ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absle Unicode version

Theorem absle 9975
Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absle  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) ) )

Proof of Theorem absle
StepHypRef Expression
1 simpll 495 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  e.  RR )
21renegcld 7484 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  e.  RR )
31recnd 7147 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  e.  CC )
4 abscl 9937 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
53, 4syl 14 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  A
)  e.  RR )
6 simplr 496 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  B  e.  RR )
7 leabs 9960 . . . . . . 7  |-  ( -u A  e.  RR  ->  -u A  <_  ( abs `  -u A
) )
82, 7syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  ( abs `  -u A ) )
9 absneg 9936 . . . . . . 7  |-  ( A  e.  CC  ->  ( abs `  -u A )  =  ( abs `  A
) )
103, 9syl 14 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  -u A
)  =  ( abs `  A ) )
118, 10breqtrd 3809 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  ( abs `  A ) )
12 simpr 108 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( abs `  A
)  <_  B )
132, 5, 6, 11, 12letrd 7233 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  -> 
-u A  <_  B
)
14 leabs 9960 . . . . . 6  |-  ( A  e.  RR  ->  A  <_  ( abs `  A
) )
1514ad2antrr 471 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  <_  ( abs `  A ) )
161, 5, 6, 15, 12letrd 7233 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  A  <_  B )
1713, 16jca 300 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( abs `  A
)  <_  B )  ->  ( -u A  <_  B  /\  A  <_  B
) )
18 simpll 495 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  e.  RR )
19 simplr 496 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  B  e.  RR )
2018recnd 7147 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  e.  CC )
2120, 4syl 14 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( abs `  A
)  e.  RR )
22 axltwlin 7180 . . . . . . . . . 10  |-  ( ( B  e.  RR  /\  ( abs `  A )  e.  RR  /\  A  e.  RR )  ->  ( B  <  ( abs `  A
)  ->  ( B  <  A  \/  A  < 
( abs `  A
) ) ) )
2319, 21, 18, 22syl3anc 1169 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( B  <  A  \/  A  <  ( abs `  A ) ) ) )
24 simprr 498 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  A  <_  B )
2518, 19lenltd 7227 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( A  <_  B  <->  -.  B  <  A ) )
2624, 25mpbid 145 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -.  B  <  A )
27 pm2.53 673 . . . . . . . . 9  |-  ( ( B  <  A  \/  A  <  ( abs `  A
) )  ->  ( -.  B  <  A  ->  A  <  ( abs `  A
) ) )
2823, 26, 27syl6ci 1374 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  ->  A  <  ( abs `  A
) ) )
29 simpl 107 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  e.  RR )
3029recnd 7147 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  e.  CC )
3130, 9syl 14 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  -u A )  =  ( abs `  A
) )
3229renegcld 7484 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  -u A  e.  RR )
33 0red 7120 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  0  e.  RR )
34 ltabs 9973 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  <  0 )
3529, 33, 34ltled 7228 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  A  <_  0 )
3629le0neg1d 7618 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( A  <_  0  <->  0  <_  -u A ) )
3735, 36mpbid 145 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  0  <_ 
-u A )
38 absid 9957 . . . . . . . . . 10  |-  ( (
-u A  e.  RR  /\  0  <_  -u A )  ->  ( abs `  -u A
)  =  -u A
)
3932, 37, 38syl2anc 403 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  -u A )  = 
-u A )
4031, 39eqtr3d 2115 . . . . . . . 8  |-  ( ( A  e.  RR  /\  A  <  ( abs `  A
) )  ->  ( abs `  A )  = 
-u A )
4118, 28, 40syl6an 1363 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( abs `  A
)  =  -u A
) )
42 simprl 497 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -u A  <_  B )
43 breq1 3788 . . . . . . . 8  |-  ( ( abs `  A )  =  -u A  ->  (
( abs `  A
)  <_  B  <->  -u A  <_  B ) )
4442, 43syl5ibrcom 155 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( ( abs `  A
)  =  -u A  ->  ( abs `  A
)  <_  B )
)
4541, 44syld 44 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  -> 
( abs `  A
)  <_  B )
)
4621, 19lenltd 7227 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( ( abs `  A
)  <_  B  <->  -.  B  <  ( abs `  A
) ) )
4745, 46sylibd 147 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( B  <  ( abs `  A )  ->  -.  B  <  ( abs `  A ) ) )
4847pm2.01d 580 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  ->  -.  B  <  ( abs `  A ) )
4948, 46mpbird 165 . . 3  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( -u A  <_  B  /\  A  <_  B ) )  -> 
( abs `  A
)  <_  B )
5017, 49impbida 560 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u A  <_  B  /\  A  <_  B ) ) )
51 lenegcon1 7570 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( -u A  <_  B 
<-> 
-u B  <_  A
) )
5251anbi1d 452 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( -u A  <_  B  /\  A  <_  B )  <->  ( -u B  <_  A  /\  A  <_  B ) ) )
5350, 52bitrd 186 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  A
)  <_  B  <->  ( -u B  <_  A  /\  A  <_  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433   class class class wbr 3785   ` cfv 4922   CCcc 6979   RRcr 6980   0cc0 6981    < clt 7153    <_ cle 7154   -ucneg 7280   abscabs 9883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885
This theorem is referenced by:  absdifle  9979  lenegsq  9981  abs2difabs  9994  abslei  10025  absled  10061  dfabsmax  10103
  Copyright terms: Public domain W3C validator