ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absle GIF version

Theorem absle 9975
Description: Absolute value and 'less than or equal to' relation. (Contributed by NM, 6-Apr-2005.) (Revised by Mario Carneiro, 29-May-2016.)
Assertion
Ref Expression
absle ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))

Proof of Theorem absle
StepHypRef Expression
1 simpll 495 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℝ)
21renegcld 7484 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ∈ ℝ)
31recnd 7147 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ∈ ℂ)
4 abscl 9937 . . . . . 6 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
53, 4syl 14 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ∈ ℝ)
6 simplr 496 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐵 ∈ ℝ)
7 leabs 9960 . . . . . . 7 (-𝐴 ∈ ℝ → -𝐴 ≤ (abs‘-𝐴))
82, 7syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘-𝐴))
9 absneg 9936 . . . . . . 7 (𝐴 ∈ ℂ → (abs‘-𝐴) = (abs‘𝐴))
103, 9syl 14 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘-𝐴) = (abs‘𝐴))
118, 10breqtrd 3809 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴 ≤ (abs‘𝐴))
12 simpr 108 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (abs‘𝐴) ≤ 𝐵)
132, 5, 6, 11, 12letrd 7233 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → -𝐴𝐵)
14 leabs 9960 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ≤ (abs‘𝐴))
1514ad2antrr 471 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴 ≤ (abs‘𝐴))
161, 5, 6, 15, 12letrd 7233 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → 𝐴𝐵)
1713, 16jca 300 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (abs‘𝐴) ≤ 𝐵) → (-𝐴𝐵𝐴𝐵))
18 simpll 495 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → 𝐴 ∈ ℝ)
19 simplr 496 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → 𝐵 ∈ ℝ)
2018recnd 7147 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → 𝐴 ∈ ℂ)
2120, 4syl 14 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (abs‘𝐴) ∈ ℝ)
22 axltwlin 7180 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ (abs‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < (abs‘𝐴) → (𝐵 < 𝐴𝐴 < (abs‘𝐴))))
2319, 21, 18, 22syl3anc 1169 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → (𝐵 < 𝐴𝐴 < (abs‘𝐴))))
24 simprr 498 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → 𝐴𝐵)
2518, 19lenltd 7227 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
2624, 25mpbid 145 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → ¬ 𝐵 < 𝐴)
27 pm2.53 673 . . . . . . . . 9 ((𝐵 < 𝐴𝐴 < (abs‘𝐴)) → (¬ 𝐵 < 𝐴𝐴 < (abs‘𝐴)))
2823, 26, 27syl6ci 1374 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → 𝐴 < (abs‘𝐴)))
29 simpl 107 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ∈ ℝ)
3029recnd 7147 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ∈ ℂ)
3130, 9syl 14 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘-𝐴) = (abs‘𝐴))
3229renegcld 7484 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → -𝐴 ∈ ℝ)
33 0red 7120 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 0 ∈ ℝ)
34 ltabs 9973 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 < 0)
3529, 33, 34ltled 7228 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 𝐴 ≤ 0)
3629le0neg1d 7618 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
3735, 36mpbid 145 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → 0 ≤ -𝐴)
38 absid 9957 . . . . . . . . . 10 ((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) → (abs‘-𝐴) = -𝐴)
3932, 37, 38syl2anc 403 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘-𝐴) = -𝐴)
4031, 39eqtr3d 2115 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 < (abs‘𝐴)) → (abs‘𝐴) = -𝐴)
4118, 28, 40syl6an 1363 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → (abs‘𝐴) = -𝐴))
42 simprl 497 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → -𝐴𝐵)
43 breq1 3788 . . . . . . . 8 ((abs‘𝐴) = -𝐴 → ((abs‘𝐴) ≤ 𝐵 ↔ -𝐴𝐵))
4442, 43syl5ibrcom 155 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → ((abs‘𝐴) = -𝐴 → (abs‘𝐴) ≤ 𝐵))
4541, 44syld 44 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → (abs‘𝐴) ≤ 𝐵))
4621, 19lenltd 7227 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → ((abs‘𝐴) ≤ 𝐵 ↔ ¬ 𝐵 < (abs‘𝐴)))
4745, 46sylibd 147 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (𝐵 < (abs‘𝐴) → ¬ 𝐵 < (abs‘𝐴)))
4847pm2.01d 580 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → ¬ 𝐵 < (abs‘𝐴))
4948, 46mpbird 165 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (-𝐴𝐵𝐴𝐵)) → (abs‘𝐴) ≤ 𝐵)
5017, 49impbida 560 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐴𝐵𝐴𝐵)))
51 lenegcon1 7570 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴𝐵 ↔ -𝐵𝐴))
5251anbi1d 452 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((-𝐴𝐵𝐴𝐵) ↔ (-𝐵𝐴𝐴𝐵)))
5350, 52bitrd 186 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘𝐴) ≤ 𝐵 ↔ (-𝐵𝐴𝐴𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 661   = wceq 1284  wcel 1433   class class class wbr 3785  cfv 4922  cc 6979  cr 6980  0cc0 6981   < clt 7153  cle 7154  -cneg 7280  abscabs 9883
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-coll 3893  ax-sep 3896  ax-nul 3904  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-iinf 4329  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-ltwlin 7089  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093  ax-pre-mulext 7094  ax-arch 7095  ax-caucvg 7096
This theorem depends on definitions:  df-bi 115  df-dc 776  df-3or 920  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rmo 2356  df-rab 2357  df-v 2603  df-sbc 2816  df-csb 2909  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-nul 3252  df-if 3352  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-int 3637  df-iun 3680  df-br 3786  df-opab 3840  df-mpt 3841  df-tr 3876  df-id 4048  df-po 4051  df-iso 4052  df-iord 4121  df-on 4123  df-suc 4126  df-iom 4332  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-rn 4374  df-res 4375  df-ima 4376  df-iota 4887  df-fun 4924  df-fn 4925  df-f 4926  df-f1 4927  df-fo 4928  df-f1o 4929  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-1st 5787  df-2nd 5788  df-recs 5943  df-frec 6001  df-pnf 7155  df-mnf 7156  df-xr 7157  df-ltxr 7158  df-le 7159  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682  df-div 7761  df-inn 8040  df-2 8098  df-3 8099  df-4 8100  df-n0 8289  df-z 8352  df-uz 8620  df-rp 8735  df-iseq 9432  df-iexp 9476  df-cj 9729  df-re 9730  df-im 9731  df-rsqrt 9884  df-abs 9885
This theorem is referenced by:  absdifle  9979  lenegsq  9981  abs2difabs  9994  abslei  10025  absled  10061  dfabsmax  10103
  Copyright terms: Public domain W3C validator