ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotritrieq Unicode version

Theorem sotritrieq 4080
Description: A trichotomy relationship, given a trichotomous order. (Contributed by Jim Kingdon, 13-Dec-2019.)
Hypotheses
Ref Expression
sotritric.or  |-  R  Or  A
sotritric.tri  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
Assertion
Ref Expression
sotritrieq  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )

Proof of Theorem sotritrieq
StepHypRef Expression
1 sotritric.or . . . . . . 7  |-  R  Or  A
2 sonr 4072 . . . . . . 7  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
31, 2mpan 414 . . . . . 6  |-  ( B  e.  A  ->  -.  B R B )
4 breq2 3789 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  B R C ) )
54notbid 624 . . . . . 6  |-  ( B  =  C  ->  ( -.  B R B  <->  -.  B R C ) )
63, 5syl5ibcom 153 . . . . 5  |-  ( B  e.  A  ->  ( B  =  C  ->  -.  B R C ) )
7 breq1 3788 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  C R B ) )
87notbid 624 . . . . . 6  |-  ( B  =  C  ->  ( -.  B R B  <->  -.  C R B ) )
93, 8syl5ibcom 153 . . . . 5  |-  ( B  e.  A  ->  ( B  =  C  ->  -.  C R B ) )
106, 9jcad 301 . . . 4  |-  ( B  e.  A  ->  ( B  =  C  ->  ( -.  B R C  /\  -.  C R B ) ) )
11 ioran 701 . . . 4  |-  ( -.  ( B R C  \/  C R B )  <->  ( -.  B R C  /\  -.  C R B ) )
1210, 11syl6ibr 160 . . 3  |-  ( B  e.  A  ->  ( B  =  C  ->  -.  ( B R C  \/  C R B ) ) )
1312adantr 270 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B  =  C  ->  -.  ( B R C  \/  C R B ) ) )
14 sotritric.tri . . 3  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
15 3orrot 925 . . . . . . 7  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( B  =  C  \/  C R B  \/  B R C ) )
16 3orcomb 928 . . . . . . 7  |-  ( ( B  =  C  \/  C R B  \/  B R C )  <->  ( B  =  C  \/  B R C  \/  C R B ) )
17 3orass 922 . . . . . . 7  |-  ( ( B  =  C  \/  B R C  \/  C R B )  <->  ( B  =  C  \/  ( B R C  \/  C R B ) ) )
1815, 16, 173bitri 204 . . . . . 6  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( B  =  C  \/  ( B R C  \/  C R B ) ) )
1918biimpi 118 . . . . 5  |-  ( ( B R C  \/  B  =  C  \/  C R B )  -> 
( B  =  C  \/  ( B R C  \/  C R B ) ) )
2019orcomd 680 . . . 4  |-  ( ( B R C  \/  B  =  C  \/  C R B )  -> 
( ( B R C  \/  C R B )  \/  B  =  C ) )
2120ord 675 . . 3  |-  ( ( B R C  \/  B  =  C  \/  C R B )  -> 
( -.  ( B R C  \/  C R B )  ->  B  =  C ) )
2214, 21syl 14 . 2  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( -.  ( B R C  \/  C R B )  ->  B  =  C ) )
2313, 22impbid 127 1  |-  ( ( B  e.  A  /\  C  e.  A )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    \/ w3o 918    = wceq 1284    e. wcel 1433   class class class wbr 3785    Or wor 4050
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-3or 920  df-3an 921  df-tru 1287  df-nf 1390  df-sb 1686  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-v 2603  df-un 2977  df-sn 3404  df-pr 3405  df-op 3407  df-br 3786  df-po 4051  df-iso 4052
This theorem is referenced by:  distrlem4prl  6774  distrlem4pru  6775
  Copyright terms: Public domain W3C validator