ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3orass Unicode version

Theorem 3orass 922
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.)
Assertion
Ref Expression
3orass  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )

Proof of Theorem 3orass
StepHypRef Expression
1 df-3or 920 . 2  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ( ph  \/  ps )  \/  ch ) )
2 orass 716 . 2  |-  ( ( ( ph  \/  ps )  \/  ch )  <->  (
ph  \/  ( ps  \/  ch ) ) )
31, 2bitri 182 1  |-  ( (
ph  \/  ps  \/  ch )  <->  ( ph  \/  ( ps  \/  ch ) ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    \/ wo 661    \/ w3o 918
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662
This theorem depends on definitions:  df-bi 115  df-3or 920
This theorem is referenced by:  3orrot  925  3orcomb  928  3mix1  1107  sotritric  4079  sotritrieq  4080  ordtriexmid  4265  acexmidlemcase  5527  nntri3or  6095  nntri2  6096  elnnz  8361  elznn0  8366  elznn  8367  zapne  8422  nn01to3  8702  elxr  8850  bezoutlemmain  10387
  Copyright terms: Public domain W3C validator