![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnnn0 | Unicode version |
Description: A positive integer is a nonnegative integer. (Contributed by NM, 9-May-2004.) |
Ref | Expression |
---|---|
nnnn0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnssnn0 8291 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 2995 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 662 ax-5 1376 ax-7 1377 ax-gen 1378 ax-ie1 1422 ax-ie2 1423 ax-8 1435 ax-10 1436 ax-11 1437 ax-i12 1438 ax-bndl 1439 ax-4 1440 ax-17 1459 ax-i9 1463 ax-ial 1467 ax-i5r 1468 ax-ext 2063 |
This theorem depends on definitions: df-bi 115 df-tru 1287 df-nf 1390 df-sb 1686 df-clab 2068 df-cleq 2074 df-clel 2077 df-nfc 2208 df-v 2603 df-un 2977 df-in 2979 df-ss 2986 df-n0 8289 |
This theorem is referenced by: nnnn0i 8296 elnnnn0b 8332 elnnnn0c 8333 elnn0z 8364 elz2 8419 nn0ind-raph 8464 zindd 8465 fzo1fzo0n0 9192 ubmelfzo 9209 elfzom1elp1fzo 9211 fzo0sn0fzo1 9230 modqmulnn 9344 expnegap0 9484 expcllem 9487 expcl2lemap 9488 expap0 9506 expeq0 9507 mulexpzap 9516 expnlbnd 9597 facdiv 9665 faclbnd 9668 faclbnd3 9670 faclbnd6 9671 resqrexlemlo 9899 absexpzap 9966 nn0enne 10302 nnehalf 10304 nno 10306 nn0o 10307 divalg2 10326 ndvdssub 10330 gcddiv 10408 gcdmultiple 10409 gcdmultiplez 10410 rpmulgcd 10415 rplpwr 10416 dvdssqlem 10419 eucalgf 10437 1nprm 10496 isprm6 10526 prmdvdsexp 10527 pw2dvds 10544 oddpwdc 10552 |
Copyright terms: Public domain | W3C validator |