ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtriexmid Unicode version

Theorem ordtriexmid 4265
Description: Ordinal trichotomy implies the law of the excluded middle (that is, decidability of an arbitrary proposition).

This theorem is stated in "Constructive ordinals", [Crosilla], p. "Set-theoretic principles incompatible with intuitionistic logic".

(Contributed by Mario Carneiro and Jim Kingdon, 14-Nov-2018.)

Hypothesis
Ref Expression
ordtriexmid.1  |-  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
Assertion
Ref Expression
ordtriexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    x, y    ph, x
Allowed substitution hint:    ph( y)

Proof of Theorem ordtriexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 noel 3255 . . . 4  |-  -.  {
z  e.  { (/) }  |  ph }  e.  (/)
2 ordtriexmidlem 4263 . . . . . 6  |-  { z  e.  { (/) }  |  ph }  e.  On
3 eleq1 2141 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  e.  (/) 
<->  { z  e.  { (/)
}  |  ph }  e.  (/) ) )
4 eqeq1 2087 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  =  (/) 
<->  { z  e.  { (/)
}  |  ph }  =  (/) ) )
5 eleq2 2142 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( (/)  e.  x  <->  (/)  e.  { z  e.  { (/)
}  |  ph }
) )
63, 4, 53orbi123d 1242 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x )  <-> 
( { z  e. 
{ (/) }  |  ph }  e.  (/)  \/  {
z  e.  { (/) }  |  ph }  =  (/) 
\/  (/)  e.  { z  e.  { (/) }  |  ph } ) ) )
7 0elon 4147 . . . . . . . 8  |-  (/)  e.  On
8 0ex 3905 . . . . . . . . 9  |-  (/)  e.  _V
9 eleq1 2141 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  e.  On  <->  (/)  e.  On ) )
109anbi2d 451 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( ( x  e.  On  /\  y  e.  On )  <->  ( x  e.  On  /\  (/) 
e.  On ) ) )
11 eleq2 2142 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( x  e.  y  <->  x  e.  (/) ) )
12 eqeq2 2090 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( x  =  y  <->  x  =  (/) ) )
13 eleq1 2141 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  e.  x  <->  (/)  e.  x
) )
1411, 12, 133orbi123d 1242 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( ( x  e.  y  \/  x  =  y  \/  y  e.  x )  <-> 
( x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x
) ) )
1510, 14imbi12d 232 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( ( ( x  e.  On  /\  y  e.  On )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x ) )  <->  ( (
x  e.  On  /\  (/) 
e.  On )  -> 
( x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x
) ) ) )
16 ordtriexmid.1 . . . . . . . . . 10  |-  A. x  e.  On  A. y  e.  On  ( x  e.  y  \/  x  =  y  \/  y  e.  x )
1716rspec2 2450 . . . . . . . . 9  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  e.  y  \/  x  =  y  \/  y  e.  x
) )
188, 15, 17vtocl 2653 . . . . . . . 8  |-  ( ( x  e.  On  /\  (/) 
e.  On )  -> 
( x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x
) )
197, 18mpan2 415 . . . . . . 7  |-  ( x  e.  On  ->  (
x  e.  (/)  \/  x  =  (/)  \/  (/)  e.  x
) )
206, 19vtoclga 2664 . . . . . 6  |-  ( { z  e.  { (/) }  |  ph }  e.  On  ->  ( { z  e.  { (/) }  |  ph }  e.  (/)  \/  {
z  e.  { (/) }  |  ph }  =  (/) 
\/  (/)  e.  { z  e.  { (/) }  |  ph } ) )
212, 20ax-mp 7 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  (/) 
\/  { z  e. 
{ (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } )
22 3orass 922 . . . . 5  |-  ( ( { z  e.  { (/)
}  |  ph }  e.  (/)  \/  { z  e.  { (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } )  <-> 
( { z  e. 
{ (/) }  |  ph }  e.  (/)  \/  ( { z  e.  { (/)
}  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } ) ) )
2321, 22mpbi 143 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  e.  (/) 
\/  ( { z  e.  { (/) }  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } ) )
241, 23mtpor 1356 . . 3  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
\/  (/)  e.  { z  e.  { (/) }  |  ph } )
25 ordtriexmidlem2 4264 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
268snid 3425 . . . . . 6  |-  (/)  e.  { (/)
}
27 biidd 170 . . . . . . 7  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
2827elrab3 2750 . . . . . 6  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { z  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
2926, 28ax-mp 7 . . . . 5  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
3029biimpi 118 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  ->  ph )
3125, 30orim12i 708 . . 3  |-  ( ( { z  e.  { (/)
}  |  ph }  =  (/)  \/  (/)  e.  {
z  e.  { (/) }  |  ph } )  ->  ( -.  ph  \/  ph ) )
3224, 31ax-mp 7 . 2  |-  ( -. 
ph  \/  ph )
33 orcom 679 . 2  |-  ( (
ph  \/  -.  ph )  <->  ( -.  ph  \/  ph )
)
3432, 33mpbir 144 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    \/ w3o 918    = wceq 1284    e. wcel 1433   A.wral 2348   {crab 2352   (/)c0 3251   {csn 3398   Oncon0 4118
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-nul 3904  ax-pow 3948
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rex 2354  df-rab 2357  df-v 2603  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-pw 3384  df-sn 3404  df-uni 3602  df-tr 3876  df-iord 4121  df-on 4123  df-suc 4126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator