::indexlist, IndexOptInfo::indpred, join_clause_is_movable_to(), RelOptInfo::joininfo, lappend(), lfirst, list_concat(), list_copy(), NIL, AppendRelInfo::parent_relid, predicate_implied_by(), IndexOptInfo::predOK, RelOptInfo::relid, RelOptInfo::relids, RELOPT_OTHER_MEMBER_REL, and RelOptInfo::reloptkind.
Referenced by set_plain_rel_size().
{
List *clauselist;
bool have_partial;
Relids otherrels;
ListCell *lc;
/*
* Frequently, there will be no partial indexes, so first check to make
* sure there's something useful to do here.
*/
have_partial = false;
foreach(lc, rel->indexlist)
{
IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
if (index->indpred == NIL)
continue; /* ignore non-partial indexes */
if (index->predOK)
continue; /* don't repeat work if already proven OK */
have_partial = true;
break;
}
if (!have_partial)
return;
/*
* Construct a list of clauses that we can assume true for the purpose
* of proving the index(es) usable. Restriction clauses for the rel are
* always usable, and so are any join clauses that are "movable to" this
* rel. Also, we can consider any EC-derivable join clauses (which must
* be "movable to" this rel, by definition).
*/
clauselist = list_copy(rel->baserestrictinfo);
/* Scan the rel's join clauses */
foreach(lc, rel->joininfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
/* Check if clause can be moved to this rel */
if (!join_clause_is_movable_to(rinfo, rel->relid))
continue;
clauselist = lappend(clauselist, rinfo);
}
/*
* Add on any equivalence-derivable join clauses. Computing the correct
* relid sets for generate_join_implied_equalities is slightly tricky
* because the rel could be a child rel rather than a true baserel, and
* in that case we must remove its parent's relid from all_baserels.
*/
if (rel->reloptkind == RELOPT_OTHER_MEMBER_REL)
{
/* Lookup parent->child translation data */
AppendRelInfo *appinfo = find_childrel_appendrelinfo(root, rel);
otherrels = bms_difference(root->all_baserels,
bms_make_singleton(appinfo->parent_relid));
}
else
otherrels = bms_difference(root->all_baserels, rel->relids);
if (!bms_is_empty(otherrels))
clauselist =
list_concat(clauselist,
generate_join_implied_equalities(root,
bms_union(rel->relids,
otherrels),
otherrels,
rel));
/* Now try to prove each index predicate true */
foreach(lc, rel->indexlist)
{
IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
if (index->indpred == NIL)
continue; /* ignore non-partial indexes */
if (index->predOK)
continue; /* don't repeat work if already proven OK */
index->predOK = predicate_implied_by(index->indpred, clauselist);
}
}
| static Path * choose_bitmap_and | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| List * | paths | |||
| ) | [static] |
Definition at line 1328 of file indxpath.c.
References Assert, bitmap_and_cost_est(), bitmap_scan_cost_est(), bms_add_members(), bms_copy(), bms_equal(), bms_overlap(), classify_index_clause_usage(), PathClauseUsage::clauseids, cost_bitmap_tree_node(), create_bitmap_and_path(), i, lappend(), lfirst, linitial, list_concat(), list_copy(), list_delete_cell(), list_free(), list_head(), list_length(), list_make1, lnext, NULL, palloc(), PathClauseUsage::path, path_usage_comparator(), predicate_implied_by(), PathClauseUsage::preds, qsort, and PathClauseUsage::quals.
Referenced by create_index_paths(), and generate_bitmap_or_paths().
{
int npaths = list_length(paths);
PathClauseUsage **pathinfoarray;
PathClauseUsage *pathinfo;
List *clauselist;
List *bestpaths = NIL;
Cost bestcost = 0;
int i,
j;
ListCell *l;
Assert(npaths > 0); /* else caller error */
if (npaths == 1)
return (Path *) linitial(paths); /* easy case */
/*
* In theory we should consider every nonempty subset of the given paths.
* In practice that seems like overkill, given the crude nature of the
* estimates, not to mention the possible effects of higher-level AND and
* OR clauses. Moreover, it's completely impractical if there are a large
* number of paths, since the work would grow as O(2^N).
*
* As a heuristic, we first check for paths using exactly the same sets of
* WHERE clauses + index predicate conditions, and reject all but the
* cheapest-to-scan in any such group. This primarily gets rid of indexes
* that include the interesting columns but also irrelevant columns. (In
* situations where the DBA has gone overboard on creating variant
* indexes, this can make for a very large reduction in the number of
* paths considered further.)
*
* We then sort the surviving paths with the cheapest-to-scan first, and
* for each path, consider using that path alone as the basis for a bitmap
* scan. Then we consider bitmap AND scans formed from that path plus
* each subsequent (higher-cost) path, adding on a subsequent path if it
* results in a reduction in the estimated total scan cost. This means we
* consider about O(N^2) rather than O(2^N) path combinations, which is
* quite tolerable, especially given than N is usually reasonably small
* because of the prefiltering step. The cheapest of these is returned.
*
* We will only consider AND combinations in which no two indexes use the
* same WHERE clause. This is a bit of a kluge: it's needed because
* costsize.c and clausesel.c aren't very smart about redundant clauses.
* They will usually double-count the redundant clauses, producing a
* too-small selectivity that makes a redundant AND step look like it
* reduces the total cost. Perhaps someday that code will be smarter and
* we can remove this limitation. (But note that this also defends
* against flat-out duplicate input paths, which can happen because
* match_join_clauses_to_index will find the same OR join clauses that
* create_or_index_quals has pulled OR restriction clauses out of.)
*
* For the same reason, we reject AND combinations in which an index
* predicate clause duplicates another clause. Here we find it necessary
* to be even stricter: we'll reject a partial index if any of its
* predicate clauses are implied by the set of WHERE clauses and predicate
* clauses used so far. This covers cases such as a condition "x = 42"
* used with a plain index, followed by a clauseless scan of a partial
* index "WHERE x >= 40 AND x < 50". The partial index has been accepted
* only because "x = 42" was present, and so allowing it would partially
* double-count selectivity. (We could use predicate_implied_by on
* regular qual clauses too, to have a more intelligent, but much more
* expensive, check for redundancy --- but in most cases simple equality
* seems to suffice.)
*/
/*
* Extract clause usage info and detect any paths that use exactly the
* same set of clauses; keep only the cheapest-to-scan of any such groups.
* The surviving paths are put into an array for qsort'ing.
*/
pathinfoarray = (PathClauseUsage **)
palloc(npaths * sizeof(PathClauseUsage *));
clauselist = NIL;
npaths = 0;
foreach(l, paths)
{
Path *ipath = (Path *) lfirst(l);
pathinfo = classify_index_clause_usage(ipath, &clauselist);
for (i = 0; i < npaths; i++)
{
if (bms_equal(pathinfo->clauseids, pathinfoarray[i]->clauseids))
break;
}
if (i < npaths)
{
/* duplicate clauseids, keep the cheaper one */
Cost ncost;
Cost ocost;
Selectivity nselec;
Selectivity oselec;
cost_bitmap_tree_node(pathinfo->path, &ncost, &nselec);
cost_bitmap_tree_node(pathinfoarray[i]->path, &ocost, &oselec);
if (ncost < ocost)
pathinfoarray[i] = pathinfo;
}
else
{
/* not duplicate clauseids, add to array */
pathinfoarray[npaths++] = pathinfo;
}
}
/* If only one surviving path, we're done */
if (npaths == 1)
return pathinfoarray[0]->path;
/* Sort the surviving paths by index access cost */
qsort(pathinfoarray, npaths, sizeof(PathClauseUsage *),
path_usage_comparator);
/*
* For each surviving index, consider it as an "AND group leader", and see
* whether adding on any of the later indexes results in an AND path with
* cheaper total cost than before. Then take the cheapest AND group.
*/
for (i = 0; i < npaths; i++)
{
Cost costsofar;
List *qualsofar;
Bitmapset *clauseidsofar;
ListCell *lastcell;
pathinfo = pathinfoarray[i];
paths = list_make1(pathinfo->path);
costsofar = bitmap_scan_cost_est(root, rel, pathinfo->path);
qualsofar = list_concat(list_copy(pathinfo->quals),
list_copy(pathinfo->preds));
clauseidsofar = bms_copy(pathinfo->clauseids);
lastcell = list_head(paths); /* for quick deletions */
for (j = i + 1; j < npaths; j++)
{
Cost newcost;
pathinfo = pathinfoarray[j];
/* Check for redundancy */
if (bms_overlap(pathinfo->clauseids, clauseidsofar))
continue; /* consider it redundant */
if (pathinfo->preds)
{
bool redundant = false;
/* we check each predicate clause separately */
foreach(l, pathinfo->preds)
{
Node *np = (Node *) lfirst(l);
if (predicate_implied_by(list_make1(np), qualsofar))
{
redundant = true;
break; /* out of inner foreach loop */
}
}
if (redundant)
continue;
}
/* tentatively add new path to paths, so we can estimate cost */
paths = lappend(paths, pathinfo->path);
newcost = bitmap_and_cost_est(root, rel, paths);
if (newcost < costsofar)
{
/* keep new path in paths, update subsidiary variables */
costsofar = newcost;
qualsofar = list_concat(qualsofar,
list_copy(pathinfo->quals));
qualsofar = list_concat(qualsofar,
list_copy(pathinfo->preds));
clauseidsofar = bms_add_members(clauseidsofar,
pathinfo->clauseids);
lastcell = lnext(lastcell);
}
else
{
/* reject new path, remove it from paths list */
paths = list_delete_cell(paths, lnext(lastcell), lastcell);
}
Assert(lnext(lastcell) == NULL);
}
/* Keep the cheapest AND-group (or singleton) */
if (i == 0 || costsofar < bestcost)
{
bestpaths = paths;
bestcost = costsofar;
}
/* some easy cleanup (we don't try real hard though) */
list_free(qualsofar);
}
if (list_length(bestpaths) == 1)
return (Path *) linitial(bestpaths); /* no need for AND */
return (Path *) create_bitmap_and_path(root, rel, bestpaths);
}
| static PathClauseUsage * classify_index_clause_usage | ( | Path * | path, | |
| List ** | clauselist | |||
| ) | [static] |
Definition at line 1643 of file indxpath.c.
References bms_add_member(), PathClauseUsage::clauseids, find_indexpath_quals(), find_list_position(), lfirst, palloc(), PathClauseUsage::path, PathClauseUsage::preds, and PathClauseUsage::quals.
Referenced by choose_bitmap_and().
{
PathClauseUsage *result;
Bitmapset *clauseids;
ListCell *lc;
result = (PathClauseUsage *) palloc(sizeof(PathClauseUsage));
result->path = path;
/* Recursively find the quals and preds used by the path */
result->quals = NIL;
result->preds = NIL;
find_indexpath_quals(path, &result->quals, &result->preds);
/* Build up a bitmapset representing the quals and preds */
clauseids = NULL;
foreach(lc, result->quals)
{
Node *node = (Node *) lfirst(lc);
clauseids = bms_add_member(clauseids,
find_list_position(node, clauselist));
}
foreach(lc, result->preds)
{
Node *node = (Node *) lfirst(lc);
clauseids = bms_add_member(clauseids,
find_list_position(node, clauselist));
}
result->clauseids = clauseids;
return result;
}
| static void consider_index_join_clauses | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| IndexOptInfo * | index, | |||
| IndexClauseSet * | rclauseset, | |||
| IndexClauseSet * | jclauseset, | |||
| IndexClauseSet * | eclauseset, | |||
| List ** | bitindexpaths | |||
| ) | [static] |
Definition at line 456 of file indxpath.c.
References consider_index_join_outer_rels(), IndexClauseSet::indexclauses, list_length(), and IndexOptInfo::ncolumns.
Referenced by create_index_paths().
{
int considered_clauses = 0;
List *considered_relids = NIL;
int indexcol;
/*
* The strategy here is to identify every potentially useful set of outer
* rels that can provide indexable join clauses. For each such set,
* select all the join clauses available from those outer rels, add on all
* the indexable restriction clauses, and generate plain and/or bitmap
* index paths for that set of clauses. This is based on the assumption
* that it's always better to apply a clause as an indexqual than as a
* filter (qpqual); which is where an available clause would end up being
* applied if we omit it from the indexquals.
*
* This looks expensive, but in most practical cases there won't be very
* many distinct sets of outer rels to consider. As a safety valve when
* that's not true, we use a heuristic: limit the number of outer rel sets
* considered to a multiple of the number of clauses considered. (We'll
* always consider using each individual join clause, though.)
*
* For simplicity in selecting relevant clauses, we represent each set of
* outer rels as a maximum set of clause_relids --- that is, the indexed
* relation itself is also included in the relids set. considered_relids
* lists all relids sets we've already tried.
*/
for (indexcol = 0; indexcol < index->ncolumns; indexcol++)
{
/* Consider each applicable simple join clause */
considered_clauses += list_length(jclauseset->indexclauses[indexcol]);
consider_index_join_outer_rels(root, rel, index,
rclauseset, jclauseset, eclauseset,
bitindexpaths,
jclauseset->indexclauses[indexcol],
considered_clauses,
&considered_relids);
/* Consider each applicable eclass join clause */
considered_clauses += list_length(eclauseset->indexclauses[indexcol]);
consider_index_join_outer_rels(root, rel, index,
rclauseset, jclauseset, eclauseset,
bitindexpaths,
eclauseset->indexclauses[indexcol],
considered_clauses,
&considered_relids);
}
}
| static void consider_index_join_outer_rels | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| IndexOptInfo * | index, | |||
| IndexClauseSet * | rclauseset, | |||
| IndexClauseSet * | jclauseset, | |||
| IndexClauseSet * | eclauseset, | |||
| List ** | bitindexpaths, | |||
| List * | indexjoinclauses, | |||
| int | considered_clauses, | |||
| List ** | considered_relids | |||
| ) | [static] |
Definition at line 522 of file indxpath.c.
References bms_equal_any(), bms_subset_compare(), bms_union(), RestrictInfo::clause_relids, eclass_already_used(), get_join_index_paths(), lfirst, list_length(), and RestrictInfo::parent_ec.
Referenced by consider_index_join_clauses().
{
ListCell *lc;
/* Examine relids of each joinclause in the given list */
foreach(lc, indexjoinclauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
Relids clause_relids = rinfo->clause_relids;
ListCell *lc2;
/* If we already tried its relids set, no need to do so again */
if (bms_equal_any(clause_relids, *considered_relids))
continue;
/*
* Generate the union of this clause's relids set with each
* previously-tried set. This ensures we try this clause along with
* every interesting subset of previous clauses. However, to avoid
* exponential growth of planning time when there are many clauses,
* limit the number of relid sets accepted to 10 * considered_clauses.
*
* Note: get_join_index_paths adds entries to *considered_relids, but
* it prepends them to the list, so that we won't visit new entries
* during the inner foreach loop. No real harm would be done if we
* did, since the subset check would reject them; but it would waste
* some cycles.
*/
foreach(lc2, *considered_relids)
{
Relids oldrelids = (Relids) lfirst(lc2);
/*
* If either is a subset of the other, no new set is possible.
* This isn't a complete test for redundancy, but it's easy and
* cheap. get_join_index_paths will check more carefully if we
* already generated the same relids set.
*/
if (bms_subset_compare(clause_relids, oldrelids) != BMS_DIFFERENT)
continue;
/*
* If this clause was derived from an equivalence class, the
* clause list may contain other clauses derived from the same
* eclass. We should not consider that combining this clause with
* one of those clauses generates a usefully different
* parameterization; so skip if any clause derived from the same
* eclass would already have been included when using oldrelids.
*/
if (rinfo->parent_ec &&
eclass_already_used(rinfo->parent_ec, oldrelids,
indexjoinclauses))
continue;
/*
* If the number of relid sets considered exceeds our heuristic
* limit, stop considering combinations of clauses. We'll still
* consider the current clause alone, though (below this loop).
*/
if (list_length(*considered_relids) >= 10 * considered_clauses)
break;
/* OK, try the union set */
get_join_index_paths(root, rel, index,
rclauseset, jclauseset, eclauseset,
bitindexpaths,
bms_union(clause_relids, oldrelids),
considered_relids);
}
/* Also try this set of relids by itself */
get_join_index_paths(root, rel, index,
rclauseset, jclauseset, eclauseset,
bitindexpaths,
clause_relids,
considered_relids);
}
}
| void create_index_paths | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel | |||
| ) |
Definition at line 233 of file indxpath.c.
References add_path(), Assert, RelOptInfo::baserestrictinfo, bms_add_member(), bms_equal_any(), bms_is_member(), bms_is_subset(), choose_bitmap_and(), consider_index_join_clauses(), create_bitmap_heap_path(), forboth, generate_bitmap_or_paths(), get_bitmap_tree_required_outer(), get_index_paths(), get_loop_count(), INDEX_MAX_KEYS, RelOptInfo::indexlist, IndexOptInfo::indpred, lappend(), PlannerInfo::lateral_info_list, LateralJoinInfo::lateral_lhs, RelOptInfo::lateral_relids, LateralJoinInfo::lateral_rhs, lfirst, list_concat(), match_eclass_clauses_to_index(), match_join_clauses_to_index(), match_restriction_clauses_to_index(), MemSet, IndexOptInfo::ncolumns, NIL, IndexClauseSet::nonempty, IndexOptInfo::predOK, and RelOptInfo::relid.
Referenced by set_plain_rel_pathlist().
{
List *indexpaths;
List *bitindexpaths;
List *bitjoinpaths;
List *joinorclauses;
Relids lateral_referencers;
IndexClauseSet rclauseset;
IndexClauseSet jclauseset;
IndexClauseSet eclauseset;
ListCell *lc;
/* Skip the whole mess if no indexes */
if (rel->indexlist == NIL)
return;
/*
* If there are any rels that have LATERAL references to this one, we
* cannot use join quals referencing them as index quals for this one,
* since such rels would have to be on the inside not the outside of a
* nestloop join relative to this one. Create a Relids set listing all
* such rels, for use in checks of potential join clauses.
*/
lateral_referencers = NULL;
foreach(lc, root->lateral_info_list)
{
LateralJoinInfo *ljinfo = (LateralJoinInfo *) lfirst(lc);
if (bms_is_member(rel->relid, ljinfo->lateral_lhs))
lateral_referencers = bms_add_member(lateral_referencers,
ljinfo->lateral_rhs);
}
/* Bitmap paths are collected and then dealt with at the end */
bitindexpaths = bitjoinpaths = joinorclauses = NIL;
/* Examine each index in turn */
foreach(lc, rel->indexlist)
{
IndexOptInfo *index = (IndexOptInfo *) lfirst(lc);
/* Protect limited-size array in IndexClauseSets */
Assert(index->ncolumns <= INDEX_MAX_KEYS);
/*
* Ignore partial indexes that do not match the query.
* (generate_bitmap_or_paths() might be able to do something with
* them, but that's of no concern here.)
*/
if (index->indpred != NIL && !index->predOK)
continue;
/*
* Identify the restriction clauses that can match the index.
*/
MemSet(&rclauseset, 0, sizeof(rclauseset));
match_restriction_clauses_to_index(rel, index, &rclauseset);
/*
* Build index paths from the restriction clauses. These will be
* non-parameterized paths. Plain paths go directly to add_path(),
* bitmap paths are added to bitindexpaths to be handled below.
*/
get_index_paths(root, rel, index, &rclauseset,
&bitindexpaths);
/*
* Identify the join clauses that can match the index. For the moment
* we keep them separate from the restriction clauses. Note that this
* step finds only "loose" join clauses that have not been merged into
* EquivalenceClasses. Also, collect join OR clauses for later.
*/
MemSet(&jclauseset, 0, sizeof(jclauseset));
match_join_clauses_to_index(root, rel, index, lateral_referencers,
&jclauseset, &joinorclauses);
/*
* Look for EquivalenceClasses that can generate joinclauses matching
* the index.
*/
MemSet(&eclauseset, 0, sizeof(eclauseset));
match_eclass_clauses_to_index(root, index, lateral_referencers,
&eclauseset);
/*
* If we found any plain or eclass join clauses, build parameterized
* index paths using them.
*/
if (jclauseset.nonempty || eclauseset.nonempty)
consider_index_join_clauses(root, rel, index,
&rclauseset,
&jclauseset,
&eclauseset,
&bitjoinpaths);
}
/*
* Generate BitmapOrPaths for any suitable OR-clauses present in the
* restriction list. Add these to bitindexpaths.
*/
indexpaths = generate_bitmap_or_paths(root, rel,
rel->baserestrictinfo, NIL,
false);
bitindexpaths = list_concat(bitindexpaths, indexpaths);
/*
* Likewise, generate BitmapOrPaths for any suitable OR-clauses present in
* the joinclause list. Add these to bitjoinpaths.
*/
indexpaths = generate_bitmap_or_paths(root, rel,
joinorclauses, rel->baserestrictinfo,
false);
bitjoinpaths = list_concat(bitjoinpaths, indexpaths);
/*
* If we found anything usable, generate a BitmapHeapPath for the most
* promising combination of restriction bitmap index paths. Note there
* will be only one such path no matter how many indexes exist. This
* should be sufficient since there's basically only one figure of merit
* (total cost) for such a path.
*/
if (bitindexpaths != NIL)
{
Path *bitmapqual;
BitmapHeapPath *bpath;
bitmapqual = choose_bitmap_and(root, rel, bitindexpaths);
bpath = create_bitmap_heap_path(root, rel, bitmapqual,
rel->lateral_relids, 1.0);
add_path(rel, (Path *) bpath);
}
/*
* Likewise, if we found anything usable, generate BitmapHeapPaths for the
* most promising combinations of join bitmap index paths. Our strategy
* is to generate one such path for each distinct parameterization seen
* among the available bitmap index paths. This may look pretty
* expensive, but usually there won't be very many distinct
* parameterizations. (This logic is quite similar to that in
* consider_index_join_clauses, but we're working with whole paths not
* individual clauses.)
*/
if (bitjoinpaths != NIL)
{
List *path_outer;
List *all_path_outers;
ListCell *lc;
/*
* path_outer holds the parameterization of each path in bitjoinpaths
* (to save recalculating that several times), while all_path_outers
* holds all distinct parameterization sets.
*/
path_outer = all_path_outers = NIL;
foreach(lc, bitjoinpaths)
{
Path *path = (Path *) lfirst(lc);
Relids required_outer;
required_outer = get_bitmap_tree_required_outer(path);
path_outer = lappend(path_outer, required_outer);
if (!bms_equal_any(required_outer, all_path_outers))
all_path_outers = lappend(all_path_outers, required_outer);
}
/* Now, for each distinct parameterization set ... */
foreach(lc, all_path_outers)
{
Relids max_outers = (Relids) lfirst(lc);
List *this_path_set;
Path *bitmapqual;
Relids required_outer;
double loop_count;
BitmapHeapPath *bpath;
ListCell *lcp;
ListCell *lco;
/* Identify all the bitmap join paths needing no more than that */
this_path_set = NIL;
forboth(lcp, bitjoinpaths, lco, path_outer)
{
Path *path = (Path *) lfirst(lcp);
Relids p_outers = (Relids) lfirst(lco);
if (bms_is_subset(p_outers, max_outers))
this_path_set = lappend(this_path_set, path);
}
/*
* Add in restriction bitmap paths, since they can be used
* together with any join paths.
*/
this_path_set = list_concat(this_path_set, bitindexpaths);
/* Select best AND combination for this parameterization */
bitmapqual = choose_bitmap_and(root, rel, this_path_set);
/* And push that path into the mix */
required_outer = get_bitmap_tree_required_outer(bitmapqual);
loop_count = get_loop_count(root, required_outer);
bpath = create_bitmap_heap_path(root, rel, bitmapqual,
required_outer, loop_count);
add_path(rel, (Path *) bpath);
}
}
}
| static List * drop_indexable_join_clauses | ( | RelOptInfo * | rel, | |
| List * | clauses | |||
| ) | [static] |
Definition at line 1298 of file indxpath.c.
References Assert, bms_is_subset(), RestrictInfo::clause_relids, IsA, lappend(), lfirst, RelOptInfo::relids, and restriction_is_or_clause().
Referenced by generate_bitmap_or_paths().
{
List *result = NIL;
ListCell *lc;
foreach(lc, clauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
Assert(IsA(rinfo, RestrictInfo));
if (restriction_is_or_clause(rinfo) ||
bms_is_subset(rinfo->clause_relids, rel->relids))
result = lappend(result, rinfo);
}
return result;
}
| static bool ec_member_matches_indexcol | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| EquivalenceClass * | ec, | |||
| EquivalenceMember * | em, | |||
| void * | arg | |||
| ) | [static] |
Definition at line 2705 of file indxpath.c.
References BTREE_AM_OID, EquivalenceClass::ec_collation, EquivalenceClass::ec_opfamilies, EquivalenceMember::em_expr, IndexOptInfo::indexcollations, IndexCollMatchesExprColl, list_member_oid(), match_index_to_operand(), IndexOptInfo::opfamily, and IndexOptInfo::relam.
Referenced by match_eclass_clauses_to_index().
{
IndexOptInfo *index = ((ec_member_matches_arg *) arg)->index;
int indexcol = ((ec_member_matches_arg *) arg)->indexcol;
Oid curFamily = index->opfamily[indexcol];
Oid curCollation = index->indexcollations[indexcol];
/*
* If it's a btree index, we can reject it if its opfamily isn't
* compatible with the EC, since no clause generated from the EC could be
* used with the index. For non-btree indexes, we can't easily tell
* whether clauses generated from the EC could be used with the index, so
* don't check the opfamily. This might mean we return "true" for a
* useless EC, so we have to recheck the results of
* generate_implied_equalities_for_column; see
* match_eclass_clauses_to_index.
*/
if (index->relam == BTREE_AM_OID &&
!list_member_oid(ec->ec_opfamilies, curFamily))
return false;
/* We insist on collation match for all index types, though */
if (!IndexCollMatchesExprColl(curCollation, ec->ec_collation))
return false;
return match_index_to_operand((Node *) em->em_expr, indexcol, index);
}
| static bool eclass_already_used | ( | EquivalenceClass * | parent_ec, | |
| Relids | oldrelids, | |||
| List * | indexjoinclauses | |||
| ) | [static] |
Definition at line 702 of file indxpath.c.
References bms_is_subset(), RestrictInfo::clause_relids, lfirst, and RestrictInfo::parent_ec.
Referenced by consider_index_join_outer_rels().
{
ListCell *lc;
foreach(lc, indexjoinclauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
if (rinfo->parent_ec == parent_ec &&
bms_is_subset(rinfo->clause_relids, oldrelids))
return true;
}
return false;
}
| static Expr * expand_boolean_index_clause | ( | Node * | clause, | |
| int | indexcol, | |||
| IndexOptInfo * | index | |||
| ) | [static] |
Definition at line 3363 of file indxpath.c.
References BooleanTest::arg, arg, Assert, BooleanEqualOperator, BOOLOID, BooleanTest::booltesttype, get_notclausearg(), InvalidOid, IS_FALSE, IS_TRUE, IsA, make_opclause(), makeBoolConst(), match_index_to_operand(), and not_clause().
Referenced by expand_indexqual_conditions().
{
/* Direct match? */
if (match_index_to_operand(clause, indexcol, index))
{
/* convert to indexkey = TRUE */
return make_opclause(BooleanEqualOperator, BOOLOID, false,
(Expr *) clause,
(Expr *) makeBoolConst(true, false),
InvalidOid, InvalidOid);
}
/* NOT clause? */
if (not_clause(clause))
{
Node *arg = (Node *) get_notclausearg((Expr *) clause);
/* It must have matched the indexkey */
Assert(match_index_to_operand(arg, indexcol, index));
/* convert to indexkey = FALSE */
return make_opclause(BooleanEqualOperator, BOOLOID, false,
(Expr *) arg,
(Expr *) makeBoolConst(false, false),
InvalidOid, InvalidOid);
}
if (clause && IsA(clause, BooleanTest))
{
BooleanTest *btest = (BooleanTest *) clause;
Node *arg = (Node *) btest->arg;
/* It must have matched the indexkey */
Assert(match_index_to_operand(arg, indexcol, index));
if (btest->booltesttype == IS_TRUE)
{
/* convert to indexkey = TRUE */
return make_opclause(BooleanEqualOperator, BOOLOID, false,
(Expr *) arg,
(Expr *) makeBoolConst(true, false),
InvalidOid, InvalidOid);
}
if (btest->booltesttype == IS_FALSE)
{
/* convert to indexkey = FALSE */
return make_opclause(BooleanEqualOperator, BOOLOID, false,
(Expr *) arg,
(Expr *) makeBoolConst(false, false),
InvalidOid, InvalidOid);
}
/* Oops */
Assert(false);
}
return NULL;
}
| void expand_indexqual_conditions | ( | IndexOptInfo * | index, | |
| List * | indexclauses, | |||
| List * | indexclausecols, | |||
| List ** | indexquals_p, | |||
| List ** | indexqualcols_p | |||
| ) |
Definition at line 3278 of file indxpath.c.
References IndexOptInfo::amsearchnulls, Assert, RestrictInfo::clause, elog, ERROR, expand_boolean_index_clause(), expand_indexqual_opclause(), expand_indexqual_rowcompare(), forboth, IndexOptInfo::indexcollations, is_opclause, IsA, IsBooleanOpfamily, lappend(), lappend_int(), lfirst, lfirst_int, list_concat(), list_length(), make_simple_restrictinfo, nodeTag, and IndexOptInfo::opfamily.
Referenced by create_index_path().
{
List *indexquals = NIL;
List *indexqualcols = NIL;
ListCell *lcc,
*lci;
forboth(lcc, indexclauses, lci, indexclausecols)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lcc);
int indexcol = lfirst_int(lci);
Expr *clause = rinfo->clause;
Oid curFamily = index->opfamily[indexcol];
Oid curCollation = index->indexcollations[indexcol];
/* First check for boolean cases */
if (IsBooleanOpfamily(curFamily))
{
Expr *boolqual;
boolqual = expand_boolean_index_clause((Node *) clause,
indexcol,
index);
if (boolqual)
{
indexquals = lappend(indexquals,
make_simple_restrictinfo(boolqual));
indexqualcols = lappend_int(indexqualcols, indexcol);
continue;
}
}
/*
* Else it must be an opclause (usual case), ScalarArrayOp,
* RowCompare, or NullTest
*/
if (is_opclause(clause))
{
indexquals = list_concat(indexquals,
expand_indexqual_opclause(rinfo,
curFamily,
curCollation));
/* expand_indexqual_opclause can produce multiple clauses */
while (list_length(indexqualcols) < list_length(indexquals))
indexqualcols = lappend_int(indexqualcols, indexcol);
}
else if (IsA(clause, ScalarArrayOpExpr))
{
/* no extra work at this time */
indexquals = lappend(indexquals, rinfo);
indexqualcols = lappend_int(indexqualcols, indexcol);
}
else if (IsA(clause, RowCompareExpr))
{
indexquals = lappend(indexquals,
expand_indexqual_rowcompare(rinfo,
index,
indexcol));
indexqualcols = lappend_int(indexqualcols, indexcol);
}
else if (IsA(clause, NullTest))
{
Assert(index->amsearchnulls);
indexquals = lappend(indexquals, rinfo);
indexqualcols = lappend_int(indexqualcols, indexcol);
}
else
elog(ERROR, "unsupported indexqual type: %d",
(int) nodeTag(clause));
}
*indexquals_p = indexquals;
*indexqualcols_p = indexqualcols;
}
| static List * expand_indexqual_opclause | ( | RestrictInfo * | rinfo, | |
| Oid | opfamily, | |||
| Oid | idxcollation | |||
| ) | [static] |
Definition at line 3429 of file indxpath.c.
References RestrictInfo::clause, Const::constvalue, get_leftop(), get_rightop(), list_make1, network_prefix_quals(), NULL, OID_BPCHAR_ICLIKE_OP, OID_BPCHAR_ICREGEXEQ_OP, OID_BPCHAR_LIKE_OP, OID_BPCHAR_REGEXEQ_OP, OID_BYTEA_LIKE_OP, OID_INET_SUB_OP, OID_INET_SUBEQ_OP, OID_NAME_ICLIKE_OP, OID_NAME_ICREGEXEQ_OP, OID_NAME_LIKE_OP, OID_NAME_REGEXEQ_OP, OID_TEXT_ICLIKE_OP, OID_TEXT_ICREGEXEQ_OP, OID_TEXT_LIKE_OP, OID_TEXT_REGEXEQ_OP, op_in_opfamily(), pattern_fixed_prefix(), Pattern_Type_Like, Pattern_Type_Like_IC, Pattern_Type_Regex, Pattern_Type_Regex_IC, and prefix_quals().
Referenced by expand_indexqual_conditions().
{
Expr *clause = rinfo->clause;
/* we know these will succeed */
Node *leftop = get_leftop(clause);
Node *rightop = get_rightop(clause);
Oid expr_op = ((OpExpr *) clause)->opno;
Oid expr_coll = ((OpExpr *) clause)->inputcollid;
Const *patt = (Const *) rightop;
Const *prefix = NULL;
Pattern_Prefix_Status pstatus;
/*
* LIKE and regex operators are not members of any btree index opfamily,
* but they can be members of opfamilies for more exotic index types such
* as GIN. Therefore, we should only do expansion if the operator is
* actually not in the opfamily. But checking that requires a syscache
* lookup, so it's best to first see if the operator is one we are
* interested in.
*/
switch (expr_op)
{
case OID_TEXT_LIKE_OP:
case OID_BPCHAR_LIKE_OP:
case OID_NAME_LIKE_OP:
case OID_BYTEA_LIKE_OP:
if (!op_in_opfamily(expr_op, opfamily))
{
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like, expr_coll,
&prefix, NULL);
return prefix_quals(leftop, opfamily, idxcollation, prefix, pstatus);
}
break;
case OID_TEXT_ICLIKE_OP:
case OID_BPCHAR_ICLIKE_OP:
case OID_NAME_ICLIKE_OP:
if (!op_in_opfamily(expr_op, opfamily))
{
/* the right-hand const is type text for all of these */
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like_IC, expr_coll,
&prefix, NULL);
return prefix_quals(leftop, opfamily, idxcollation, prefix, pstatus);
}
break;
case OID_TEXT_REGEXEQ_OP:
case OID_BPCHAR_REGEXEQ_OP:
case OID_NAME_REGEXEQ_OP:
if (!op_in_opfamily(expr_op, opfamily))
{
/* the right-hand const is type text for all of these */
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex, expr_coll,
&prefix, NULL);
return prefix_quals(leftop, opfamily, idxcollation, prefix, pstatus);
}
break;
case OID_TEXT_ICREGEXEQ_OP:
case OID_BPCHAR_ICREGEXEQ_OP:
case OID_NAME_ICREGEXEQ_OP:
if (!op_in_opfamily(expr_op, opfamily))
{
/* the right-hand const is type text for all of these */
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex_IC, expr_coll,
&prefix, NULL);
return prefix_quals(leftop, opfamily, idxcollation, prefix, pstatus);
}
break;
case OID_INET_SUB_OP:
case OID_INET_SUBEQ_OP:
if (!op_in_opfamily(expr_op, opfamily))
{
return network_prefix_quals(leftop, expr_op, opfamily,
patt->constvalue);
}
break;
}
/* Default case: just make a list of the unmodified indexqual */
return list_make1(rinfo);
}
| static RestrictInfo * expand_indexqual_rowcompare | ( | RestrictInfo * | rinfo, | |
| IndexOptInfo * | index, | |||
| int | indexcol | |||
| ) | [static] |
Definition at line 3523 of file indxpath.c.
References adjust_rowcompare_for_index(), RestrictInfo::clause, and make_simple_restrictinfo.
Referenced by expand_indexqual_conditions().
{
RowCompareExpr *clause = (RowCompareExpr *) rinfo->clause;
Expr *newclause;
List *indexcolnos;
bool var_on_left;
newclause = adjust_rowcompare_for_index(clause,
index,
indexcol,
&indexcolnos,
&var_on_left);
/*
* If we didn't have to change the RowCompareExpr, return the original
* RestrictInfo.
*/
if (newclause == (Expr *) clause)
return rinfo;
/* Else we need a new RestrictInfo */
return make_simple_restrictinfo(newclause);
}
Definition at line 1739 of file indxpath.c.
References BitmapOrPath::bitmapquals, BitmapAndPath::bitmapquals, elog, ERROR, get_actual_clauses(), IndexPath::indexclauses, IndexPath::indexinfo, IndexOptInfo::indpred, IsA, lfirst, list_concat(), list_copy(), and nodeTag.
Referenced by classify_index_clause_usage().
{
if (IsA(bitmapqual, BitmapAndPath))
{
BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
ListCell *l;
foreach(l, apath->bitmapquals)
{
find_indexpath_quals((Path *) lfirst(l), quals, preds);
}
}
else if (IsA(bitmapqual, BitmapOrPath))
{
BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
ListCell *l;
foreach(l, opath->bitmapquals)
{
find_indexpath_quals((Path *) lfirst(l), quals, preds);
}
}
else if (IsA(bitmapqual, IndexPath))
{
IndexPath *ipath = (IndexPath *) bitmapqual;
*quals = list_concat(*quals, get_actual_clauses(ipath->indexclauses));
*preds = list_concat(*preds, list_copy(ipath->indexinfo->indpred));
}
else
elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
}
Definition at line 1780 of file indxpath.c.
References equal(), i, lappend(), and lfirst.
Referenced by classify_index_clause_usage().
| List* generate_bitmap_or_paths | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| List * | clauses, | |||
| List * | other_clauses, | |||
| bool | restriction_only | |||
| ) |
Definition at line 1184 of file indxpath.c.
References and_clause(), Assert, build_paths_for_OR(), choose_bitmap_and(), create_bitmap_or_path(), drop_indexable_join_clauses(), generate_bitmap_or_paths(), IsA, lappend(), lfirst, list_concat(), list_copy(), list_make1, NIL, RestrictInfo::orclause, and restriction_is_or_clause().
Referenced by create_index_paths(), create_or_index_quals(), and generate_bitmap_or_paths().
{
List *result = NIL;
List *all_clauses;
ListCell *lc;
/*
* We can use both the current and other clauses as context for
* build_paths_for_OR; no need to remove ORs from the lists.
*/
all_clauses = list_concat(list_copy(clauses), other_clauses);
foreach(lc, clauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
List *pathlist;
Path *bitmapqual;
ListCell *j;
Assert(IsA(rinfo, RestrictInfo));
/* Ignore RestrictInfos that aren't ORs */
if (!restriction_is_or_clause(rinfo))
continue;
/*
* We must be able to match at least one index to each of the arms of
* the OR, else we can't use it.
*/
pathlist = NIL;
foreach(j, ((BoolExpr *) rinfo->orclause)->args)
{
Node *orarg = (Node *) lfirst(j);
List *indlist;
/* OR arguments should be ANDs or sub-RestrictInfos */
if (and_clause(orarg))
{
List *andargs = ((BoolExpr *) orarg)->args;
if (restriction_only)
andargs = drop_indexable_join_clauses(rel, andargs);
indlist = build_paths_for_OR(root, rel,
andargs,
all_clauses);
/* Recurse in case there are sub-ORs */
indlist = list_concat(indlist,
generate_bitmap_or_paths(root, rel,
andargs,
all_clauses,
restriction_only));
}
else
{
List *orargs;
Assert(IsA(orarg, RestrictInfo));
Assert(!restriction_is_or_clause((RestrictInfo *) orarg));
orargs = list_make1(orarg);
if (restriction_only)
orargs = drop_indexable_join_clauses(rel, orargs);
indlist = build_paths_for_OR(root, rel,
orargs,
all_clauses);
}
/*
* If nothing matched this arm, we can't do anything with this OR
* clause.
*/
if (indlist == NIL)
{
pathlist = NIL;
break;
}
/*
* OK, pick the most promising AND combination, and add it to
* pathlist.
*/
bitmapqual = choose_bitmap_and(root, rel, indlist);
pathlist = lappend(pathlist, bitmapqual);
}
/*
* If we have a match for every arm, then turn them into a
* BitmapOrPath, and add to result list.
*/
if (pathlist != NIL)
{
bitmapqual = (Path *) create_bitmap_or_path(root, rel, pathlist);
result = lappend(result, bitmapqual);
}
}
return result;
}
Definition at line 1690 of file indxpath.c.
References bms_copy(), bms_join(), elog, ERROR, IsA, lfirst, nodeTag, and PATH_REQ_OUTER.
Referenced by bitmap_and_cost_est(), bitmap_scan_cost_est(), and create_index_paths().
{
Relids result = NULL;
ListCell *lc;
if (IsA(bitmapqual, IndexPath))
{
return bms_copy(PATH_REQ_OUTER(bitmapqual));
}
else if (IsA(bitmapqual, BitmapAndPath))
{
foreach(lc, ((BitmapAndPath *) bitmapqual)->bitmapquals)
{
result = bms_join(result,
get_bitmap_tree_required_outer((Path *) lfirst(lc)));
}
}
else if (IsA(bitmapqual, BitmapOrPath))
{
foreach(lc, ((BitmapOrPath *) bitmapqual)->bitmapquals)
{
result = bms_join(result,
get_bitmap_tree_required_outer((Path *) lfirst(lc)));
}
}
else
elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
return result;
}
| static void get_index_paths | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| IndexOptInfo * | index, | |||
| IndexClauseSet * | clauses, | |||
| List ** | bitindexpaths | |||
| ) | [static] |
Definition at line 752 of file indxpath.c.
References add_path(), IndexOptInfo::amhasgetbitmap, IndexOptInfo::amhasgettuple, IndexOptInfo::amsearcharray, build_index_paths(), lappend(), lfirst, list_concat(), NIL, Path::pathkeys, IndexOptInfo::predOK, SAOP_PER_AM, SAOP_REQUIRE, ST_ANYSCAN, and ST_BITMAPSCAN.
Referenced by create_index_paths(), and get_join_index_paths().
{
List *indexpaths;
ListCell *lc;
/*
* Build simple index paths using the clauses. Allow ScalarArrayOpExpr
* clauses only if the index AM supports them natively.
*/
indexpaths = build_index_paths(root, rel,
index, clauses,
index->predOK,
SAOP_PER_AM, ST_ANYSCAN);
/*
* Submit all the ones that can form plain IndexScan plans to add_path. (A
* plain IndexPath can represent either a plain IndexScan or an
* IndexOnlyScan, but for our purposes here that distinction does not
* matter. However, some of the indexes might support only bitmap scans,
* and those we mustn't submit to add_path here.)
*
* Also, pick out the ones that are usable as bitmap scans. For that, we
* must discard indexes that don't support bitmap scans, and we also are
* only interested in paths that have some selectivity; we should discard
* anything that was generated solely for ordering purposes.
*/
foreach(lc, indexpaths)
{
IndexPath *ipath = (IndexPath *) lfirst(lc);
if (index->amhasgettuple)
add_path(rel, (Path *) ipath);
if (index->amhasgetbitmap &&
(ipath->path.pathkeys == NIL ||
ipath->indexselectivity < 1.0))
*bitindexpaths = lappend(*bitindexpaths, ipath);
}
/*
* If the index doesn't handle ScalarArrayOpExpr clauses natively, check
* to see if there are any such clauses, and if so generate bitmap scan
* paths relying on executor-managed ScalarArrayOpExpr.
*/
if (!index->amsearcharray)
{
indexpaths = build_index_paths(root, rel,
index, clauses,
false,
SAOP_REQUIRE, ST_BITMAPSCAN);
*bitindexpaths = list_concat(*bitindexpaths, indexpaths);
}
}
| static void get_join_index_paths | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| IndexOptInfo * | index, | |||
| IndexClauseSet * | rclauseset, | |||
| IndexClauseSet * | jclauseset, | |||
| IndexClauseSet * | eclauseset, | |||
| List ** | bitindexpaths, | |||
| Relids | relids, | |||
| List ** | considered_relids | |||
| ) | [static] |
Definition at line 623 of file indxpath.c.
References Assert, bms_equal_any(), bms_is_subset(), RestrictInfo::clause_relids, get_index_paths(), IndexClauseSet::indexclauses, lappend(), lcons(), lfirst, list_concat(), MemSet, IndexOptInfo::ncolumns, NIL, and IndexClauseSet::nonempty.
Referenced by consider_index_join_outer_rels().
{
IndexClauseSet clauseset;
int indexcol;
/* If we already considered this relids set, don't repeat the work */
if (bms_equal_any(relids, *considered_relids))
return;
/* Identify indexclauses usable with this relids set */
MemSet(&clauseset, 0, sizeof(clauseset));
for (indexcol = 0; indexcol < index->ncolumns; indexcol++)
{
ListCell *lc;
/* First find applicable simple join clauses */
foreach(lc, jclauseset->indexclauses[indexcol])
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
if (bms_is_subset(rinfo->clause_relids, relids))
clauseset.indexclauses[indexcol] =
lappend(clauseset.indexclauses[indexcol], rinfo);
}
/*
* Add applicable eclass join clauses. The clauses generated for each
* column are redundant (cf generate_implied_equalities_for_column),
* so we need at most one. This is the only exception to the general
* rule of using all available index clauses.
*/
foreach(lc, eclauseset->indexclauses[indexcol])
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
if (bms_is_subset(rinfo->clause_relids, relids))
{
clauseset.indexclauses[indexcol] =
lappend(clauseset.indexclauses[indexcol], rinfo);
break;
}
}
/* Add restriction clauses (this is nondestructive to rclauseset) */
clauseset.indexclauses[indexcol] =
list_concat(clauseset.indexclauses[indexcol],
rclauseset->indexclauses[indexcol]);
if (clauseset.indexclauses[indexcol] != NIL)
clauseset.nonempty = true;
}
/* We should have found something, else caller passed silly relids */
Assert(clauseset.nonempty);
/* Build index path(s) using the collected set of clauses */
get_index_paths(root, rel, index, &clauseset, bitindexpaths);
/*
* Remember we considered paths for this set of relids. We use lcons not
* lappend to avoid confusing the loop in consider_index_join_outer_rels.
*/
*considered_relids = lcons(relids, *considered_relids);
}
| static double get_loop_count | ( | PlannerInfo * | root, | |
| Relids | outer_relids | |||
| ) | [static] |
Definition at line 1895 of file indxpath.c.
References Assert, bms_copy(), bms_first_member(), bms_free(), IS_DUMMY_REL, NULL, RelOptInfo::relid, RelOptInfo::rows, PlannerInfo::simple_rel_array, and PlannerInfo::simple_rel_array_size.
Referenced by bitmap_and_cost_est(), bitmap_scan_cost_est(), build_index_paths(), and create_index_paths().
{
double result = 1.0;
/* For a non-parameterized path, just return 1.0 quickly */
if (outer_relids != NULL)
{
int relid;
/* Need a working copy since bms_first_member is destructive */
outer_relids = bms_copy(outer_relids);
while ((relid = bms_first_member(outer_relids)) >= 0)
{
RelOptInfo *outer_rel;
/* Paranoia: ignore bogus relid indexes */
if (relid >= root->simple_rel_array_size)
continue;
outer_rel = root->simple_rel_array[relid];
if (outer_rel == NULL)
continue;
Assert(outer_rel->relid == relid); /* sanity check on array */
/* Other relation could be proven empty, if so ignore */
if (IS_DUMMY_REL(outer_rel))
continue;
/* Otherwise, rel's rows estimate should be valid by now */
Assert(outer_rel->rows > 0);
/* Remember smallest row count estimate among the outer rels */
if (result == 1.0 || result > outer_rel->rows)
result = outer_rel->rows;
}
bms_free(outer_relids);
}
return result;
}
Definition at line 2285 of file indxpath.c.
References get_commutator(), InvalidOid, and op_in_opfamily().
Referenced by match_clause_to_indexcol().
{
/* Get the commuted operator if necessary */
if (!indexkey_on_left)
{
expr_op = get_commutator(expr_op);
if (expr_op == InvalidOid)
return false;
}
/* OK if the (commuted) operator is a member of the index's opfamily */
return op_in_opfamily(expr_op, opfamily);
}
| static bool match_boolean_index_clause | ( | Node * | clause, | |
| int | indexcol, | |||
| IndexOptInfo * | index | |||
| ) | [static] |
Definition at line 3058 of file indxpath.c.
References BooleanTest::arg, BooleanTest::booltesttype, get_notclausearg(), IS_FALSE, IS_TRUE, IsA, match_index_to_operand(), and not_clause().
Referenced by match_clause_to_indexcol().
{
/* Direct match? */
if (match_index_to_operand(clause, indexcol, index))
return true;
/* NOT clause? */
if (not_clause(clause))
{
if (match_index_to_operand((Node *) get_notclausearg((Expr *) clause),
indexcol, index))
return true;
}
/*
* Since we only consider clauses at top level of WHERE, we can convert
* indexkey IS TRUE and indexkey IS FALSE to index searches as well. The
* different meaning for NULL isn't important.
*/
else if (clause && IsA(clause, BooleanTest))
{
BooleanTest *btest = (BooleanTest *) clause;
if (btest->booltesttype == IS_TRUE ||
btest->booltesttype == IS_FALSE)
if (match_index_to_operand((Node *) btest->arg,
indexcol, index))
return true;
}
return false;
}
| static void match_clause_to_index | ( | IndexOptInfo * | index, | |
| RestrictInfo * | rinfo, | |||
| IndexClauseSet * | clauseset | |||
| ) | [static] |
Definition at line 2064 of file indxpath.c.
References IndexClauseSet::indexclauses, list_append_unique_ptr(), match_clause_to_indexcol(), IndexOptInfo::ncolumns, and IndexClauseSet::nonempty.
Referenced by match_clauses_to_index(), and match_join_clauses_to_index().
{
int indexcol;
for (indexcol = 0; indexcol < index->ncolumns; indexcol++)
{
if (match_clause_to_indexcol(index,
indexcol,
rinfo))
{
clauseset->indexclauses[indexcol] =
list_append_unique_ptr(clauseset->indexclauses[indexcol],
rinfo);
clauseset->nonempty = true;
return;
}
}
}
| static bool match_clause_to_indexcol | ( | IndexOptInfo * | index, | |
| int | indexcol, | |||
| RestrictInfo * | rinfo | |||
| ) | [static] |
Definition at line 2148 of file indxpath.c.
References IndexOptInfo::amsearchnulls, NullTest::arg, NullTest::argisrow, ScalarArrayOpExpr::args, bms_is_member(), RestrictInfo::clause, contain_volatile_functions(), get_leftop(), get_rightop(), IndexOptInfo::indexcollations, IndexCollMatchesExprColl, ScalarArrayOpExpr::inputcollid, is_indexable_operator(), is_opclause, IsA, IsBooleanOpfamily, RestrictInfo::left_relids, linitial, lsecond, match_boolean_index_clause(), match_index_to_operand(), match_rowcompare_to_indexcol(), match_special_index_operator(), IndexOptInfo::opfamily, ScalarArrayOpExpr::opno, RestrictInfo::pseudoconstant, pull_varnos(), IndexOptInfo::rel, RelOptInfo::relid, RestrictInfo::right_relids, and ScalarArrayOpExpr::useOr.
Referenced by match_clause_to_index().
{
Expr *clause = rinfo->clause;
Index index_relid = index->rel->relid;
Oid opfamily = index->opfamily[indexcol];
Oid idxcollation = index->indexcollations[indexcol];
Node *leftop,
*rightop;
Relids left_relids;
Relids right_relids;
Oid expr_op;
Oid expr_coll;
bool plain_op;
/*
* Never match pseudoconstants to indexes. (Normally this could not
* happen anyway, since a pseudoconstant clause couldn't contain a Var,
* but what if someone builds an expression index on a constant? It's not
* totally unreasonable to do so with a partial index, either.)
*/
if (rinfo->pseudoconstant)
return false;
/* First check for boolean-index cases. */
if (IsBooleanOpfamily(opfamily))
{
if (match_boolean_index_clause((Node *) clause, indexcol, index))
return true;
}
/*
* Clause must be a binary opclause, or possibly a ScalarArrayOpExpr
* (which is always binary, by definition). Or it could be a
* RowCompareExpr, which we pass off to match_rowcompare_to_indexcol().
* Or, if the index supports it, we can handle IS NULL/NOT NULL clauses.
*/
if (is_opclause(clause))
{
leftop = get_leftop(clause);
rightop = get_rightop(clause);
if (!leftop || !rightop)
return false;
left_relids = rinfo->left_relids;
right_relids = rinfo->right_relids;
expr_op = ((OpExpr *) clause)->opno;
expr_coll = ((OpExpr *) clause)->inputcollid;
plain_op = true;
}
else if (clause && IsA(clause, ScalarArrayOpExpr))
{
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
/* We only accept ANY clauses, not ALL */
if (!saop->useOr)
return false;
leftop = (Node *) linitial(saop->args);
rightop = (Node *) lsecond(saop->args);
left_relids = NULL; /* not actually needed */
right_relids = pull_varnos(rightop);
expr_op = saop->opno;
expr_coll = saop->inputcollid;
plain_op = false;
}
else if (clause && IsA(clause, RowCompareExpr))
{
return match_rowcompare_to_indexcol(index, indexcol,
opfamily, idxcollation,
(RowCompareExpr *) clause);
}
else if (index->amsearchnulls && IsA(clause, NullTest))
{
NullTest *nt = (NullTest *) clause;
if (!nt->argisrow &&
match_index_to_operand((Node *) nt->arg, indexcol, index))
return true;
return false;
}
else
return false;
/*
* Check for clauses of the form: (indexkey operator constant) or
* (constant operator indexkey). See above notes about const-ness.
*/
if (match_index_to_operand(leftop, indexcol, index) &&
!bms_is_member(index_relid, right_relids) &&
!contain_volatile_functions(rightop))
{
if (IndexCollMatchesExprColl(idxcollation, expr_coll) &&
is_indexable_operator(expr_op, opfamily, true))
return true;
/*
* If we didn't find a member of the index's opfamily, see whether it
* is a "special" indexable operator.
*/
if (plain_op &&
match_special_index_operator(clause, opfamily,
idxcollation, true))
return true;
return false;
}
if (plain_op &&
match_index_to_operand(rightop, indexcol, index) &&
!bms_is_member(index_relid, left_relids) &&
!contain_volatile_functions(leftop))
{
if (IndexCollMatchesExprColl(idxcollation, expr_coll) &&
is_indexable_operator(expr_op, opfamily, false))
return true;
/*
* If we didn't find a member of the index's opfamily, see whether it
* is a "special" indexable operator.
*/
if (match_special_index_operator(clause, opfamily,
idxcollation, false))
return true;
return false;
}
return false;
}
| static Expr * match_clause_to_ordering_op | ( | IndexOptInfo * | index, | |
| int | indexcol, | |||
| Expr * | clause, | |||
| Oid | pk_opfamily | |||
| ) | [static] |
Definition at line 2507 of file indxpath.c.
References OpExpr::args, contain_var_clause(), contain_volatile_functions(), get_commutator(), get_leftop(), get_op_opfamily_sortfamily(), get_rightop(), IndexOptInfo::indexcollations, IndexCollMatchesExprColl, InvalidOid, is_opclause, list_make2, makeNode, match_index_to_operand(), NULL, IndexOptInfo::opfamily, OpExpr::opfuncid, and OpExpr::opno.
Referenced by match_pathkeys_to_index().
{
Oid opfamily = index->opfamily[indexcol];
Oid idxcollation = index->indexcollations[indexcol];
Node *leftop,
*rightop;
Oid expr_op;
Oid expr_coll;
Oid sortfamily;
bool commuted;
/*
* Clause must be a binary opclause.
*/
if (!is_opclause(clause))
return NULL;
leftop = get_leftop(clause);
rightop = get_rightop(clause);
if (!leftop || !rightop)
return NULL;
expr_op = ((OpExpr *) clause)->opno;
expr_coll = ((OpExpr *) clause)->inputcollid;
/*
* We can forget the whole thing right away if wrong collation.
*/
if (!IndexCollMatchesExprColl(idxcollation, expr_coll))
return NULL;
/*
* Check for clauses of the form: (indexkey operator constant) or
* (constant operator indexkey).
*/
if (match_index_to_operand(leftop, indexcol, index) &&
!contain_var_clause(rightop) &&
!contain_volatile_functions(rightop))
{
commuted = false;
}
else if (match_index_to_operand(rightop, indexcol, index) &&
!contain_var_clause(leftop) &&
!contain_volatile_functions(leftop))
{
/* Might match, but we need a commuted operator */
expr_op = get_commutator(expr_op);
if (expr_op == InvalidOid)
return NULL;
commuted = true;
}
else
return NULL;
/*
* Is the (commuted) operator an ordering operator for the opfamily? And
* if so, does it yield the right sorting semantics?
*/
sortfamily = get_op_opfamily_sortfamily(expr_op, opfamily);
if (sortfamily != pk_opfamily)
return NULL;
/* We have a match. Return clause or a commuted version thereof. */
if (commuted)
{
OpExpr *newclause = makeNode(OpExpr);
/* flat-copy all the fields of clause */
memcpy(newclause, clause, sizeof(OpExpr));
/* commute it */
newclause->opno = expr_op;
newclause->opfuncid = InvalidOid;
newclause->args = list_make2(rightop, leftop);
clause = (Expr *) newclause;
}
return clause;
}
| static void match_clauses_to_index | ( | IndexOptInfo * | index, | |
| List * | clauses, | |||
| IndexClauseSet * | clauseset | |||
| ) | [static] |
Definition at line 2032 of file indxpath.c.
References Assert, IsA, lfirst, and match_clause_to_index().
Referenced by build_paths_for_OR(), match_eclass_clauses_to_index(), and match_restriction_clauses_to_index().
{
ListCell *lc;
foreach(lc, clauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
Assert(IsA(rinfo, RestrictInfo));
match_clause_to_index(index, rinfo, clauseset);
}
}
| static void match_eclass_clauses_to_index | ( | PlannerInfo * | root, | |
| IndexOptInfo * | index, | |||
| Relids | lateral_referencers, | |||
| IndexClauseSet * | clauseset | |||
| ) | [static] |
Definition at line 1993 of file indxpath.c.
References arg, ec_member_matches_indexcol(), generate_implied_equalities_for_column(), RelOptInfo::has_eclass_joins, ec_member_matches_arg::index, ec_member_matches_arg::indexcol, match_clauses_to_index(), IndexOptInfo::ncolumns, and IndexOptInfo::rel.
Referenced by create_index_paths().
{
int indexcol;
/* No work if rel is not in any such ECs */
if (!index->rel->has_eclass_joins)
return;
for (indexcol = 0; indexcol < index->ncolumns; indexcol++)
{
ec_member_matches_arg arg;
List *clauses;
/* Generate clauses, skipping any that join to lateral_referencers */
arg.index = index;
arg.indexcol = indexcol;
clauses = generate_implied_equalities_for_column(root,
index->rel,
ec_member_matches_indexcol,
(void *) &arg,
lateral_referencers);
/*
* We have to check whether the results actually do match the index,
* since for non-btree indexes the EC's equality operators might not
* be in the index opclass (cf ec_member_matches_indexcol).
*/
match_clauses_to_index(index, clauses, clauseset);
}
}
| bool match_index_to_operand | ( | Node * | operand, | |
| int | indexcol, | |||
| IndexOptInfo * | index | |||
| ) |
Definition at line 2932 of file indxpath.c.
References arg, elog, equal(), ERROR, i, IndexOptInfo::indexkeys, IndexOptInfo::indexprs, IsA, lfirst, list_head(), lnext, NULL, IndexOptInfo::rel, and RelOptInfo::relid.
Referenced by adjust_rowcompare_for_index(), btcostestimate(), ec_member_matches_indexcol(), expand_boolean_index_clause(), find_index_column(), get_actual_variable_range(), match_boolean_index_clause(), match_clause_to_indexcol(), match_clause_to_ordering_op(), match_rowcompare_to_indexcol(), and relation_has_unique_index_for().
{
int indkey;
/*
* Ignore any RelabelType node above the operand. This is needed to be
* able to apply indexscanning in binary-compatible-operator cases. Note:
* we can assume there is at most one RelabelType node;
* eval_const_expressions() will have simplified if more than one.
*/
if (operand && IsA(operand, RelabelType))
operand = (Node *) ((RelabelType *) operand)->arg;
indkey = index->indexkeys[indexcol];
if (indkey != 0)
{
/*
* Simple index column; operand must be a matching Var.
*/
if (operand && IsA(operand, Var) &&
index->rel->relid == ((Var *) operand)->varno &&
indkey == ((Var *) operand)->varattno)
return true;
}
else
{
/*
* Index expression; find the correct expression. (This search could
* be avoided, at the cost of complicating all the callers of this
* routine; doesn't seem worth it.)
*/
ListCell *indexpr_item;
int i;
Node *indexkey;
indexpr_item = list_head(index->indexprs);
for (i = 0; i < indexcol; i++)
{
if (index->indexkeys[i] == 0)
{
if (indexpr_item == NULL)
elog(ERROR, "wrong number of index expressions");
indexpr_item = lnext(indexpr_item);
}
}
if (indexpr_item == NULL)
elog(ERROR, "wrong number of index expressions");
indexkey = (Node *) lfirst(indexpr_item);
/*
* Does it match the operand? Again, strip any relabeling.
*/
if (indexkey && IsA(indexkey, RelabelType))
indexkey = (Node *) ((RelabelType *) indexkey)->arg;
if (equal(indexkey, operand))
return true;
}
return false;
}
| static void match_join_clauses_to_index | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| IndexOptInfo * | index, | |||
| Relids | lateral_referencers, | |||
| IndexClauseSet * | clauseset, | |||
| List ** | joinorclauses | |||
| ) | [static] |
Definition at line 1958 of file indxpath.c.
References bms_overlap(), RestrictInfo::clause_relids, join_clause_is_movable_to(), RelOptInfo::joininfo, lappend(), lfirst, match_clause_to_index(), RelOptInfo::relid, and restriction_is_or_clause().
Referenced by create_index_paths().
{
ListCell *lc;
/* Scan the rel's join clauses */
foreach(lc, rel->joininfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
/* Check if clause can be moved to this rel */
if (!join_clause_is_movable_to(rinfo, rel->relid))
continue;
/* Not useful if it conflicts with any LATERAL references */
if (bms_overlap(rinfo->clause_relids, lateral_referencers))
continue;
/* Potentially usable, so see if it matches the index or is an OR */
if (restriction_is_or_clause(rinfo))
*joinorclauses = lappend(*joinorclauses, rinfo);
else
match_clause_to_index(index, rinfo, clauseset);
}
}
| static void match_pathkeys_to_index | ( | IndexOptInfo * | index, | |
| List * | pathkeys, | |||
| List ** | orderby_clauses_p, | |||
| List ** | clause_columns_p | |||
| ) | [static] |
Definition at line 2393 of file indxpath.c.
References IndexOptInfo::amcanorderbyop, bms_equal(), BTLessStrategyNumber, EquivalenceClass::ec_has_volatile, EquivalenceClass::ec_members, EquivalenceMember::em_expr, EquivalenceMember::em_relids, lappend(), lappend_int(), lfirst, match_clause_to_ordering_op(), IndexOptInfo::ncolumns, PathKey::pk_eclass, PathKey::pk_nulls_first, PathKey::pk_opfamily, PathKey::pk_strategy, IndexOptInfo::rel, and RelOptInfo::relids.
Referenced by build_index_paths().
{
List *orderby_clauses = NIL;
List *clause_columns = NIL;
ListCell *lc1;
*orderby_clauses_p = NIL; /* set default results */
*clause_columns_p = NIL;
/* Only indexes with the amcanorderbyop property are interesting here */
if (!index->amcanorderbyop)
return;
foreach(lc1, pathkeys)
{
PathKey *pathkey = (PathKey *) lfirst(lc1);
bool found = false;
ListCell *lc2;
/*
* Note: for any failure to match, we just return NIL immediately.
* There is no value in matching just some of the pathkeys.
*/
/* Pathkey must request default sort order for the target opfamily */
if (pathkey->pk_strategy != BTLessStrategyNumber ||
pathkey->pk_nulls_first)
return;
/* If eclass is volatile, no hope of using an indexscan */
if (pathkey->pk_eclass->ec_has_volatile)
return;
/*
* Try to match eclass member expression(s) to index. Note that child
* EC members are considered, but only when they belong to the target
* relation. (Unlike regular members, the same expression could be a
* child member of more than one EC. Therefore, the same index could
* be considered to match more than one pathkey list, which is OK
* here. See also get_eclass_for_sort_expr.)
*/
foreach(lc2, pathkey->pk_eclass->ec_members)
{
EquivalenceMember *member = (EquivalenceMember *) lfirst(lc2);
int indexcol;
/* No possibility of match if it references other relations */
if (!bms_equal(member->em_relids, index->rel->relids))
continue;
/*
* We allow any column of the index to match each pathkey; they
* don't have to match left-to-right as you might expect. This is
* correct for GiST, which is the sole existing AM supporting
* amcanorderbyop. We might need different logic in future for
* other implementations.
*/
for (indexcol = 0; indexcol < index->ncolumns; indexcol++)
{
Expr *expr;
expr = match_clause_to_ordering_op(index,
indexcol,
member->em_expr,
pathkey->pk_opfamily);
if (expr)
{
orderby_clauses = lappend(orderby_clauses, expr);
clause_columns = lappend_int(clause_columns, indexcol);
found = true;
break;
}
}
if (found) /* don't want to look at remaining members */
break;
}
if (!found) /* fail if no match for this pathkey */
return;
}
*orderby_clauses_p = orderby_clauses; /* success! */
*clause_columns_p = clause_columns;
}
| static void match_restriction_clauses_to_index | ( | RelOptInfo * | rel, | |
| IndexOptInfo * | index, | |||
| IndexClauseSet * | clauseset | |||
| ) | [static] |
Definition at line 1945 of file indxpath.c.
References RelOptInfo::baserestrictinfo, and match_clauses_to_index().
Referenced by create_index_paths().
{
match_clauses_to_index(index, rel->baserestrictinfo, clauseset);
}
| static bool match_rowcompare_to_indexcol | ( | IndexOptInfo * | index, | |
| int | indexcol, | |||
| Oid | opfamily, | |||
| Oid | idxcollation, | |||
| RowCompareExpr * | clause | |||
| ) | [static] |
Definition at line 2305 of file indxpath.c.
References bms_is_member(), BTGreaterEqualStrategyNumber, BTGreaterStrategyNumber, BTLessEqualStrategyNumber, BTLessStrategyNumber, BTREE_AM_OID, contain_volatile_functions(), get_commutator(), get_op_opfamily_strategy(), IndexCollMatchesExprColl, RowCompareExpr::inputcollids, InvalidOid, RowCompareExpr::largs, linitial, linitial_oid, match_index_to_operand(), RowCompareExpr::opnos, pull_varnos(), RowCompareExpr::rargs, IndexOptInfo::rel, IndexOptInfo::relam, and RelOptInfo::relid.
Referenced by match_clause_to_indexcol().
{
Index index_relid = index->rel->relid;
Node *leftop,
*rightop;
Oid expr_op;
Oid expr_coll;
/* Forget it if we're not dealing with a btree index */
if (index->relam != BTREE_AM_OID)
return false;
/*
* We could do the matching on the basis of insisting that the opfamily
* shown in the RowCompareExpr be the same as the index column's opfamily,
* but that could fail in the presence of reverse-sort opfamilies: it'd be
* a matter of chance whether RowCompareExpr had picked the forward or
* reverse-sort family. So look only at the operator, and match if it is
* a member of the index's opfamily (after commutation, if the indexkey is
* on the right). We'll worry later about whether any additional
* operators are matchable to the index.
*/
leftop = (Node *) linitial(clause->largs);
rightop = (Node *) linitial(clause->rargs);
expr_op = linitial_oid(clause->opnos);
expr_coll = linitial_oid(clause->inputcollids);
/* Collations must match, if relevant */
if (!IndexCollMatchesExprColl(idxcollation, expr_coll))
return false;
/*
* These syntactic tests are the same as in match_clause_to_indexcol()
*/
if (match_index_to_operand(leftop, indexcol, index) &&
!bms_is_member(index_relid, pull_varnos(rightop)) &&
!contain_volatile_functions(rightop))
{
/* OK, indexkey is on left */
}
else if (match_index_to_operand(rightop, indexcol, index) &&
!bms_is_member(index_relid, pull_varnos(leftop)) &&
!contain_volatile_functions(leftop))
{
/* indexkey is on right, so commute the operator */
expr_op = get_commutator(expr_op);
if (expr_op == InvalidOid)
return false;
}
else
return false;
/* We're good if the operator is the right type of opfamily member */
switch (get_op_opfamily_strategy(expr_op, opfamily))
{
case BTLessStrategyNumber:
case BTLessEqualStrategyNumber:
case BTGreaterEqualStrategyNumber:
case BTGreaterStrategyNumber:
return true;
}
return false;
}
| static bool match_special_index_operator | ( | Expr * | clause, | |
| Oid | opfamily, | |||
| Oid | idxcollation, | |||
| bool | indexkey_on_left | |||
| ) | [static] |
Definition at line 3102 of file indxpath.c.
References BPCHAR_BTREE_FAM_OID, Const::constvalue, DatumGetPointer, get_rightop(), IsA, lc_collate_is_c(), NULL, OID_BPCHAR_ICLIKE_OP, OID_BPCHAR_ICREGEXEQ_OP, OID_BPCHAR_LIKE_OP, OID_BPCHAR_REGEXEQ_OP, OID_BYTEA_LIKE_OP, OID_INET_SUB_OP, OID_INET_SUBEQ_OP, OID_NAME_ICLIKE_OP, OID_NAME_ICREGEXEQ_OP, OID_NAME_LIKE_OP, OID_NAME_REGEXEQ_OP, OID_TEXT_ICLIKE_OP, OID_TEXT_ICREGEXEQ_OP, OID_TEXT_LIKE_OP, OID_TEXT_REGEXEQ_OP, pattern_fixed_prefix(), Pattern_Prefix_Exact, Pattern_Type_Like, Pattern_Type_Like_IC, Pattern_Type_Regex, Pattern_Type_Regex_IC, pfree(), TEXT_BTREE_FAM_OID, and TEXT_SPGIST_FAM_OID.
Referenced by match_clause_to_indexcol().
{
bool isIndexable = false;
Node *rightop;
Oid expr_op;
Oid expr_coll;
Const *patt;
Const *prefix = NULL;
Pattern_Prefix_Status pstatus = Pattern_Prefix_None;
/*
* Currently, all known special operators require the indexkey on the
* left, but this test could be pushed into the switch statement if some
* are added that do not...
*/
if (!indexkey_on_left)
return false;
/* we know these will succeed */
rightop = get_rightop(clause);
expr_op = ((OpExpr *) clause)->opno;
expr_coll = ((OpExpr *) clause)->inputcollid;
/* again, required for all current special ops: */
if (!IsA(rightop, Const) ||
((Const *) rightop)->constisnull)
return false;
patt = (Const *) rightop;
switch (expr_op)
{
case OID_TEXT_LIKE_OP:
case OID_BPCHAR_LIKE_OP:
case OID_NAME_LIKE_OP:
/* the right-hand const is type text for all of these */
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like, expr_coll,
&prefix, NULL);
isIndexable = (pstatus != Pattern_Prefix_None);
break;
case OID_BYTEA_LIKE_OP:
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like, expr_coll,
&prefix, NULL);
isIndexable = (pstatus != Pattern_Prefix_None);
break;
case OID_TEXT_ICLIKE_OP:
case OID_BPCHAR_ICLIKE_OP:
case OID_NAME_ICLIKE_OP:
/* the right-hand const is type text for all of these */
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Like_IC, expr_coll,
&prefix, NULL);
isIndexable = (pstatus != Pattern_Prefix_None);
break;
case OID_TEXT_REGEXEQ_OP:
case OID_BPCHAR_REGEXEQ_OP:
case OID_NAME_REGEXEQ_OP:
/* the right-hand const is type text for all of these */
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex, expr_coll,
&prefix, NULL);
isIndexable = (pstatus != Pattern_Prefix_None);
break;
case OID_TEXT_ICREGEXEQ_OP:
case OID_BPCHAR_ICREGEXEQ_OP:
case OID_NAME_ICREGEXEQ_OP:
/* the right-hand const is type text for all of these */
pstatus = pattern_fixed_prefix(patt, Pattern_Type_Regex_IC, expr_coll,
&prefix, NULL);
isIndexable = (pstatus != Pattern_Prefix_None);
break;
case OID_INET_SUB_OP:
case OID_INET_SUBEQ_OP:
isIndexable = true;
break;
}
if (prefix)
{
pfree(DatumGetPointer(prefix->constvalue));
pfree(prefix);
}
/* done if the expression doesn't look indexable */
if (!isIndexable)
return false;
/*
* Must also check that index's opfamily supports the operators we will
* want to apply. (A hash index, for example, will not support ">=".)
* Currently, only btree and spgist support the operators we need.
*
* Note: actually, in the Pattern_Prefix_Exact case, we only need "=" so a
* hash index would work. Currently it doesn't seem worth checking for
* that, however.
*
* We insist on the opfamily being the specific one we expect, else we'd
* do the wrong thing if someone were to make a reverse-sort opfamily with
* the same operators.
*
* The non-pattern opclasses will not sort the way we need in most non-C
* locales. We can use such an index anyway for an exact match (simple
* equality), but not for prefix-match cases. Note that here we are
* looking at the index's collation, not the expression's collation --
* this test is *not* dependent on the LIKE/regex operator's collation.
*/
switch (expr_op)
{
case OID_TEXT_LIKE_OP:
case OID_TEXT_ICLIKE_OP:
case OID_TEXT_REGEXEQ_OP:
case OID_TEXT_ICREGEXEQ_OP:
isIndexable =
(opfamily == TEXT_PATTERN_BTREE_FAM_OID) ||
(opfamily == TEXT_SPGIST_FAM_OID) ||
(opfamily == TEXT_BTREE_FAM_OID &&
(pstatus == Pattern_Prefix_Exact ||
lc_collate_is_c(idxcollation)));
break;
case OID_BPCHAR_LIKE_OP:
case OID_BPCHAR_ICLIKE_OP:
case OID_BPCHAR_REGEXEQ_OP:
case OID_BPCHAR_ICREGEXEQ_OP:
isIndexable =
(opfamily == BPCHAR_PATTERN_BTREE_FAM_OID) ||
(opfamily == BPCHAR_BTREE_FAM_OID &&
(pstatus == Pattern_Prefix_Exact ||
lc_collate_is_c(idxcollation)));
break;
case OID_NAME_LIKE_OP:
case OID_NAME_ICLIKE_OP:
case OID_NAME_REGEXEQ_OP:
case OID_NAME_ICREGEXEQ_OP:
/* name uses locale-insensitive sorting */
isIndexable = (opfamily == NAME_BTREE_FAM_OID);
break;
case OID_BYTEA_LIKE_OP:
isIndexable = (opfamily == BYTEA_BTREE_FAM_OID);
break;
case OID_INET_SUB_OP:
case OID_INET_SUBEQ_OP:
isIndexable = (opfamily == NETWORK_BTREE_FAM_OID);
break;
}
return isIndexable;
}
| static List * network_prefix_quals | ( | Node * | leftop, | |
| Oid | expr_op, | |||
| Oid | opfamily, | |||
| Datum | rightop | |||
| ) | [static] |
Definition at line 3912 of file indxpath.c.
References BOOLOID, BTGreaterEqualStrategyNumber, BTGreaterStrategyNumber, BTLessEqualStrategyNumber, elog, ERROR, get_opfamily_member(), InvalidOid, lappend(), list_make1, make_opclause(), make_simple_restrictinfo, makeConst(), network_scan_first(), network_scan_last(), OID_INET_SUB_OP, and OID_INET_SUBEQ_OP.
Referenced by expand_indexqual_opclause().
{
bool is_eq;
Oid datatype;
Oid opr1oid;
Oid opr2oid;
Datum opr1right;
Datum opr2right;
List *result;
Expr *expr;
switch (expr_op)
{
case OID_INET_SUB_OP:
datatype = INETOID;
is_eq = false;
break;
case OID_INET_SUBEQ_OP:
datatype = INETOID;
is_eq = true;
break;
default:
elog(ERROR, "unexpected operator: %u", expr_op);
return NIL;
}
/*
* create clause "key >= network_scan_first( rightop )", or ">" if the
* operator disallows equality.
*/
if (is_eq)
{
opr1oid = get_opfamily_member(opfamily, datatype, datatype,
BTGreaterEqualStrategyNumber);
if (opr1oid == InvalidOid)
elog(ERROR, "no >= operator for opfamily %u", opfamily);
}
else
{
opr1oid = get_opfamily_member(opfamily, datatype, datatype,
BTGreaterStrategyNumber);
if (opr1oid == InvalidOid)
elog(ERROR, "no > operator for opfamily %u", opfamily);
}
opr1right = network_scan_first(rightop);
expr = make_opclause(opr1oid, BOOLOID, false,
(Expr *) leftop,
(Expr *) makeConst(datatype, -1,
InvalidOid, /* not collatable */
-1, opr1right,
false, false),
InvalidOid, InvalidOid);
result = list_make1(make_simple_restrictinfo(expr));
/* create clause "key <= network_scan_last( rightop )" */
opr2oid = get_opfamily_member(opfamily, datatype, datatype,
BTLessEqualStrategyNumber);
if (opr2oid == InvalidOid)
elog(ERROR, "no <= operator for opfamily %u", opfamily);
opr2right = network_scan_last(rightop);
expr = make_opclause(opr2oid, BOOLOID, false,
(Expr *) leftop,
(Expr *) makeConst(datatype, -1,
InvalidOid, /* not collatable */
-1, opr2right,
false, false),
InvalidOid, InvalidOid);
result = lappend(result, make_simple_restrictinfo(expr));
return result;
}
| static int path_usage_comparator | ( | const void * | a, | |
| const void * | b | |||
| ) | [static] |
Definition at line 1527 of file indxpath.c.
References cost_bitmap_tree_node(), and PathClauseUsage::path.
Referenced by choose_bitmap_and().
{
PathClauseUsage *pa = *(PathClauseUsage *const *) a;
PathClauseUsage *pb = *(PathClauseUsage *const *) b;
Cost acost;
Cost bcost;
Selectivity aselec;
Selectivity bselec;
cost_bitmap_tree_node(pa->path, &acost, &aselec);
cost_bitmap_tree_node(pb->path, &bcost, &bselec);
/*
* If costs are the same, sort by selectivity.
*/
if (acost < bcost)
return -1;
if (acost > bcost)
return 1;
if (aselec < bselec)
return -1;
if (aselec > bselec)
return 1;
return 0;
}
| static List * prefix_quals | ( | Node * | leftop, | |
| Oid | opfamily, | |||
| Oid | collation, | |||
| Const * | prefix, | |||
| Pattern_Prefix_Status | pstatus | |||
| ) | [static] |
Definition at line 3786 of file indxpath.c.
References Assert, BOOLOID, BPCHAR_BTREE_FAM_OID, BPCHAR_PATTERN_BTREE_FAM_OID, BTEqualStrategyNumber, BTGreaterEqualStrategyNumber, BTLessStrategyNumber, BYTEA_BTREE_FAM_OID, BYTEAOID, byteaout(), Const::consttype, Const::constvalue, DatumGetCString, DirectFunctionCall1, elog, ERROR, fmgr_info(), get_opcode(), get_opfamily_member(), InvalidOid, lappend(), list_make1, make_greater_string(), make_opclause(), make_simple_restrictinfo, NAME_BTREE_FAM_OID, Pattern_Prefix_Exact, Pattern_Prefix_None, pfree(), string_to_const(), TEXT_BTREE_FAM_OID, TEXT_PATTERN_BTREE_FAM_OID, TEXT_SPGIST_FAM_OID, TextDatumGetCString, and TEXTOID.
Referenced by expand_indexqual_opclause().
{
List *result;
Oid datatype;
Oid oproid;
Expr *expr;
FmgrInfo ltproc;
Const *greaterstr;
Assert(pstatus != Pattern_Prefix_None);
switch (opfamily)
{
case TEXT_BTREE_FAM_OID:
case TEXT_PATTERN_BTREE_FAM_OID:
case TEXT_SPGIST_FAM_OID:
datatype = TEXTOID;
break;
case BPCHAR_BTREE_FAM_OID:
case BPCHAR_PATTERN_BTREE_FAM_OID:
datatype = BPCHAROID;
break;
case NAME_BTREE_FAM_OID:
datatype = NAMEOID;
break;
case BYTEA_BTREE_FAM_OID:
datatype = BYTEAOID;
break;
default:
/* shouldn't get here */
elog(ERROR, "unexpected opfamily: %u", opfamily);
return NIL;
}
/*
* If necessary, coerce the prefix constant to the right type. The given
* prefix constant is either text or bytea type.
*/
if (prefix_const->consttype != datatype)
{
char *prefix;
switch (prefix_const->consttype)
{
case TEXTOID:
prefix = TextDatumGetCString(prefix_const->constvalue);
break;
case BYTEAOID:
prefix = DatumGetCString(DirectFunctionCall1(byteaout,
prefix_const->constvalue));
break;
default:
elog(ERROR, "unexpected const type: %u",
prefix_const->consttype);
return NIL;
}
prefix_const = string_to_const(prefix, datatype);
pfree(prefix);
}
/*
* If we found an exact-match pattern, generate an "=" indexqual.
*/
if (pstatus == Pattern_Prefix_Exact)
{
oproid = get_opfamily_member(opfamily, datatype, datatype,
BTEqualStrategyNumber);
if (oproid == InvalidOid)
elog(ERROR, "no = operator for opfamily %u", opfamily);
expr = make_opclause(oproid, BOOLOID, false,
(Expr *) leftop, (Expr *) prefix_const,
InvalidOid, collation);
result = list_make1(make_simple_restrictinfo(expr));
return result;
}
/*
* Otherwise, we have a nonempty required prefix of the values.
*
* We can always say "x >= prefix".
*/
oproid = get_opfamily_member(opfamily, datatype, datatype,
BTGreaterEqualStrategyNumber);
if (oproid == InvalidOid)
elog(ERROR, "no >= operator for opfamily %u", opfamily);
expr = make_opclause(oproid, BOOLOID, false,
(Expr *) leftop, (Expr *) prefix_const,
InvalidOid, collation);
result = list_make1(make_simple_restrictinfo(expr));
/*-------
* If we can create a string larger than the prefix, we can say
* "x < greaterstr". NB: we rely on make_greater_string() to generate
* a guaranteed-greater string, not just a probably-greater string.
* In general this is only guaranteed in C locale, so we'd better be
* using a C-locale index collation.
*-------
*/
oproid = get_opfamily_member(opfamily, datatype, datatype,
BTLessStrategyNumber);
if (oproid == InvalidOid)
elog(ERROR, "no < operator for opfamily %u", opfamily);
fmgr_info(get_opcode(oproid), <proc);
greaterstr = make_greater_string(prefix_const, <proc, collation);
if (greaterstr)
{
expr = make_opclause(oproid, BOOLOID, false,
(Expr *) leftop, (Expr *) greaterstr,
InvalidOid, collation);
result = lappend(result, make_simple_restrictinfo(expr));
}
return result;
}
| bool relation_has_unique_index_for | ( | PlannerInfo * | root, | |
| RelOptInfo * | rel, | |||
| List * | restrictlist, | |||
| List * | exprlist, | |||
| List * | oprlist | |||
| ) |
Definition at line 2758 of file indxpath.c.
References Assert, RelOptInfo::baserestrictinfo, bms_is_empty(), RestrictInfo::clause, forboth, get_leftop(), get_rightop(), IndexOptInfo::immediate, RelOptInfo::indexlist, IndexOptInfo::indpred, lappend(), RestrictInfo::left_relids, lfirst, lfirst_oid, list_length(), list_member_oid(), match_index_to_operand(), RestrictInfo::mergeopfamilies, IndexOptInfo::ncolumns, NIL, op_in_opfamily(), IndexOptInfo::opfamily, RestrictInfo::outer_is_left, IndexOptInfo::predOK, RestrictInfo::right_relids, and IndexOptInfo::unique.
Referenced by create_unique_path(), and join_is_removable().
{
ListCell *ic;
Assert(list_length(exprlist) == list_length(oprlist));
/* Short-circuit if no indexes... */
if (rel->indexlist == NIL)
return false;
/*
* Examine the rel's restriction clauses for usable var = const clauses
* that we can add to the restrictlist.
*/
foreach(ic, rel->baserestrictinfo)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(ic);
/*
* Note: can_join won't be set for a restriction clause, but
* mergeopfamilies will be if it has a mergejoinable operator and
* doesn't contain volatile functions.
*/
if (restrictinfo->mergeopfamilies == NIL)
continue; /* not mergejoinable */
/*
* The clause certainly doesn't refer to anything but the given rel.
* If either side is pseudoconstant then we can use it.
*/
if (bms_is_empty(restrictinfo->left_relids))
{
/* righthand side is inner */
restrictinfo->outer_is_left = true;
}
else if (bms_is_empty(restrictinfo->right_relids))
{
/* lefthand side is inner */
restrictinfo->outer_is_left = false;
}
else
continue;
/* OK, add to list */
restrictlist = lappend(restrictlist, restrictinfo);
}
/* Short-circuit the easy case */
if (restrictlist == NIL && exprlist == NIL)
return false;
/* Examine each index of the relation ... */
foreach(ic, rel->indexlist)
{
IndexOptInfo *ind = (IndexOptInfo *) lfirst(ic);
int c;
/*
* If the index is not unique, or not immediately enforced, or if it's
* a partial index that doesn't match the query, it's useless here.
*/
if (!ind->unique || !ind->immediate ||
(ind->indpred != NIL && !ind->predOK))
continue;
/*
* Try to find each index column in the lists of conditions. This is
* O(N^2) or worse, but we expect all the lists to be short.
*/
for (c = 0; c < ind->ncolumns; c++)
{
bool matched = false;
ListCell *lc;
ListCell *lc2;
foreach(lc, restrictlist)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
Node *rexpr;
/*
* The condition's equality operator must be a member of the
* index opfamily, else it is not asserting the right kind of
* equality behavior for this index. We check this first
* since it's probably cheaper than match_index_to_operand().
*/
if (!list_member_oid(rinfo->mergeopfamilies, ind->opfamily[c]))
continue;
/*
* XXX at some point we may need to check collations here too.
* For the moment we assume all collations reduce to the same
* notion of equality.
*/
/* OK, see if the condition operand matches the index key */
if (rinfo->outer_is_left)
rexpr = get_rightop(rinfo->clause);
else
rexpr = get_leftop(rinfo->clause);
if (match_index_to_operand(rexpr, c, ind))
{
matched = true; /* column is unique */
break;
}
}
if (matched)
continue;
forboth(lc, exprlist, lc2, oprlist)
{
Node *expr = (Node *) lfirst(lc);
Oid opr = lfirst_oid(lc2);
/* See if the expression matches the index key */
if (!match_index_to_operand(expr, c, ind))
continue;
/*
* The equality operator must be a member of the index
* opfamily, else it is not asserting the right kind of
* equality behavior for this index. We assume the caller
* determined it is an equality operator, so we don't need to
* check any more tightly than this.
*/
if (!op_in_opfamily(opr, ind->opfamily[c]))
continue;
/*
* XXX at some point we may need to check collations here too.
* For the moment we assume all collations reduce to the same
* notion of equality.
*/
matched = true; /* column is unique */
break;
}
if (!matched)
break; /* no match; this index doesn't help us */
}
/* Matched all columns of this index? */
if (c == ind->ncolumns)
return true;
}
return false;
}
Definition at line 4017 of file indxpath.c.
References BPCHAROID, BYTEAOID, elog, ERROR, makeConst(), NAMEOID, string_to_datum(), TEXTOID, and VARCHAROID.
Referenced by prefix_quals().
{
Datum conval = string_to_datum(str, datatype);
Oid collation;
int constlen;
/*
* We only need to support a few datatypes here, so hard-wire properties
* instead of incurring the expense of catalog lookups.
*/
switch (datatype)
{
case TEXTOID:
case VARCHAROID:
case BPCHAROID:
collation = DEFAULT_COLLATION_OID;
constlen = -1;
break;
case NAMEOID:
collation = InvalidOid;
constlen = NAMEDATALEN;
break;
case BYTEAOID:
collation = InvalidOid;
constlen = -1;
break;
default:
elog(ERROR, "unexpected datatype in string_to_const: %u",
datatype);
return NULL;
}
return makeConst(datatype, -1, collation, constlen,
conval, false, false);
}
Definition at line 3999 of file indxpath.c.
References byteain(), BYTEAOID, CStringGetDatum, CStringGetTextDatum, DirectFunctionCall1, namein(), and NAMEOID.
Referenced by string_to_const().
{
/*
* We cheat a little by assuming that CStringGetTextDatum() will do for
* bpchar and varchar constants too...
*/
if (datatype == NAMEOID)
return DirectFunctionCall1(namein, CStringGetDatum(str));
else if (datatype == BYTEAOID)
return DirectFunctionCall1(byteain, CStringGetDatum(str));
else
return CStringGetTextDatum(str);
}
1.7.1