ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absexpzap Unicode version

Theorem absexpzap 9966
Description: Absolute value of integer exponentiation. (Contributed by Jim Kingdon, 11-Aug-2021.)
Assertion
Ref Expression
absexpzap  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) )

Proof of Theorem absexpzap
StepHypRef Expression
1 elznn0nn 8365 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )
2 absexp 9965 . . . . . 6  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) )
32ex 113 . . . . 5  |-  ( A  e.  CC  ->  ( N  e.  NN0  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) ) )
43adantr 270 . . . 4  |-  ( ( A  e.  CC  /\  A #  0 )  ->  ( N  e.  NN0  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) ) )
5 1cnd 7135 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  1  e.  CC )
6 simpll 495 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A  e.  CC )
7 nnnn0 8295 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  -u N  e.  NN0 )
87ad2antll 474 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  NN0 )
96, 8expcld 9605 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N )  e.  CC )
10 simplr 496 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  A #  0 )
11 nnz 8370 . . . . . . . . . 10  |-  ( -u N  e.  NN  ->  -u N  e.  ZZ )
1211ad2antll 474 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  -u N  e.  ZZ )
136, 10, 12expap0d 9611 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ -u N ) #  0 )
14 absdivap 9956 . . . . . . . 8  |-  ( ( 1  e.  CC  /\  ( A ^ -u N
)  e.  CC  /\  ( A ^ -u N
) #  0 )  -> 
( abs `  (
1  /  ( A ^ -u N ) ) )  =  ( ( abs `  1
)  /  ( abs `  ( A ^ -u N
) ) ) )
155, 9, 13, 14syl3anc 1169 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  ( 1  / 
( A ^ -u N
) ) )  =  ( ( abs `  1
)  /  ( abs `  ( A ^ -u N
) ) ) )
16 abs1 9958 . . . . . . . . 9  |-  ( abs `  1 )  =  1
1716oveq1i 5542 . . . . . . . 8  |-  ( ( abs `  1 )  /  ( abs `  ( A ^ -u N ) ) )  =  ( 1  /  ( abs `  ( A ^ -u N
) ) )
18 absexp 9965 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  -u N  e.  NN0 )  ->  ( abs `  ( A ^ -u N ) )  =  ( ( abs `  A ) ^ -u N ) )
196, 8, 18syl2anc 403 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  ( A ^ -u N ) )  =  ( ( abs `  A
) ^ -u N
) )
2019oveq2d 5548 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
1  /  ( abs `  ( A ^ -u N
) ) )  =  ( 1  /  (
( abs `  A
) ^ -u N
) ) )
2117, 20syl5eq 2125 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( abs `  1
)  /  ( abs `  ( A ^ -u N
) ) )  =  ( 1  /  (
( abs `  A
) ^ -u N
) ) )
2215, 21eqtrd 2113 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  ( 1  / 
( A ^ -u N
) ) )  =  ( 1  /  (
( abs `  A
) ^ -u N
) ) )
23 simprl 497 . . . . . . . . 9  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  RR )
2423recnd 7147 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  N  e.  CC )
25 expineg2 9485 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
266, 10, 24, 8, 25syl22anc 1170 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( A ^ N )  =  ( 1  /  ( A ^ -u N ) ) )
2726fveq2d 5202 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  ( A ^ N ) )  =  ( abs `  (
1  /  ( A ^ -u N ) ) ) )
28 abscl 9937 . . . . . . . . 9  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
2928ad2antrr 471 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  A )  e.  RR )
3029recnd 7147 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  A )  e.  CC )
31 abs00ap 9948 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( abs `  A
) #  0  <->  A #  0
) )
3231ad2antrr 471 . . . . . . . 8  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( abs `  A
) #  0  <->  A #  0
) )
3310, 32mpbird 165 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  A ) #  0 )
34 expineg2 9485 . . . . . . 7  |-  ( ( ( ( abs `  A
)  e.  CC  /\  ( abs `  A ) #  0 )  /\  ( N  e.  CC  /\  -u N  e.  NN0 ) )  -> 
( ( abs `  A
) ^ N )  =  ( 1  / 
( ( abs `  A
) ^ -u N
) ) )
3530, 33, 24, 8, 34syl22anc 1170 . . . . . 6  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  (
( abs `  A
) ^ N )  =  ( 1  / 
( ( abs `  A
) ^ -u N
) ) )
3622, 27, 353eqtr4d 2123 . . . . 5  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) )
3736ex 113 . . . 4  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
( N  e.  RR  /\  -u N  e.  NN )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) ) )
384, 37jaod 669 . . 3  |-  ( ( A  e.  CC  /\  A #  0 )  ->  (
( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) ) )
39383impia 1135 . 2  |-  ( ( A  e.  CC  /\  A #  0  /\  ( N  e.  NN0  \/  ( N  e.  RR  /\  -u N  e.  NN ) ) )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) )
401, 39syl3an3b 1207 1  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    /\ w3a 919    = wceq 1284    e. wcel 1433   class class class wbr 3785   ` cfv 4922  (class class class)co 5532   CCcc 6979   RRcr 6980   0cc0 6981   1c1 6982   -ucneg 7280   # cap 7681    / cdiv 7760   NNcn 8039   NN0cn0 8288   ZZcz 8351   ^cexp 9475   abscabs 9883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator