![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mtbiri | Unicode version |
Description: An inference from a biconditional, similar to modus tollens. (Contributed by NM, 24-Aug-1995.) |
Ref | Expression |
---|---|
mtbiri.min |
![]() ![]() ![]() |
mtbiri.maj |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mtbiri |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mtbiri.min |
. 2
![]() ![]() ![]() | |
2 | mtbiri.maj |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimpd 142 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | mtoi 622 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-in1 576 ax-in2 577 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: n0i 3256 axnul 3903 intexr 3925 intnexr 3926 iin0r 3943 ordtriexmidlem 4263 ordtriexmidlem2 4264 ordtri2or2exmidlem 4269 onsucelsucexmidlem 4272 sucprcreg 4292 preleq 4298 reg3exmidlemwe 4321 nn0eln0 4359 0nelelxp 4391 tfrlemisucaccv 5962 nndceq 6100 nndcel 6101 2dom 6308 snnen2oprc 6346 elni2 6504 ltsopi 6510 ltsonq 6588 renepnf 7166 renemnf 7167 lt0ne0d 7614 nnne0 8067 nn0ge2m1nn 8348 xrltnr 8855 pnfnlt 8862 nltmnf 8863 xrltnsym 8868 xrlttri3 8872 nltpnft 8884 ngtmnft 8885 xrrebnd 8886 fzpreddisj 9088 fzm1 9117 exfzdc 9249 m1exp1 10301 3prm 10510 bj-intexr 10699 bj-intnexr 10700 |
Copyright terms: Public domain | W3C validator |