| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2dom | Unicode version | ||
| Description: A set that dominates ordinal 2 has at least 2 different members. (Contributed by NM, 25-Jul-2004.) |
| Ref | Expression |
|---|---|
| 2dom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df2o2 6038 |
. . . 4
| |
| 2 | 1 | breq1i 3792 |
. . 3
|
| 3 | brdomi 6253 |
. . 3
| |
| 4 | 2, 3 | sylbi 119 |
. 2
|
| 5 | f1f 5112 |
. . . . 5
| |
| 6 | 0ex 3905 |
. . . . . 6
| |
| 7 | 6 | prid1 3498 |
. . . . 5
|
| 8 | ffvelrn 5321 |
. . . . 5
| |
| 9 | 5, 7, 8 | sylancl 404 |
. . . 4
|
| 10 | p0ex 3959 |
. . . . . 6
| |
| 11 | 10 | prid2 3499 |
. . . . 5
|
| 12 | ffvelrn 5321 |
. . . . 5
| |
| 13 | 5, 11, 12 | sylancl 404 |
. . . 4
|
| 14 | 0nep0 3939 |
. . . . . 6
| |
| 15 | 14 | neii 2247 |
. . . . 5
|
| 16 | f1fveq 5432 |
. . . . . 6
| |
| 17 | 7, 11, 16 | mpanr12 429 |
. . . . 5
|
| 18 | 15, 17 | mtbiri 632 |
. . . 4
|
| 19 | eqeq1 2087 |
. . . . . 6
| |
| 20 | 19 | notbid 624 |
. . . . 5
|
| 21 | eqeq2 2090 |
. . . . . 6
| |
| 22 | 21 | notbid 624 |
. . . . 5
|
| 23 | 20, 22 | rspc2ev 2715 |
. . . 4
|
| 24 | 9, 13, 18, 23 | syl3anc 1169 |
. . 3
|
| 25 | 24 | exlimiv 1529 |
. 2
|
| 26 | 4, 25 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 576 ax-in2 577 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-13 1444 ax-14 1445 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 ax-sep 3896 ax-nul 3904 ax-pow 3948 ax-pr 3964 ax-un 4188 |
| This theorem depends on definitions: df-bi 115 df-3an 921 df-tru 1287 df-nf 1390 df-sb 1686 df-eu 1944 df-mo 1945 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-ne 2246 df-ral 2353 df-rex 2354 df-v 2603 df-sbc 2816 df-dif 2975 df-un 2977 df-in 2979 df-ss 2986 df-nul 3252 df-pw 3384 df-sn 3404 df-pr 3405 df-op 3407 df-uni 3602 df-br 3786 df-opab 3840 df-id 4048 df-suc 4126 df-xp 4369 df-rel 4370 df-cnv 4371 df-co 4372 df-dm 4373 df-rn 4374 df-iota 4887 df-fun 4924 df-fn 4925 df-f 4926 df-f1 4927 df-fv 4930 df-1o 6024 df-2o 6025 df-dom 6246 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |