ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  apsym Unicode version

Theorem apsym 7706
Description: Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.)
Assertion
Ref Expression
apsym  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  B #  A
) )

Proof of Theorem apsym
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7115 . . 3  |-  ( B  e.  CC  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) ) )
21adantl 271 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w
) ) )
3 cnre 7115 . . . . . 6  |-  ( A  e.  CC  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
43ad3antrrr 475 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
5 simplrl 501 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  x  e.  RR )
6 simplrl 501 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  z  e.  RR )
76ad2antrr 471 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  z  e.  RR )
8 reaplt 7688 . . . . . . . . . . . 12  |-  ( ( x  e.  RR  /\  z  e.  RR )  ->  ( x #  z  <->  ( x  <  z  \/  z  < 
x ) ) )
95, 7, 8syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
x #  z  <->  ( x  <  z  \/  z  < 
x ) ) )
10 reaplt 7688 . . . . . . . . . . . . 13  |-  ( ( z  e.  RR  /\  x  e.  RR )  ->  ( z #  x  <->  ( z  <  x  \/  x  < 
z ) ) )
117, 5, 10syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
z #  x  <->  ( z  <  x  \/  x  < 
z ) ) )
12 orcom 679 . . . . . . . . . . . 12  |-  ( ( x  <  z  \/  z  <  x )  <-> 
( z  <  x  \/  x  <  z ) )
1311, 12syl6bbr 196 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
z #  x  <->  ( x  <  z  \/  z  < 
x ) ) )
149, 13bitr4d 189 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
x #  z  <->  z #  x
) )
15 simplrr 502 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  y  e.  RR )
16 simplrr 502 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  w  e.  RR )
1716ad2antrr 471 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  w  e.  RR )
18 reaplt 7688 . . . . . . . . . . . 12  |-  ( ( y  e.  RR  /\  w  e.  RR )  ->  ( y #  w  <->  ( y  <  w  \/  w  < 
y ) ) )
1915, 17, 18syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
y #  w  <->  ( y  <  w  \/  w  < 
y ) ) )
20 reaplt 7688 . . . . . . . . . . . . 13  |-  ( ( w  e.  RR  /\  y  e.  RR )  ->  ( w #  y  <->  ( w  <  y  \/  y  < 
w ) ) )
2117, 15, 20syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
w #  y  <->  ( w  <  y  \/  y  < 
w ) ) )
22 orcom 679 . . . . . . . . . . . 12  |-  ( ( y  <  w  \/  w  <  y )  <-> 
( w  <  y  \/  y  <  w ) )
2321, 22syl6bbr 196 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
w #  y  <->  ( y  <  w  \/  w  < 
y ) ) )
2419, 23bitr4d 189 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
y #  w  <->  w #  y
) )
2514, 24orbi12d 739 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x #  z  \/  y #  w )  <->  ( z #  x  \/  w #  y
) ) )
26 apreim 7703 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) )  <->  ( x #  z  \/  y #  w
) ) )
275, 15, 7, 17, 26syl22anc 1170 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w
) )  <->  ( x #  z  \/  y #  w
) ) )
28 apreim 7703 . . . . . . . . . 10  |-  ( ( ( z  e.  RR  /\  w  e.  RR )  /\  ( x  e.  RR  /\  y  e.  RR ) )  -> 
( ( z  +  ( _i  x.  w
) ) #  ( x  +  ( _i  x.  y ) )  <->  ( z #  x  \/  w #  y
) ) )
297, 17, 5, 15, 28syl22anc 1170 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( z  +  ( _i  x.  w ) ) #  ( x  +  ( _i  x.  y
) )  <->  ( z #  x  \/  w #  y
) ) )
3025, 27, 293bitr4d 218 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  (
( x  +  ( _i  x.  y ) ) #  ( z  +  ( _i  x.  w
) )  <->  ( z  +  ( _i  x.  w ) ) #  ( x  +  ( _i  x.  y ) ) ) )
31 simpr 108 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  A  =  ( x  +  ( _i  x.  y
) ) )
32 simpllr 500 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  B  =  ( z  +  ( _i  x.  w
) ) )
3331, 32breq12d 3798 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  <->  ( x  +  ( _i  x.  y
) ) #  ( z  +  ( _i  x.  w ) ) ) )
3432, 31breq12d 3798 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( B #  A  <->  ( z  +  ( _i  x.  w
) ) #  ( x  +  ( _i  x.  y ) ) ) )
3530, 33, 343bitr4d 218 . . . . . . 7  |-  ( ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  /\  A  =  ( x  +  (
_i  x.  y )
) )  ->  ( A #  B  <->  B #  A )
)
3635ex 113 . . . . . 6  |-  ( ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  /\  (
x  e.  RR  /\  y  e.  RR )
)  ->  ( A  =  ( x  +  ( _i  x.  y
) )  ->  ( A #  B  <->  B #  A )
) )
3736rexlimdvva 2484 . . . . 5  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( E. x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y
) )  ->  ( A #  B  <->  B #  A )
) )
384, 37mpd 13 . . . 4  |-  ( ( ( ( A  e.  CC  /\  B  e.  CC )  /\  (
z  e.  RR  /\  w  e.  RR )
)  /\  B  =  ( z  +  ( _i  x.  w ) ) )  ->  ( A #  B  <->  B #  A )
)
3938ex 113 . . 3  |-  ( ( ( A  e.  CC  /\  B  e.  CC )  /\  ( z  e.  RR  /\  w  e.  RR ) )  -> 
( B  =  ( z  +  ( _i  x.  w ) )  ->  ( A #  B  <->  B #  A ) ) )
4039rexlimdvva 2484 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( E. z  e.  RR  E. w  e.  RR  B  =  ( z  +  ( _i  x.  w ) )  ->  ( A #  B  <->  B #  A ) ) )
412, 40mpd 13 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  B #  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    \/ wo 661    = wceq 1284    e. wcel 1433   E.wrex 2349   class class class wbr 3785  (class class class)co 5532   CCcc 6979   RRcr 6980   _ici 6983    + caddc 6984    x. cmul 6986    < clt 7153   # cap 7681
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-13 1444  ax-14 1445  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063  ax-sep 3896  ax-pow 3948  ax-pr 3964  ax-un 4188  ax-setind 4280  ax-cnex 7067  ax-resscn 7068  ax-1cn 7069  ax-1re 7070  ax-icn 7071  ax-addcl 7072  ax-addrcl 7073  ax-mulcl 7074  ax-mulrcl 7075  ax-addcom 7076  ax-mulcom 7077  ax-addass 7078  ax-mulass 7079  ax-distr 7080  ax-i2m1 7081  ax-0lt1 7082  ax-1rid 7083  ax-0id 7084  ax-rnegex 7085  ax-precex 7086  ax-cnre 7087  ax-pre-ltirr 7088  ax-pre-lttrn 7090  ax-pre-apti 7091  ax-pre-ltadd 7092  ax-pre-mulgt0 7093
This theorem depends on definitions:  df-bi 115  df-3an 921  df-tru 1287  df-fal 1290  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ne 2246  df-nel 2340  df-ral 2353  df-rex 2354  df-reu 2355  df-rab 2357  df-v 2603  df-sbc 2816  df-dif 2975  df-un 2977  df-in 2979  df-ss 2986  df-pw 3384  df-sn 3404  df-pr 3405  df-op 3407  df-uni 3602  df-br 3786  df-opab 3840  df-id 4048  df-xp 4369  df-rel 4370  df-cnv 4371  df-co 4372  df-dm 4373  df-iota 4887  df-fun 4924  df-fv 4930  df-riota 5488  df-ov 5535  df-oprab 5536  df-mpt2 5537  df-pnf 7155  df-mnf 7156  df-ltxr 7158  df-sub 7281  df-neg 7282  df-reap 7675  df-ap 7682
This theorem is referenced by:  addext  7710  mulext  7714  ltapii  7733  ltapd  7736  recgt0  7928  prodgt0  7930  sqrt2irraplemnn  10557
  Copyright terms: Public domain W3C validator