ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elxr Unicode version

Theorem elxr 8850
Description: Membership in the set of extended reals. (Contributed by NM, 14-Oct-2005.)
Assertion
Ref Expression
elxr  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )

Proof of Theorem elxr
StepHypRef Expression
1 df-xr 7157 . . 3  |-  RR*  =  ( RR  u.  { +oo , -oo } )
21eleq2i 2145 . 2  |-  ( A  e.  RR*  <->  A  e.  ( RR  u.  { +oo , -oo } ) )
3 elun 3113 . 2  |-  ( A  e.  ( RR  u.  { +oo , -oo }
)  <->  ( A  e.  RR  \/  A  e. 
{ +oo , -oo }
) )
4 pnfex 8847 . . . . 5  |- +oo  e.  _V
5 mnfxr 8848 . . . . . 6  |- -oo  e.  RR*
65elexi 2611 . . . . 5  |- -oo  e.  _V
74, 6elpr2 3420 . . . 4  |-  ( A  e.  { +oo , -oo }  <->  ( A  = +oo  \/  A  = -oo ) )
87orbi2i 711 . . 3  |-  ( ( A  e.  RR  \/  A  e.  { +oo , -oo } )  <->  ( A  e.  RR  \/  ( A  = +oo  \/  A  = -oo ) ) )
9 3orass 922 . . 3  |-  ( ( A  e.  RR  \/  A  = +oo  \/  A  = -oo )  <->  ( A  e.  RR  \/  ( A  = +oo  \/  A  = -oo ) ) )
108, 9bitr4i 185 . 2  |-  ( ( A  e.  RR  \/  A  e.  { +oo , -oo } )  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
112, 3, 103bitri 204 1  |-  ( A  e.  RR*  <->  ( A  e.  RR  \/  A  = +oo  \/  A  = -oo ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 103    \/ wo 661    \/ w3o 918    = wceq 1284    e. wcel 1433    u. cun 2971   {cpr 3399   RRcr 6980   +oocpnf 7150   -oocmnf 7151   RR*cxr 7152
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-un 4188  ax-cnex 7067
This theorem depends on definitions:  df-bi 115  df-3or 920  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-rex 2354  df-v 2603  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-uni 3602  df-pnf 7155  df-mnf 7156  df-xr 7157
This theorem is referenced by:  xrnemnf  8853  xrnepnf  8854  xrltnr  8855  xrltnsym  8868  xrlttr  8870  xrltso  8871  xrlttri3  8872  nltpnft  8884  ngtmnft  8885  xrrebnd  8886  xnegcl  8899  xnegneg  8900  xltnegi  8902  qbtwnxr  9266
  Copyright terms: Public domain W3C validator